985 lines
54 KiB
Fortran
985 lines
54 KiB
Fortran
!* $Id$
|
|
!*****************************************************
|
|
!* Module: CONSTITUTIVE_PHENOPOWERLAW *
|
|
!*****************************************************
|
|
!* contains: *
|
|
!* - constitutive equations *
|
|
!* - parameters definition *
|
|
!*****************************************************
|
|
|
|
![Alu]
|
|
!constitution phenopowerlaw
|
|
!(output) resistance_slip
|
|
!(output) shearrate_slip
|
|
!(output) resolvedstress_slip
|
|
!(output) totalshear
|
|
!(output) resistance_twin
|
|
!(output) shearrate_twin
|
|
!(output) resolvedstress_twin
|
|
!(output) totalvolfrac
|
|
!lattice_structure hex
|
|
!covera_ratio 1.587
|
|
!Nslip 3 3 6 12 # per family
|
|
!Ntwin 6 6 6 6 # per family
|
|
!
|
|
!c11 162.2e9
|
|
!c12 91.8e9
|
|
!c13 68.8e9
|
|
!c33 180.5e9
|
|
!c44 46.7e9
|
|
!
|
|
!gdot0_slip 0.001
|
|
!n_slip 50
|
|
!tau0_slip 65e6 22e6 52e6 50e6 # per family
|
|
!tausat_slip 80e6 180e6 140e6 140e6 # per family
|
|
!w0_slip 1
|
|
!gdot0_twin 0.001
|
|
!n_twin 50
|
|
!tau0_twin 52e6 52e6 52e6 52e6 # per family
|
|
!s_pr 50e6 # push-up stress for slip saturation due to twinning
|
|
!twin_b 2
|
|
!twin_C 25
|
|
!twin_d 0.1
|
|
!twin_e 0.1
|
|
!h0_slipslip 10e6
|
|
!h0_sliptwin 0
|
|
!h0_twinslip 625e6
|
|
!h0_twintwin 400e6
|
|
!interaction_slipslip 5.5 5.5 1.0 52.0 5.5 5.5 1.0 52.0 27.5 0.2 72.8 1.0 72.8 72.8 27.5 1.1 1.4 5.5 7.7 7.7
|
|
!interaction_sliptwin 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
|
|
!interaction_twinslip 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
|
|
!interaction_twintwin 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10 10
|
|
!relevantResistance 1
|
|
|
|
MODULE constitutive_phenopowerlaw
|
|
|
|
!*** Include other modules ***
|
|
use prec, only: pReal,pInt
|
|
implicit none
|
|
|
|
character (len=*), parameter :: constitutive_phenopowerlaw_label = 'phenopowerlaw'
|
|
|
|
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_sizeDotState, &
|
|
constitutive_phenopowerlaw_sizeState, &
|
|
constitutive_phenopowerlaw_sizePostResults ! cumulative size of post results
|
|
integer(pInt), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_sizePostResult ! size of each post result output
|
|
character(len=64), dimension(:,:), allocatable,target :: constitutive_phenopowerlaw_output ! name of each post result output
|
|
|
|
character(len=32), dimension(:), allocatable :: constitutive_phenopowerlaw_structureName
|
|
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_structure
|
|
integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Nslip ! active number of slip systems per family
|
|
integer(pInt), dimension(:,:), allocatable :: constitutive_phenopowerlaw_Ntwin ! active number of twin systems per family
|
|
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNslip ! no. of slip system used in simulation
|
|
integer(pInt), dimension(:), allocatable :: constitutive_phenopowerlaw_totalNtwin ! no. of twin system used in simulation
|
|
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_CoverA
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C11
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C12
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C13
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C33
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_C44
|
|
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_Cslip_66
|
|
!* Visco-plastic constitutive_phenomenological parameters
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_slip
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_slip
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_slip
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tausat_slip
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_gdot0_twin
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_n_twin
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_tau0_twin
|
|
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_spr
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinB
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinC
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinD
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_twinE
|
|
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_slipslip
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_sliptwin
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twinslip
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_h0_twintwin
|
|
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_slipslip
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_sliptwin
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twinslip
|
|
