DAMASK_EICMD/src/rotations.f90

884 lines
32 KiB
Fortran

! ###################################################################
! Copyright (c) 2013-2014, Marc De Graef/Carnegie Mellon University
! Modified 2017-2020, Martin Diehl/Max-Planck-Institut für Eisenforschung GmbH
! All rights reserved.
!
! Redistribution and use in source and binary forms, with or without modification, are
! permitted provided that the following conditions are met:
!
! - Redistributions of source code must retain the above copyright notice, this list
! of conditions and the following disclaimer.
! - Redistributions in binary form must reproduce the above copyright notice, this
! list of conditions and the following disclaimer in the documentation and/or
! other materials provided with the distribution.
! - Neither the names of Marc De Graef, Carnegie Mellon University nor the names
! of its contributors may be used to endorse or promote products derived from
! this software without specific prior written permission.
!
! THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
! AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
! IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
! ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
! LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
! DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
! SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
! CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
! OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
! USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
! ###################################################################
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief rotation storage and conversion
!> @details: rotation is internally stored as quaternion. It can be inialized from different
!> representations and also returns itself in different representations.
!
! All methods and naming conventions based on Rowenhorst et al. 2015
! Convention 1: coordinate frames are right-handed
! Convention 2: a rotation angle ω is taken to be positive for a counterclockwise rotation
! when viewing from the end point of the rotation axis towards the origin
! Convention 3: rotations will be interpreted in the passive sense
! Convention 4: Euler angle triplets are implemented using the Bunge convention,
! with the angular ranges as [0, 2π],[0, π],[0, 2π]
! Convention 5: the rotation angle ω is limited to the interval [0, π]
! Convention 6: the real part of a quaternion is positive, Re(q) > 0
! Convention 7: P = -1
!--------------------------------------------------------------------------------------------------
module rotations
use IO
use math
implicit none(type,external)
private
real(pReal), parameter :: P = -1.0_pReal !< parameter for orientation conversion.
type, public :: tRotation
real(pReal), dimension(4) :: q
contains
procedure, public :: asQuaternion
procedure, public :: asEulers
procedure, public :: asAxisAngle
procedure, public :: asMatrix
!------------------------------------------
procedure, public :: fromQuaternion
procedure, public :: fromEulers
procedure, public :: fromAxisAngle
procedure, public :: fromMatrix
!------------------------------------------
procedure, private :: rotRot__
generic, public :: operator(*) => rotRot__
generic, public :: rotate => rotVector,rotTensor2,rotTensor4
procedure, public :: rotVector
procedure, public :: rotTensor2
procedure, public :: rotTensor4
procedure, public :: rotStiffness
procedure, public :: misorientation
procedure, public :: standardize
end type tRotation
real(pReal), parameter :: &
PREF = sqrt(6.0_pReal/PI), &
A = PI**(5.0_pReal/6.0_pReal)/6.0_pReal**(1.0_pReal/6.0_pReal), &
AP = PI**(2.0_pReal/3.0_pReal), &
SC = A/AP, &
BETA = A/2.0_pReal, &
R1 = (3.0_pReal*PI/4.0_pReal)**(1.0_pReal/3.0_pReal), &
R2 = sqrt(2.0_pReal), &
PI12 = PI/12.0_pReal, &
PREK = R1 * 2.0_pReal**(1.0_pReal/4.0_pReal)/BETA
public :: &
rotations_init, &
eu2om
contains
!--------------------------------------------------------------------------------------------------
!> @brief Do self test.
!--------------------------------------------------------------------------------------------------
subroutine rotations_init
print'(/,1x,a)', '<<<+- rotations init -+>>>'; flush(IO_STDOUT)
print'(/,1x,a)', 'D. Rowenhorst et al., Modelling and Simulation in Materials Science and Engineering 23:083501, 2015'
print'( 1x,a)', 'https://doi.org/10.1088/0965-0393/23/8/083501'
call selfTest
end subroutine rotations_init
!--------------------------------------------------------------------------------------------------
! Return rotation in different representations.
!--------------------------------------------------------------------------------------------------
pure function asQuaternion(self)
class(tRotation), intent(in) :: self
real(pReal), dimension(4) :: asQuaternion
asQuaternion = self%q
end function asQuaternion
!--------------------------------------------------------------------------------------------------
pure function asEulers(self)
class(tRotation), intent(in) :: self
real(pReal), dimension(3) :: asEulers
asEulers = qu2eu(self%q)
end function asEulers
!--------------------------------------------------------------------------------------------------
pure function asAxisAngle(self)
class(tRotation), intent(in) :: self
real(pReal), dimension(4) :: asAxisAngle
asAxisAngle = qu2ax(self%q)
end function asAxisAngle
!--------------------------------------------------------------------------------------------------
pure function asMatrix(self)
class(tRotation), intent(in) :: self
real(pReal), dimension(3,3) :: asMatrix
asMatrix = qu2om(self%q)
end function asMatrix
!--------------------------------------------------------------------------------------------------
! Initialize rotation from different representations.
!--------------------------------------------------------------------------------------------------
subroutine fromQuaternion(self,qu)
class(tRotation), intent(out) :: self
real(pReal), dimension(4), intent(in) :: qu
if (dNeq(norm2(qu),1.0_pReal,1.0e-8_pReal)) call IO_error(402,ext_msg='fromQuaternion')
self%q = qu
end subroutine fromQuaternion
!--------------------------------------------------------------------------------------------------
subroutine fromEulers(self,eu,degrees)
class(tRotation), intent(out) :: self
real(pReal), dimension(3), intent(in) :: eu
logical, intent(in), optional :: degrees
real(pReal), dimension(3) :: Eulers
if (.not. present(degrees)) then
Eulers = eu
else
Eulers = merge(eu*INRAD,eu,degrees)
end if
if (any(Eulers<0.0_pReal) .or. any(Eulers>TAU) .or. Eulers(2) > PI) &
call IO_error(402,ext_msg='fromEulers')
self%q = eu2qu(Eulers)
end subroutine fromEulers
!--------------------------------------------------------------------------------------------------
subroutine fromAxisAngle(self,ax,degrees,P)
class(tRotation), intent(out) :: self
real(pReal), dimension(4), intent(in) :: ax
logical, intent(in), optional :: degrees
integer, intent(in), optional :: P
real(pReal) :: angle
real(pReal),dimension(3) :: axis
if (.not. present(degrees)) then
angle = ax(4)
else
angle = merge(ax(4)*INRAD,ax(4),degrees)
end if
if (.not. present(P)) then
axis = ax(1:3)
else
axis = ax(1:3) * merge(-1.0_pReal,1.0_pReal,P == 1)
if(abs(P) /= 1) call IO_error(402,ext_msg='fromAxisAngle (P)')
end if
if(dNeq(norm2(axis),1.0_pReal) .or. angle < 0.0_pReal .or. angle > PI) &
call IO_error(402,ext_msg='fromAxisAngle')
self%q = ax2qu([axis,angle])
end subroutine fromAxisAngle
!--------------------------------------------------------------------------------------------------
subroutine fromMatrix(self,om)
class(tRotation), intent(out) :: self
real(pReal), dimension(3,3), intent(in) :: om
if (dNeq(math_det33(om),1.0_pReal,tol=1.0e-5_pReal)) &
call IO_error(402,ext_msg='fromMatrix')
self%q = om2qu(om)
end subroutine fromMatrix
!--------------------------------------------------------------------------------------------------
!--------------------------------------------------------------------------------------------------
!> @brief: Compose rotations.
!--------------------------------------------------------------------------------------------------
pure elemental function rotRot__(self,R) result(rRot)
type(tRotation) :: rRot
class(tRotation), intent(in) :: self,R
rRot = tRotation(multiplyQuaternion(self%q,R%q))
call rRot%standardize()
end function rotRot__
!--------------------------------------------------------------------------------------------------
!> @brief Convert to quaternion representation with positive q(1).