real(pReal), dimension(:,:), allocatable :: constitutive_phenopowerlaw_interaction_twintwin
|
|
|
|
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_slipslip
|
|
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_sliptwin
|
|
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twinslip
|
|
real(pReal), dimension(:,:,:), allocatable :: constitutive_phenopowerlaw_hardeningMatrix_twintwin
|
|
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_w0_slip
|
|
|
|
real(pReal), dimension(:), allocatable :: constitutive_phenopowerlaw_aTolResistance
|
|
|
|
CONTAINS
|
|
!****************************************
|
|
!* - constitutive_init
|
|
!* - constitutive_stateInit
|
|
!* - constitutive_homogenizedC
|
|
!* - constitutive_microstructure
|
|
!* - constitutive_LpAndItsTangent
|
|
!* - consistutive_dotState
|
|
!* - consistutive_postResults
|
|
!****************************************
|
|
|
|
|
|
subroutine constitutive_phenopowerlaw_init(file)
|
|
!**************************************
|
|
!* Module initialization *
|
|
!**************************************
|
|
use prec, only: pInt, pReal
|
|
use math, only: math_Mandel3333to66, math_Voigt66to3333
|
|
use IO
|
|
use material
|
|
use debug, only: debug_verbosity
|
|
|
|
use lattice, only: lattice_initializeStructure, lattice_symmetryType, &
|
|
lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
|
lattice_maxNinteraction, lattice_NslipSystem, lattice_NtwinSystem, &
|
|
lattice_interactionSlipSlip, &
|
|
lattice_interactionSlipTwin, &
|
|
lattice_interactionTwinSlip, &
|
|
lattice_interactionTwinTwin
|
|
|
|
integer(pInt), intent(in) :: file
|
|
integer(pInt), parameter :: maxNchunks = 21
|
|
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
|
integer(pInt) section, maxNinstance, i,j,k,l,m, f,o, output, &
|
|
mySize, myStructure, index_myFamily, index_otherFamily
|
|
character(len=64) tag,formatting
|
|
character(len=1024) line
|
|
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,'(a20,a20,a12)') '<<<+- constitutive_',constitutive_phenopowerlaw_label,' init -+>>>'
|
|
write(6,*) '$Id$'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
maxNinstance = count(phase_constitution == constitutive_phenopowerlaw_label)
|
|
if (maxNinstance == 0) return
|
|
|
|
if (debug_verbosity > 0) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a16,x,i5)') '# instances:',maxNinstance
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance)) ; constitutive_phenopowerlaw_sizeDotState = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_sizeState(maxNinstance)) ; constitutive_phenopowerlaw_sizeState = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance)); constitutive_phenopowerlaw_sizePostResults = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput), &
|
|
maxNinstance)) ; constitutive_phenopowerlaw_sizePostResult = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput), &
|
|
maxNinstance)) ; constitutive_phenopowerlaw_output = ''
|
|
|
|
allocate(constitutive_phenopowerlaw_structureName(maxNinstance)) ; constitutive_phenopowerlaw_structureName = ''
|
|
allocate(constitutive_phenopowerlaw_structure(maxNinstance)) ; constitutive_phenopowerlaw_structure = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,&
|
|
maxNinstance)) ; constitutive_phenopowerlaw_Nslip = 0_pInt
|
|
allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,&
|
|
maxNinstance)) ; constitutive_phenopowerlaw_Ntwin = 0_pInt
|
|
|
|
allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance)) ; constitutive_phenopowerlaw_totalNslip = 0_pInt !no. of slip system used in simulation (YJ.RO)
|
|
allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance)) ; constitutive_phenopowerlaw_totalNtwin = 0_pInt !no. of twin system used in simulation (YJ.RO)
|
|
|
|
allocate(constitutive_phenopowerlaw_CoverA(maxNinstance)) ; constitutive_phenopowerlaw_CoverA = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_C11(maxNinstance)) ; constitutive_phenopowerlaw_C11 = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_C12(maxNinstance)) ; constitutive_phenopowerlaw_C12 = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_C13(maxNinstance)) ; constitutive_phenopowerlaw_C13 = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_C33(maxNinstance)) ; constitutive_phenopowerlaw_C33 = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_C44(maxNinstance)) ; constitutive_phenopowerlaw_C44 = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance)) ; constitutive_phenopowerlaw_Cslip_66 = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_slip = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_n_slip(maxNinstance)) ; constitutive_phenopowerlaw_n_slip = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,&