!--------------------------------------------------------------------------------------------------
pure elemental subroutine standardize(self)
class(tRotation), intent(inout) :: self
if (sign(1.0_pReal,self%q(1)) < 0.0_pReal) self%q = - self%q
end subroutine standardize
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Rotate a vector passively (default) or actively.
!--------------------------------------------------------------------------------------------------
pure function rotVector(self,v,active) result(vRot)
real(pReal), dimension(3) :: vRot
class(tRotation), intent(in) :: self
real(pReal), intent(in), dimension(3) :: v
logical, intent(in), optional :: active
real(pReal), dimension(4) :: v_normed, q
logical :: passive
if (present(active)) then
passive = .not. active
else
passive = .true.
end if
if (dEq0(norm2(v))) then
vRot = v
else
v_normed = [0.0_pReal,v]/norm2(v)
q = merge(multiplyQuaternion(self%q, multiplyQuaternion(v_normed, conjugateQuaternion(self%q))), &
multiplyQuaternion(conjugateQuaternion(self%q), multiplyQuaternion(v_normed, self%q)), &
passive)
vRot = q(2:4)*norm2(v)
end if
end function rotVector
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Rotate a rank-2 tensor passively (default) or actively.
!> @details: Rotation is based on rotation matrix
!--------------------------------------------------------------------------------------------------
pure function rotTensor2(self,T,active) result(tRot)
real(pReal), dimension(3,3) :: tRot
class(tRotation), intent(in) :: self
real(pReal), intent(in), dimension(3,3) :: T
logical, intent(in), optional :: active
logical :: passive
if (present(active)) then
passive = .not. active
else
passive = .true.
end if
tRot = merge(matmul(matmul(self%asMatrix(),T),transpose(self%asMatrix())), &
matmul(matmul(transpose(self%asMatrix()),T),self%asMatrix()), &
passive)
end function rotTensor2
!--------------------------------------------------------------------------------------------------
!> @brief Rotate a rank-4 tensor passively (default) or actively.
!> @details: rotation is based on rotation matrix
!! ToDo: Need to check active/passive !!!
!--------------------------------------------------------------------------------------------------
pure function rotTensor4(self,T,active) result(tRot)
real(pReal), dimension(3,3,3,3) :: tRot
class(tRotation), intent(in) :: self
real(pReal), intent(in), dimension(3,3,3,3) :: T
logical, intent(in), optional :: active
real(pReal), dimension(3,3) :: R
integer :: i,j,k,l,m,n,o,p
if (present(active)) then
R = merge(transpose(self%asMatrix()),self%asMatrix(),active)
else
R = self%asMatrix()
end if
tRot = 0.0_pReal
do i = 1,3;do j = 1,3;do k = 1,3;do l = 1,3
do m = 1,3;do n = 1,3;do o = 1,3;do p = 1,3
tRot(i,j,k,l) = tRot(i,j,k,l) &
+ R(i,m) * R(j,n) * R(k,o) * R(l,p) * T(m,n,o,p)
end do; end do; end do; end do; end do; end do; end do; end do
end function rotTensor4
!--------------------------------------------------------------------------------------------------
!> @brief Rotate a rank-4 stiffness tensor in Voigt 6x6 notation passively (default) or actively.
!> @details: https://scicomp.stackexchange.com/questions/35600
!! ToDo: Need to check active/passive !!!
!--------------------------------------------------------------------------------------------------
pure function rotStiffness(self,C,active) result(cRot)
real(pReal), dimension(6,6) :: cRot
class(tRotation), intent(in) :: self
real(pReal), intent(in), dimension(6,6) :: C
logical, intent(in), optional :: active
real(pReal), dimension(3,3) :: R
real(pReal), dimension(6,6) :: M
if (present(active)) then
R = merge(transpose(self%asMatrix()),self%asMatrix(),active)
else
R = self%asMatrix()
end if
M = reshape([R(1,1)**2, R(2,1)**2, R(3,1)**2, &
R(2,1)*R(3,1), R(1,1)*R(3,1), R(1,1)*R(2,1), &
R(1,2)**2, R(2,2)**2, R(3,2)**2, &
R(2,2)*R(3,2), R(1,2)*R(3,2), R(1,2)*R(2,2), &
R(1,3)**2, R(2,3)**2, R(3,3)**2, &
R(2,3)*R(3,3), R(1,3)*R(3,3), R(1,3)*R(2,3), &
2.0_pReal*R(1,2)*R(1,3), 2.0_pReal*R(2,2)*R(2,3), 2.0_pReal*R(3,2)*R(3,3), &
R(2,2)*R(3,3)+R(2,3)*R(3,2), R(1,2)*R(3,3)+R(1,3)*R(3,2), R(1,2)*R(2,3)+R(1,3)*R(2,2), &
2.0_pReal*R(1,3)*R(1,1), 2.0_pReal*R(2,3)*R(2,1), 2.0_pReal*R(3,3)*R(3,1), &
R(2,3)*R(3,1)+R(2,1)*R(3,3), R(1,3)*R(3,1)+R(1,1)*R(3,3), R(1,3)*R(2,1)+R(1,1)*R(2,3), &
2.0_pReal*R(1,1)*R(1,2), 2.0_pReal*R(2,1)*R(2,2), 2.0_pReal*R(3,1)*R(3,2), &
R(2,1)*R(3,2)+R(2,2)*R(3,1), R(1,1)*R(3,2)+R(1,2)*R(3,1), R(1,1)*R(2,2)+R(1,2)*R(2,1)],[6,6])
cRot = matmul(M,matmul(C,transpose(M)))
end function rotStiffness
!--------------------------------------------------------------------------------------------------
!> @brief Calculate misorientation.
!--------------------------------------------------------------------------------------------------
pure elemental function misorientation(self,other)
type(tRotation) :: misorientation
class(tRotation), intent(in) :: self, other
misorientation%q = multiplyQuaternion(other%q, conjugateQuaternion(self%q))
end function misorientation
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert unit quaternion to rotation matrix.
!--------------------------------------------------------------------------------------------------
pure function qu2om(qu) result(om)
real(pReal), intent(in), dimension(4) :: qu
real(pReal), dimension(3,3) :: om
real(pReal) :: qq
qq = qu(1)**2-sum(qu(2:4)**2)
om(1,1) = qq+2.0_pReal*qu(2)**2
om(2,2) = qq+2.0_pReal*qu(3)**2
om(3,3) = qq+2.0_pReal*qu(4)**2
om(1,2) = 2.0_pReal*(qu(2)*qu(3)-qu(1)*qu(4))
om(2,3) = 2.0_pReal*(qu(3)*qu(4)-qu(1)*qu(2))
om(3,1) = 2.0_pReal*(qu(4)*qu(2)-qu(1)*qu(3))
om(2,1) = 2.0_pReal*(qu(3)*qu(2)+qu(1)*qu(4))
om(3,2) = 2.0_pReal*(qu(4)*qu(3)+qu(1)*qu(2))
om(1,3) = 2.0_pReal*(qu(2)*qu(4)+qu(1)*qu(3))
if (sign(1.0_pReal,P) < 0.0_pReal) om = transpose(om)
om = om/math_det33(om)**(1.0_pReal/3.0_pReal)
end function qu2om
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert unit quaternion to Bunge Euler angles.