|
|
maxNinstance)) ; constitutive_phenopowerlaw_tau0_slip = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,&
|
|
maxNinstance)) ; constitutive_phenopowerlaw_tausat_slip = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance)) ; constitutive_phenopowerlaw_gdot0_twin = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_n_twin(maxNinstance)) ; constitutive_phenopowerlaw_n_twin = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,&
|
|
maxNinstance)) ; constitutive_phenopowerlaw_tau0_twin = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_spr(maxNinstance)) ; constitutive_phenopowerlaw_spr = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_twinB(maxNinstance)) ; constitutive_phenopowerlaw_twinB = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_twinC(maxNinstance)) ; constitutive_phenopowerlaw_twinC = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_twinD(maxNinstance)) ; constitutive_phenopowerlaw_twinD = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_twinE(maxNinstance)) ; constitutive_phenopowerlaw_twinE = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_h0_slipslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_slipslip = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_h0_sliptwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_sliptwin = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_h0_twinslip(maxNinstance)) ; constitutive_phenopowerlaw_h0_twinslip = 0.0_pReal
|
|
allocate(constitutive_phenopowerlaw_h0_twintwin(maxNinstance)) ; constitutive_phenopowerlaw_h0_twintwin = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_interaction_slipslip(lattice_maxNinteraction,maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_interaction_sliptwin(lattice_maxNinteraction,maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_interaction_twinslip(lattice_maxNinteraction,maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_interaction_twintwin(lattice_maxNinteraction,maxNinstance))
|
|
constitutive_phenopowerlaw_interaction_slipslip = 0.0_pReal
|
|
constitutive_phenopowerlaw_interaction_sliptwin = 0.0_pReal
|
|
constitutive_phenopowerlaw_interaction_twinslip = 0.0_pReal
|
|
constitutive_phenopowerlaw_interaction_twintwin = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_w0_slip(maxNinstance))
|
|
constitutive_phenopowerlaw_w0_slip = 0.0_pReal
|
|
|
|
allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance))
|
|
constitutive_phenopowerlaw_aTolResistance = 0.0_pReal
|
|
|
|
rewind(file)
|
|
line = ''
|
|
section = 0
|
|
|
|
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
|
|
read(file,'(a1024)',END=100) line
|
|
enddo
|
|
|
|
do ! read thru sections of phase part
|
|
read(file,'(a1024)',END=100) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1
|
|
output = 0 ! reset output counter
|
|
endif
|
|
if (section > 0 .and. phase_constitution(section) == constitutive_phenopowerlaw_label) then ! one of my sections
|
|
i = phase_constitutionInstance(section) ! which instance of my constitution is present phase
|
|
positions = IO_stringPos(line,maxNchunks)
|
|
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
output = output + 1
|
|
constitutive_phenopowerlaw_output(output,i) = IO_lc(IO_stringValue(line,positions,2))
|
|
case ('lattice_structure')
|
|
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2))
|
|
case ('covera_ratio')
|
|
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2)
|
|
case ('c11')
|
|
constitutive_phenopowerlaw_C11(i) = IO_floatValue(line,positions,2)
|
|
case ('c12')
|
|
constitutive_phenopowerlaw_C12(i) = IO_floatValue(line,positions,2)
|
|
case ('c13')
|
|
constitutive_phenopowerlaw_C13(i) = IO_floatValue(line,positions,2)
|
|
case ('c33')
|
|
constitutive_phenopowerlaw_C33(i) = IO_floatValue(line,positions,2)
|
|
case ('c44')
|
|
constitutive_phenopowerlaw_C44(i) = IO_floatValue(line,positions,2)
|
|
case ('nslip')
|
|
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1+j)
|
|
case ('gdot0_slip')
|
|
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2)
|
|
case ('n_slip')
|
|
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2)
|
|
case ('tau0_slip')
|
|
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('tausat_slip')
|
|
forall (j = 1:lattice_maxNslipFamily) constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('w0_slip')
|
|
constitutive_phenopowerlaw_w0_slip(i) = IO_floatValue(line,positions,2)
|
|
case ('ntwin')
|
|
forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1+j)
|
|
case ('gdot0_twin')
|
|
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2)
|
|
case ('n_twin')
|
|
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2)
|
|
case ('tau0_twin')
|
|
forall (j = 1:lattice_maxNtwinFamily) constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('s_pr')
|
|
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2)
|
|
case ('twin_b')
|
|
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2)
|
|
case ('twin_c')
|
|
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2)
|
|
case ('twin_d')
|
|
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2)
|
|
case ('twin_e')
|
|
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2)
|
|
case ('h0_slipslip')
|
|
constitutive_phenopowerlaw_h0_slipslip(i) = IO_floatValue(line,positions,2)
|
|
case ('h0_sliptwin')
|
|
constitutive_phenopowerlaw_h0_sliptwin(i) = IO_floatValue(line,positions,2)
|
|
case ('h0_twinslip')
|
|
constitutive_phenopowerlaw_h0_twinslip(i) = IO_floatValue(line,positions,2)
|
|
case ('h0_twintwin')
|
|
constitutive_phenopowerlaw_h0_twintwin(i) = IO_floatValue(line,positions,2)
|
|
case ('atol_resistance')
|
|
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2)
|
|
case ('interaction_slipslip')
|
|
forall (j = 1:lattice_maxNinteraction) &
|
|
constitutive_phenopowerlaw_interaction_slipslip(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('interaction_sliptwin')
|
|
forall (j = 1:lattice_maxNinteraction) &
|
|
constitutive_phenopowerlaw_interaction_sliptwin(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('interaction_twinslip')
|
|
forall (j = 1:lattice_maxNinteraction) &
|
|
constitutive_phenopowerlaw_interaction_twinslip(j,i) = IO_floatValue(line,positions,1+j)
|
|
case ('interaction_twintwin')
|
|
forall (j = 1:lattice_maxNinteraction) &
|
|
constitutive_phenopowerlaw_interaction_twintwin(j,i) = IO_floatValue(line,positions,1+j)
|
|
end select
|
|
endif
|
|
enddo
|
|
|
|
100 do i = 1,maxNinstance
|
|
|
|
constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure
|
|
constitutive_phenopowerlaw_CoverA(i))
|
|
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = &
|
|
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
|
|
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i))
|
|
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = &
|
|
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
|
|
constitutive_phenopowerlaw_Ntwin(:,i))
|
|
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
|
|
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
|
|
|
|
if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205,i)
|
|
if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(210,i)
|
|
if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211,i)
|
|
if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(212,i)
|
|
if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(213,i)
|
|
if (any(constitutive_phenopowerlaw_w0_slip(i) == 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(214,i)
|
|
if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. &
|
|
constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(210,i)
|
|
if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. &
|
|
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211,i)
|
|
if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. &
|
|
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(212,i)
|
|
if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) &
|
|
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
|
|
|
|
enddo
|
|
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_slipslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity
|
|
maxval(constitutive_phenopowerlaw_totalNslip),&
|
|
maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! slip resistance from twin activity
|
|
maxval(constitutive_phenopowerlaw_totalNslip),&
|
|
maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_twinslip(maxval(constitutive_phenopowerlaw_totalNslip),& ! twin resistance from slip activity
|
|
maxval(constitutive_phenopowerlaw_totalNtwin),&
|
|
maxNinstance))
|
|
allocate(constitutive_phenopowerlaw_hardeningMatrix_twintwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity
|
|
maxval(constitutive_phenopowerlaw_totalNtwin),&
|
|
maxNinstance))
|
|
constitutive_phenopowerlaw_hardeningMatrix_slipslip = 0.0_pReal
|
|
constitutive_phenopowerlaw_hardeningMatrix_sliptwin = 0.0_pReal
|
|
constitutive_phenopowerlaw_hardeningMatrix_twinslip = 0.0_pReal
|
|
constitutive_phenopowerlaw_hardeningMatrix_twintwin = 0.0_pReal
|
|
|
|
|
|
do i = 1,maxNinstance
|
|
do j = 1,maxval(phase_Noutput)
|
|
select case(constitutive_phenopowerlaw_output(j,i))
|
|
case('resistance_slip', &
|
|
'shearrate_slip', &
|
|
'resolvedstress_slip' &
|
|
)
|
|
mySize = constitutive_phenopowerlaw_totalNslip(i)
|
|
case('resistance_twin', &
|
|
'shearrate_twin', &
|
|
'resolvedstress_twin' &
|
|
)
|
|
mySize = constitutive_phenopowerlaw_totalNtwin(i)