!--------------------------------------------------------------------------------------------------
pure function qu2eu(qu) result(eu)
real(pReal), intent(in), dimension(4) :: qu
real(pReal), dimension(3) :: eu
real(pReal) :: q12, q03, chi
q03 = qu(1)**2+qu(4)**2
q12 = qu(2)**2+qu(3)**2
chi = sqrt(q03*q12)
degenerated: if (dEq0(q12)) then
eu = [atan2(-P*2.0_pReal*qu(1)*qu(4),qu(1)**2-qu(4)**2), 0.0_pReal, 0.0_pReal]
elseif (dEq0(q03)) then
eu = [atan2( 2.0_pReal*qu(2)*qu(3),qu(2)**2-qu(3)**2), PI, 0.0_pReal]
else degenerated
eu = [atan2((-P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)-qu(3)*qu(4))*chi ), &
atan2( 2.0_pReal*chi, q03-q12 ), &
atan2(( P*qu(1)*qu(3)+qu(2)*qu(4))*chi, (-P*qu(1)*qu(2)+qu(3)*qu(4))*chi )]
end if degenerated
where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU])
end function qu2eu
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert unit quaternion to axis-angle pair.
!--------------------------------------------------------------------------------------------------
pure function qu2ax(qu) result(ax)
real(pReal), intent(in), dimension(4) :: qu
real(pReal), dimension(4) :: ax
real(pReal) :: omega, s
if (dEq0(sum(qu(2:4)**2))) then
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ] ! axis = [001]
elseif (dNeq0(qu(1))) then
s = sign(1.0_pReal,qu(1))/norm2(qu(2:4))
omega = 2.0_pReal * acos(math_clip(qu(1),-1.0_pReal,1.0_pReal))
ax = [ qu(2)*s, qu(3)*s, qu(4)*s, omega ]
else
ax = [ qu(2), qu(3), qu(4), PI ]
end if
end function qu2ax
!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Convert rotation matrix to unit quaternion.
!> @details the original formulation (direct conversion) had (numerical?) issues
!--------------------------------------------------------------------------------------------------
pure function om2qu(om) result(qu)
real(pReal), intent(in), dimension(3,3) :: om
real(pReal), dimension(4) :: qu
real(pReal) :: trace,s
trace = math_trace33(om)
if(trace > 0.0_pReal) then
s = 0.5_pReal / sqrt(trace+1.0_pReal)
qu = [0.25_pReal/s, (om(3,2)-om(2,3))*s,(om(1,3)-om(3,1))*s,(om(2,1)-om(1,2))*s]
else
if( om(1,1) > om(2,2) .and. om(1,1) > om(3,3) ) then
s = 2.0_pReal * sqrt( 1.0_pReal + om(1,1) - om(2,2) - om(3,3))
qu = [ (om(3,2) - om(2,3)) /s,0.25_pReal * s,(om(1,2) + om(2,1)) / s,(om(1,3) + om(3,1)) / s]
elseif (om(2,2) > om(3,3)) then
s = 2.0_pReal * sqrt( 1.0_pReal + om(2,2) - om(1,1) - om(3,3))
qu = [ (om(1,3) - om(3,1)) /s,(om(1,2) + om(2,1)) / s,0.25_pReal * s,(om(2,3) + om(3,2)) / s]
else
s = 2.0_pReal * sqrt( 1.0_pReal + om(3,3) - om(1,1) - om(2,2) )
qu = [ (om(2,1) - om(1,2)) /s,(om(1,3) + om(3,1)) / s,(om(2,3) + om(3,2)) / s,0.25_pReal * s]
end if
end if
if(sign(1.0_pReal,qu(1))<0.0_pReal) qu =-1.0_pReal * qu
qu(2:4) = merge(qu(2:4),qu(2:4)*P,dEq0(qu(2:4)))
qu = qu/norm2(qu)
end function om2qu
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert orientation matrix to Bunge Euler angles.
!> @details Two step check for special cases to avoid invalid operations (not needed for python)
!--------------------------------------------------------------------------------------------------
pure function om2eu(om) result(eu)
real(pReal), intent(in), dimension(3,3) :: om
real(pReal), dimension(3) :: eu
real(pReal) :: zeta
if (dNeq(abs(om(3,3)),1.0_pReal,1.e-8_pReal)) then
zeta = 1.0_pReal/sqrt(math_clip(1.0_pReal-om(3,3)**2,1e-64_pReal,1.0_pReal))
eu = [atan2(om(3,1)*zeta,-om(3,2)*zeta), &
acos(math_clip(om(3,3),-1.0_pReal,1.0_pReal)), &
atan2(om(1,3)*zeta, om(2,3)*zeta)]
else
eu = [atan2(om(1,2),om(1,1)), 0.5_pReal*PI*(1.0_pReal-om(3,3)),0.0_pReal ]
end if
where(abs(eu) < 1.e-8_pReal) eu = 0.0_pReal
where(sign(1.0_pReal,eu)<0.0_pReal) eu = mod(eu+TAU,[TAU,PI,TAU])
end function om2eu
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert orientation matrix to axis-angle pair.