|
|
case('totalshear', &
|
|
'totalvolfrac' &
|
|
)
|
|
mySize = 1_pInt
|
|
case default
|
|
mySize = 0_pInt
|
|
end select
|
|
|
|
if (mySize > 0_pInt) then ! any meaningful output found
|
|
constitutive_phenopowerlaw_sizePostResult(j,i) = mySize
|
|
constitutive_phenopowerlaw_sizePostResults(i) = &
|
|
constitutive_phenopowerlaw_sizePostResults(i) + mySize
|
|
endif
|
|
enddo
|
|
|
|
constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f)
|
|
constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
|
|
constitutive_phenopowerlaw_totalNtwin(i)+ 2 ! s_slip, s_twin, sum(gamma), sum(f)
|
|
|
|
myStructure = constitutive_phenopowerlaw_structure(i)
|
|
|
|
select case (lattice_symmetryType(myStructure)) ! assign elasticity tensor
|
|
case(1) ! cubic(s)
|
|
forall(k=1:3)
|
|
forall(j=1:3) &
|
|
constitutive_phenopowerlaw_Cslip_66(k,j,i) = constitutive_phenopowerlaw_C12(i)
|
|
constitutive_phenopowerlaw_Cslip_66(k,k,i) = constitutive_phenopowerlaw_C11(i)
|
|
constitutive_phenopowerlaw_Cslip_66(k+3,k+3,i) = constitutive_phenopowerlaw_C44(i)
|
|
end forall
|
|
case(2) ! hex
|
|
constitutive_phenopowerlaw_Cslip_66(1,1,i) = constitutive_phenopowerlaw_C11(i)
|
|
constitutive_phenopowerlaw_Cslip_66(2,2,i) = constitutive_phenopowerlaw_C11(i)
|
|
constitutive_phenopowerlaw_Cslip_66(3,3,i) = constitutive_phenopowerlaw_C33(i)
|
|
constitutive_phenopowerlaw_Cslip_66(1,2,i) = constitutive_phenopowerlaw_C12(i)
|
|
constitutive_phenopowerlaw_Cslip_66(2,1,i) = constitutive_phenopowerlaw_C12(i)
|
|
constitutive_phenopowerlaw_Cslip_66(1,3,i) = constitutive_phenopowerlaw_C13(i)
|
|
constitutive_phenopowerlaw_Cslip_66(3,1,i) = constitutive_phenopowerlaw_C13(i)
|
|
constitutive_phenopowerlaw_Cslip_66(2,3,i) = constitutive_phenopowerlaw_C13(i)
|
|
constitutive_phenopowerlaw_Cslip_66(3,2,i) = constitutive_phenopowerlaw_C13(i)
|
|
constitutive_phenopowerlaw_Cslip_66(4,4,i) = constitutive_phenopowerlaw_C44(i)
|
|
constitutive_phenopowerlaw_Cslip_66(5,5,i) = constitutive_phenopowerlaw_C44(i)
|
|
constitutive_phenopowerlaw_Cslip_66(6,6,i) = 0.5_pReal*(constitutive_phenopowerlaw_C11(i)- &
|
|
constitutive_phenopowerlaw_C12(i))
|
|
end select
|
|
constitutive_phenopowerlaw_Cslip_66(:,:,i) = &
|
|
math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i)))
|
|
|
|
do f = 1,lattice_maxNslipFamily ! >>> interaction slip -- X
|
|
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1,i))
|
|
do j = 1,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
|
|
do o = 1,lattice_maxNslipFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i))
|
|
do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
|
constitutive_phenopowerlaw_hardeningMatrix_slipslip(index_otherFamily+k,index_myFamily+j,i) = &
|
|
constitutive_phenopowerlaw_interaction_slipslip(lattice_interactionSlipSlip( &
|
|
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
|
|
sum(lattice_NslipSystem(1:f-1,myStructure))+j, &
|
|
myStructure), i )
|
|
enddo; enddo
|
|
|
|
do o = 1,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i))
|
|
do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
|
constitutive_phenopowerlaw_hardeningMatrix_sliptwin(index_otherFamily+k,index_myFamily+j,i) = &
|
|
constitutive_phenopowerlaw_interaction_sliptwin(lattice_interactionSlipTwin( &
|
|
sum(lattice_NtwinSystem(1:o-1,myStructure))+k, &
|
|
sum(lattice_NslipSystem(1:f-1,myStructure))+j, &
|
|
myStructure), i )
|
|
enddo; enddo
|
|
|
|
enddo; enddo
|
|
|
|
do f = 1,lattice_maxNtwinFamily ! >>> interaction twin -- X
|
|
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1,i))
|
|
do j = 1,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
|
|
|
|
do o = 1,lattice_maxNslipFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1,i))
|
|
do k = 1,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
|
|
constitutive_phenopowerlaw_hardeningMatrix_twinslip(index_otherFamily+k,index_myFamily+j,i) = &
|
|
constitutive_phenopowerlaw_interaction_twinslip(lattice_interactionTwinSlip( &
|
|
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
|
|
sum(lattice_NtwinSystem(1:f-1,myStructure))+j, &
|
|
myStructure), i )
|
|
enddo; enddo
|
|
|
|
do o = 1,lattice_maxNtwinFamily
|
|
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1,i))
|
|
do k = 1,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
|
|
constitutive_phenopowerlaw_hardeningMatrix_twintwin(index_otherFamily+k,index_myFamily+j,i) = &
|
|
constitutive_phenopowerlaw_interaction_twintwin(lattice_interactionTwinTwin( &
|
|
sum(lattice_NtwinSystem(1:o-1,myStructure))+k, &
|
|
sum(lattice_NtwinSystem(1:f-1,myStructure))+j, &
|
|
myStructure), i )
|
|
enddo; enddo
|
|
|
|
enddo; enddo
|
|
|
|
! report to out file...
|
|
|
|
enddo
|
|
|
|
return
|
|
|
|
endsubroutine
|
|
|
|
|
|
function constitutive_phenopowerlaw_stateInit(myInstance)
|
|
!*********************************************************************
|
|
!* initial microstructural state *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt
|
|
use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt), intent(in) :: myInstance
|
|
integer(pInt) i
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(myInstance)) :: constitutive_phenopowerlaw_stateInit
|
|
|
|
constitutive_phenopowerlaw_stateInit = 0.0_pReal
|
|
|
|
do i = 1,lattice_maxNslipFamily
|
|
constitutive_phenopowerlaw_stateInit(1+&
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i-1,myInstance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(1:i ,myInstance))) = &
|
|
constitutive_phenopowerlaw_tau0_slip(i,myInstance)
|
|
enddo
|
|
|
|
do i = 1,lattice_maxNtwinFamily
|
|
constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i-1,myInstance)) : &
|
|
sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
|
|
sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = &
|
|
constitutive_phenopowerlaw_tau0_twin(i,myInstance)
|
|
enddo
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
!*********************************************************************
|
|
!* absolute state tolerance *
|
|
!*********************************************************************
|
|
pure function constitutive_phenopowerlaw_aTolState(myInstance)
|
|
|
|
use prec, only: pReal, &
|
|
pInt
|
|
implicit none
|
|
|
|
!*** input variables
|
|
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the constitution
|
|
|
|
!*** output variables
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
|
|
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this constitution
|
|
|
|
!*** local variables
|
|
|
|
constitutive_phenopowerlaw_aTolState = constitutive_phenopowerlaw_aTolResistance(myInstance)
|
|
|
|
endfunction
|
|
|
|
|
|
function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el)
|
|
!*********************************************************************
|
|
!* homogenized elacticity matrix *
|
|
!* INPUT: *
|
|
!* - state : state variables *
|
|
!* - ipc : component-ID of current integration point *
|
|
!* - ip : current integration point *
|
|
!* - el : current element *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt,p_vec
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt), intent(in) :: ipc,ip,el
|
|
integer(pInt) matID
|
|
real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
|
|
|
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
|
|
constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(:,:,matID)
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el)
|
|
!*********************************************************************
|
|
!* calculate derived quantities from state (not used here) *
|
|
!* INPUT: *
|
|
!* - Tp : temperature *
|
|
!* - ipc : component-ID of current integration point *
|
|
!* - ip : current integration point *
|
|
!* - el : current element *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt,p_vec
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt) ipc,ip,el, matID
|
|
real(pReal) Temperature
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
|
|
|
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
|
|
|
|
endsubroutine
|
|
|
|
|
|
subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el)
|
|
!*********************************************************************
|
|
!* plastic velocity gradient and its tangent *
|
|
!* INPUT: *
|
|
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
|
!* - ipc : component-ID at current integration point *
|
|
!* - ip : current integration point *
|
|
!* - el : current element *
|
|
!* OUTPUT: *
|
|
!* - Lp : plastic velocity gradient *
|
|
!* - dLp_dTstar : derivative of Lp (4th-rank tensor) *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt,p_vec
|
|
use math, only: math_Plain3333to99
|
|
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem,lattice_NtwinSystem
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
|
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt) ipc,ip,el
|
|
integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily
|
|
real(pReal) Temperature
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
|
real(pReal), dimension(6) :: Tstar_v
|
|
real(pReal), dimension(3,3) :: Lp
|
|
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
|
|
real(pReal), dimension(9,9) :: dLp_dTstar
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip,dgdot_dtauslip,tau_slip
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_twin,dgdot_dtautwin,tau_twin
|
|
|
|
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
|
|
structID = constitutive_phenopowerlaw_structure(matID)
|
|
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
|
|
|
|
index_Gamma = nSlip + nTwin + 1
|
|
index_F = nSlip + nTwin + 2
|
|
|
|
Lp = 0.0_pReal
|
|
dLp_dTstar3333 = 0.0_pReal
|
|
dLp_dTstar = 0.0_pReal
|
|
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
|
|
!* Calculation of Lp
|
|
|
|
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
|
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
|
|
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
|
|
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
|
gdot_slip(j)*lattice_Sslip(1:3,1:3,index_myFamily+i,structID)
|
|
|
|
!* Calculation of the tangent of Lp
|
|
|
|
if (gdot_slip(j) /= 0.0_pReal) then
|
|
dgdot_dtauslip(j) = gdot_slip(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip(j)
|
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
|
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
|
dgdot_dtauslip(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* &
|
|
lattice_Sslip(m,n,index_myFamily+i,structID)
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