!--------------------------------------------------------------------------------------------------
function om2ax(om) result(ax)
real(pReal), intent(in), dimension(3,3) :: om
real(pReal), dimension(4) :: ax
real(pReal) :: t
real(pReal), dimension(3) :: Wr, Wi
real(pReal), dimension((64+2)*3) :: work
real(pReal), dimension(3,3) :: VR, devNull, om_
integer :: ierr, i
om_ = om
! first get the rotation angle
t = 0.5_pReal * (math_trace33(om) - 1.0_pReal)
ax(4) = acos(math_clip(t,-1.0_pReal,1.0_pReal))
if (dEq0(ax(4))) then
ax(1:3) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal ]
else
call dgeev('N','V',3,om_,3,Wr,Wi,devNull,3,VR,3,work,size(work,1),ierr)
if (ierr /= 0) error stop 'LAPACK error'
i = findloc(cEq(cmplx(Wr,Wi,pReal),cmplx(1.0_pReal,0.0_pReal,pReal),tol=1.0e-14_pReal),.true.,dim=1) !find eigenvalue (1,0)
if (i == 0) error stop 'om2ax conversion failed'
ax(1:3) = VR(1:3,i)
where ( dNeq0([om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])) &
ax(1:3) = sign(ax(1:3),-P *[om(2,3)-om(3,2), om(3,1)-om(1,3), om(1,2)-om(2,1)])
end if
end function om2ax
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert Bunge Euler angles to unit quaternion.
!--------------------------------------------------------------------------------------------------
pure function eu2qu(eu) result(qu)
real(pReal), intent(in), dimension(3) :: eu
real(pReal), dimension(4) :: qu
real(pReal), dimension(3) :: ee
real(pReal) :: cPhi, sPhi
ee = 0.5_pReal*eu
cPhi = cos(ee(2))
sPhi = sin(ee(2))
qu = [ cPhi*cos(ee(1)+ee(3)), &
-P*sPhi*cos(ee(1)-ee(3)), &
-P*sPhi*sin(ee(1)-ee(3)), &
-P*cPhi*sin(ee(1)+ee(3))]
if(sign(1.0_pReal,qu(1)) < 0.0_pReal) qu = qu * (-1.0_pReal)
end function eu2qu
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert Euler angles to orientation matrix.
!--------------------------------------------------------------------------------------------------
pure function eu2om(eu) result(om)
real(pReal), intent(in), dimension(3) :: eu
real(pReal), dimension(3,3) :: om
real(pReal), dimension(3) :: c, s
c = cos(eu)
s = sin(eu)
om(1,1) = c(1)*c(3)-s(1)*s(3)*c(2)
om(2,1) = -c(1)*s(3)-s(1)*c(3)*c(2)
om(3,1) = s(1)*s(2)
om(1,2) = s(1)*c(3)+c(1)*s(3)*c(2)
om(2,2) = -s(1)*s(3)+c(1)*c(3)*c(2)
om(3,2) = -c(1)*s(2)
om(1,3) = s(3)*s(2)
om(2,3) = c(3)*s(2)
om(3,3) = c(2)
where(abs(om)<1.0e-12_pReal) om = 0.0_pReal
end function eu2om
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert Bunge Euler angles to axis-angle pair.