|
|
!* Calculation of Lp
|
|
|
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
|
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(matID)*&
|
|
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID)
|
|
|
|
!* Calculation of the tangent of Lp
|
|
|
|
if (gdot_twin(j) /= 0.0_pReal) then
|
|
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j)
|
|
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
|
|
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
|
|
dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* &
|
|
lattice_Stwin(m,n,index_myFamily+i,structID)
|
|
endif
|
|
enddo
|
|
enddo
|
|
|
|
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
|
|
|
|
return
|
|
endsubroutine
|
|
|
|
|
|
function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el)
|
|
!*********************************************************************
|
|
!* rate of change of microstructure *
|
|
!* INPUT: *
|
|
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
|
!* - ipc : component-ID at current integration point *
|
|
!* - ip : current integration point *
|
|
!* - el : current element *
|
|
!* OUTPUT: *
|
|
!* - constitutive_dotState : evolution of state variable *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt,p_vec
|
|
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase, phase_constitutionInstance
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt) ipc,ip,el
|
|
integer(pInt) matID,nSlip,nTwin,f,i,j,k, structID,index_Gamma,index_F,index_myFamily
|
|
real(pReal) Temperature,c_slipslip,c_sliptwin,c_twinslip,c_twintwin, ssat_offset
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
|
|
real(pReal), dimension(6) :: Tstar_v
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_slip,tau_slip,h_slipslip,h_sliptwin
|
|
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
gdot_twin,tau_twin,h_twinslip,h_twintwin
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
constitutive_phenopowerlaw_dotState
|
|
|
|
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
|
|
structID = constitutive_phenopowerlaw_structure(matID)
|
|
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
|
|
|
|
index_Gamma = nSlip + nTwin + 1
|
|
index_F = nSlip + nTwin + 2
|
|
|
|
constitutive_phenopowerlaw_dotState = 0.0_pReal
|
|
|
|
!-- system-independent (nonlinear) prefactors to M_xx matrices
|
|
|
|
c_slipslip = constitutive_phenopowerlaw_h0_slipslip(matID)*&
|
|
(1.0_pReal + &
|
|
constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID))
|
|
c_sliptwin = 0.0_pReal
|
|
c_twinslip = constitutive_phenopowerlaw_h0_twinslip(matID)*&
|
|
state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID)
|
|
c_twintwin = constitutive_phenopowerlaw_h0_twintwin(matID)*&
|
|
state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID)
|
|
|
|
!-- add system-dependent part and calculate dot gammas
|
|
|
|
ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F))
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
h_slipslip(j) = c_slipslip*(1.0_pReal-state(ipc,ip,el)%p(j) / & ! system-dependent prefactor for slip--slip interaction
|
|
(constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset))** &
|
|
constitutive_phenopowerlaw_w0_slip(matID)
|
|
|
|
h_sliptwin(j) = c_sliptwin ! no system-dependent part
|
|
|
|
!* Calculation of dot gamma
|
|
|
|
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
|
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*(abs(tau_slip(j))/state(ipc,ip,el)%p(j))**&
|
|
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau_slip(j))
|
|
enddo
|
|
enddo
|
|
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
h_twinslip(j) = c_twinslip ! no system-dependent parts
|
|
h_twintwin(j) = c_twintwin
|
|
|
|
!* Calculation of dot vol frac
|
|
|
|
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
|
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(matID)*&
|
|
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
|
|
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
|
|
enddo
|
|
enddo
|
|
|
|
!-- calculate the overall hardening based on above
|
|
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
|
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
|
j = j+1_pInt
|
|
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
|
|
h_slipslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_slipslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
|
|
h_sliptwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_sliptwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin
|
|
constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + &
|
|
abs(gdot_slip(j))
|
|
enddo
|
|
enddo
|
|
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
|
j = j+1_pInt
|
|
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
|
|
h_twinslip(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twinslip(1:nSlip,j,matID),abs(gdot_slip)) + & ! dot gamma_slip
|
|
h_twintwin(j) * dot_product(constitutive_phenopowerlaw_hardeningMatrix_twintwin(1:nTwin,j,matID),gdot_twin) ! dot gamma_twin
|
|
constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + &
|
|
gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID)
|
|
enddo
|
|
enddo
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
!****************************************************************
|
|
!* calculates the rate of change of temperature *
|
|
!****************************************************************
|
|
pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pReal,pInt,p_vec
|
|
use lattice, only: lattice_Sslip_v
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
real(pReal), intent(in) :: Temperature
|
|
integer(pInt), intent(in):: ipc, & ! grain number
|
|
ip, & ! integration point number
|
|
el ! element number
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
|
|
|
|
!*** output variables ***!
|
|
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
|
|
|
|
! calculate dotTemperature
|
|
constitutive_phenopowerlaw_dotTemperature = 0.0_pReal
|
|
|
|
return
|
|
endfunction
|
|
|
|
|
|
|
|
pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
|
|
!*********************************************************************
|
|
!* return array of constitutive results *
|
|
!* INPUT: *
|
|
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
|
!* - dt : current time increment *
|
|
!* - ipc : component-ID at current integration point *
|
|
!* - ip : current integration point *
|
|
!* - el : current element *
|
|
!*********************************************************************
|
|
use prec, only: pReal,pInt,p_vec
|
|
use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem,lattice_NtwinSystem
|
|
use mesh, only: mesh_NcpElems,mesh_maxNips
|
|
use material, only: homogenization_maxNgrains,material_phase,phase_constitutionInstance,phase_Noutput
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt), intent(in) :: ipc,ip,el
|
|
real(pReal), intent(in) :: dt,Temperature
|
|
real(pReal), dimension(6), intent(in) :: Tstar_v
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
|
|
integer(pInt) matID,o,f,i,c,nSlip,nTwin,j, structID,index_Gamma,index_F,index_myFamily
|
|
real(pReal) tau
|
|
real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_constitutionInstance(material_phase(ipc,ip,el)))) :: &
|
|
constitutive_phenopowerlaw_postResults
|
|
|
|
matID = phase_constitutionInstance(material_phase(ipc,ip,el))
|
|
structID = constitutive_phenopowerlaw_structure(matID)
|
|
|
|
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
|
|
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
|
|
|
|
index_Gamma = nSlip + nTwin + 1
|
|
index_F = nSlip + nTwin + 2
|
|
|
|
constitutive_phenopowerlaw_postResults = 0.0_pReal
|
|
c = 0_pInt
|
|
|
|
do o = 1,phase_Noutput(material_phase(ipc,ip,el))
|
|
select case(constitutive_phenopowerlaw_output(o,matID))
|
|
case ('resistance_slip')
|
|
constitutive_phenopowerlaw_postResults(c+1:c+nSlip) = state(ipc,ip,el)%p(1:nSlip)
|
|
c = c + nSlip
|
|
|
|
case ('shearrate_slip')
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
|
j = j + 1_pInt
|
|
tau = dot_product(Tstar_v,lattice_Sslip_v(:,index_myFamily+i,structID))
|
|
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*&
|
|
(abs(tau)/state(ipc,ip,el)%p(j))**&
|
|
constitutive_phenopowerlaw_n_slip(matID)*sign(1.0_pReal,tau)
|
|
enddo; enddo
|
|
c = c + nSlip
|
|
|
|
case ('resolvedstress_slip')
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNslipFamily ! loop over all slip families
|
|
index_myFamily = sum(lattice_NslipSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
|
|
j = j + 1_pInt
|
|
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,index_myFamily+i,structID))
|
|
enddo; enddo
|
|
c = c + nSlip
|
|
|
|
case ('totalshear')
|
|
constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_Gamma)
|
|
c = c + 1
|
|
|
|
case ('resistance_twin')
|
|
constitutive_phenopowerlaw_postResults(c+1:c+nTwin) = state(ipc,ip,el)%p(1+nSlip:nTwin+nSlip)
|
|
c = c + nTwin
|
|
|
|
case ('shearrate_twin')
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
|
j = j + 1_pInt
|
|
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
|
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
|
|
constitutive_phenopowerlaw_gdot0_twin(matID)*&
|
|
(abs(tau)/state(ipc,ip,el)%p(j+nSlip))**&
|
|
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau))
|
|
enddo; enddo
|
|
c = c + nTwin
|
|
|
|
case ('resolvedstress_twin')
|
|
j = 0_pInt
|
|
do f = 1,lattice_maxNtwinFamily ! loop over all twin families
|
|
index_myFamily = sum(lattice_NtwinSystem(1:f-1,structID)) ! at which index starts my family
|
|
do i = 1,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
|
|
j = j + 1_pInt
|
|
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
|
|
enddo; enddo
|
|
c = c + nTwin
|
|
|
|
case ('totalvolfrac')
|
|
constitutive_phenopowerlaw_postResults(c+1) = state(ipc,ip,el)%p(index_F)
|
|
c = c + 1
|
|
|
|
end select
|
|
enddo
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
END MODULE
|