!--------------------------------------------------------------------------------------------------
pure function eu2ax(eu) result(ax)
real(pReal), intent(in), dimension(3) :: eu
real(pReal), dimension(4) :: ax
real(pReal) :: t, delta, tau, alpha, sigma
t = tan(eu(2)*0.5_pReal)
sigma = 0.5_pReal*(eu(1)+eu(3))
delta = 0.5_pReal*(eu(1)-eu(3))
tau = sqrt(t**2+sin(sigma)**2)
alpha = merge(PI, 2.0_pReal*atan(tau/cos(sigma)), dEq(sigma,PI*0.5_pReal,tol=1.0e-15_pReal))
if (dEq0(alpha)) then ! return a default identity axis-angle pair
ax = [ 0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal ]
else
ax(1:3) = -P/tau * [ t*cos(delta), t*sin(delta), sin(sigma) ] ! passive axis-angle pair so a minus sign in front
ax(4) = alpha
if (sign(1.0_pReal,alpha) < 0.0_pReal) ax = -ax ! ensure alpha is positive
end if
end function eu2ax
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert axis-angle pair to unit quaternion.
!--------------------------------------------------------------------------------------------------
pure function ax2qu(ax) result(qu)
real(pReal), intent(in), dimension(4) :: ax
real(pReal), dimension(4) :: qu
real(pReal) :: c, s
if (dEq0(ax(4))) then
qu = [ 1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal ]
else
c = cos(ax(4)*0.5_pReal)
s = sin(ax(4)*0.5_pReal)
qu = [ c, ax(1)*s, ax(2)*s, ax(3)*s ]
end if
end function ax2qu
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert axis-angle pair to orientation matrix.
!--------------------------------------------------------------------------------------------------
pure function ax2om(ax) result(om)
real(pReal), intent(in), dimension(4) :: ax
real(pReal), dimension(3,3) :: om
real(pReal) :: q, c, s, omc
c = cos(ax(4))
s = sin(ax(4))
omc = 1.0_pReal-c
om(1,1) = ax(1)**2*omc + c
om(2,2) = ax(2)**2*omc + c
om(3,3) = ax(3)**2*omc + c
q = omc*ax(1)*ax(2)
om(1,2) = q + s*ax(3)
om(2,1) = q - s*ax(3)
q = omc*ax(2)*ax(3)
om(2,3) = q + s*ax(1)
om(3,2) = q - s*ax(1)
q = omc*ax(3)*ax(1)
om(3,1) = q + s*ax(2)
om(1,3) = q - s*ax(2)
if (P > 0.0_pReal) om = transpose(om)
end function ax2om
!--------------------------------------------------------------------------------------------------
!> @author Marc De Graef, Carnegie Mellon University
!> @brief Convert axis-angle pair to Bunge Euler angles.
!--------------------------------------------------------------------------------------------------
pure function ax2eu(ax) result(eu)
real(pReal), intent(in), dimension(4) :: ax
real(pReal), dimension(3) :: eu
eu = om2eu(ax2om(ax))
end function ax2eu
!--------------------------------------------------------------------------------------------------
!> @brief Multiply two quaternions.
!--------------------------------------------------------------------------------------------------
pure function multiplyQuaternion(qu1,qu2)
real(pReal), dimension(4), intent(in) :: qu1, qu2
real(pReal), dimension(4) :: multiplyQuaternion
multiplyQuaternion(1) = qu1(1)*qu2(1) - qu1(2)*qu2(2) - qu1(3)*qu2(3) - qu1(4)*qu2(4)
multiplyQuaternion(2) = qu1(1)*qu2(2) + qu1(2)*qu2(1) + P * (qu1(3)*qu2(4) - qu1(4)*qu2(3))
multiplyQuaternion(3) = qu1(1)*qu2(3) + qu1(3)*qu2(1) + P * (qu1(4)*qu2(2) - qu1(2)*qu2(4))
multiplyQuaternion(4) = qu1(1)*qu2(4) + qu1(4)*qu2(1) + P * (qu1(2)*qu2(3) - qu1(3)*qu2(2))
end function multiplyQuaternion
!--------------------------------------------------------------------------------------------------
!> @brief Calculate conjugate complex of a quaternion.
!--------------------------------------------------------------------------------------------------
pure function conjugateQuaternion(qu)
real(pReal), dimension(4), intent(in) :: qu
real(pReal), dimension(4) :: conjugateQuaternion
conjugateQuaternion = [qu(1), -qu(2), -qu(3), -qu(4)]
end function conjugateQuaternion
!--------------------------------------------------------------------------------------------------
!> @brief Check correctness of some rotations functions.
!--------------------------------------------------------------------------------------------------
subroutine selfTest()
type(tRotation) :: R
real(pReal), dimension(4) :: qu
real(pReal), dimension(3) :: x, eu, v3
real(pReal), dimension(3,3) :: om, t33
real(pReal), dimension(3,3,3,3) :: t3333
real(pReal), dimension(6,6) :: C
real(pReal) :: A,B
integer :: i
do i = 1, 20
if(i==1) then
qu = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal]
elseif(i==2) then
qu = [1.0_pReal,-0.0_pReal,-0.0_pReal,-0.0_pReal]
elseif(i==3) then
qu = [0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal]
elseif(i==4) then
qu = [0.0_pReal,0.0_pReal,1.0_pReal,0.0_pReal]
elseif(i==5) then
qu = [0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal]
else
call random_number(x)
A = sqrt(x(3))
B = sqrt(1-0_pReal -x(3))
qu = [cos(TAU*x(1))*A,&
sin(TAU*x(2))*B,&
cos(TAU*x(2))*B,&
sin(TAU*x(1))*A]
if(qu(1)<0.0_pReal) qu = qu * (-1.0_pReal)
end if
if(.not. quaternion_equal(om2qu(qu2om(qu)),qu)) error stop 'om2qu2om'
if(.not. quaternion_equal(eu2qu(qu2eu(qu)),qu)) error stop 'eu2qu2eu'
if(.not. quaternion_equal(ax2qu(qu2ax(qu)),qu)) error stop 'ax2qu2ax'
om = qu2om(qu)
if(.not. quaternion_equal(om2qu(eu2om(om2eu(om))),qu)) error stop 'eu2om2eu'
if(.not. quaternion_equal(om2qu(ax2om(om2ax(om))),qu)) error stop 'ax2om2ax'
eu = qu2eu(qu)
if(.not. quaternion_equal(eu2qu(ax2eu(eu2ax(eu))),qu)) error stop 'ax2eu2ax'
call R%fromMatrix(om)
call random_number(v3)
if (any(dNeq(R%rotVector(R%rotVector(v3),active=.true.),v3,1.0e-12_pReal))) &
error stop 'rotVector'
call random_number(t33)
if (any(dNeq(R%rotTensor2(R%rotTensor2(t33),active=.true.),t33,1.0e-12_pReal))) &
error stop 'rotTensor2'
call random_number(t3333)
if (any(dNeq(R%rotTensor4(R%rotTensor4(t3333),active=.true.),t3333,1.0e-12_pReal))) &
error stop 'rotTensor4'
call random_number(C)
C = C+transpose(C)
if (any(dNeq(R%rotStiffness(C), &
math_3333toVoigt66_stiffness(R%rotate(math_Voigt66to3333_stiffness(C))),1.0e-12_pReal))) &
error stop 'rotStiffness'
call R%fromQuaternion(qu * (1.0_pReal + merge(+5.e-9_pReal,-5.e-9_pReal, mod(i,2) == 0))) ! allow reasonable tolerance for ASCII/YAML
end do
contains
pure recursive function quaternion_equal(qu1,qu2) result(ok)
real(pReal), intent(in), dimension(4) :: qu1,qu2
logical :: ok
ok = all(dEq(qu1,qu2,1.0e-7_pReal))
if(dEq0(qu1(1),1.0e-12_pReal)) &
ok = ok .or. all(dEq(-1.0_pReal*qu1,qu2,1.0e-7_pReal))
end function quaternion_equal
end subroutine selfTest
end module rotations