DAMASK_EICMD/src/material.f90

1436 lines
74 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Parses material config file, either solverJobName.materialConfig or material.config
!> @details reads the material configuration file, where solverJobName.materialConfig takes
!! precedence over material.config and parses the sections 'homogenization', 'crystallite',
!! 'phase', 'texture', and 'microstucture'
!--------------------------------------------------------------------------------------------------
module material
use prec, only: &
pReal, &
pInt, &
tState, &
tPlasticState, &
tSourceState, &
tHomogMapping, &
tPhaseMapping, &
group_float, &
group_int
implicit none
private
character(len=*), parameter, public :: &
ELASTICITY_hooke_label = 'hooke', &
PLASTICITY_none_label = 'none', &
PLASTICITY_isotropic_label = 'isotropic', &
PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', &
PLASTICITY_kinehardening_label = 'kinehardening', &
PLASTICITY_dislotwin_label = 'dislotwin', &
PLASTICITY_disloucla_label = 'disloucla', &
PLASTICITY_nonlocal_label = 'nonlocal', &
SOURCE_thermal_dissipation_label = 'thermal_dissipation', &
SOURCE_thermal_externalheat_label = 'thermal_externalheat', &
SOURCE_damage_isoBrittle_label = 'damage_isobrittle', &
SOURCE_damage_isoDuctile_label = 'damage_isoductile', &
SOURCE_damage_anisoBrittle_label = 'damage_anisobrittle', &
SOURCE_damage_anisoDuctile_label = 'damage_anisoductile', &
SOURCE_vacancy_phenoplasticity_label = 'vacancy_phenoplasticity', &
SOURCE_vacancy_irradiation_label = 'vacancy_irradiation', &
SOURCE_vacancy_thermalfluc_label = 'vacancy_thermalfluctuation', &
KINEMATICS_thermal_expansion_label = 'thermal_expansion', &
KINEMATICS_cleavage_opening_label = 'cleavage_opening', &
KINEMATICS_slipplane_opening_label = 'slipplane_opening', &
KINEMATICS_vacancy_strain_label = 'vacancy_strain', &
KINEMATICS_hydrogen_strain_label = 'hydrogen_strain', &
STIFFNESS_DEGRADATION_damage_label = 'damage', &
STIFFNESS_DEGRADATION_porosity_label = 'porosity', &
THERMAL_isothermal_label = 'isothermal', &
THERMAL_adiabatic_label = 'adiabatic', &
THERMAL_conduction_label = 'conduction', &
DAMAGE_none_label = 'none', &
DAMAGE_local_label = 'local', &
DAMAGE_nonlocal_label = 'nonlocal', &
VACANCYFLUX_isoconc_label = 'isoconcentration', &
VACANCYFLUX_isochempot_label = 'isochemicalpotential', &
VACANCYFLUX_cahnhilliard_label = 'cahnhilliard', &
POROSITY_none_label = 'none', &
POROSITY_phasefield_label = 'phasefield', &
HYDROGENFLUX_isoconc_label = 'isoconcentration', &
HYDROGENFLUX_cahnhilliard_label = 'cahnhilliard', &
HOMOGENIZATION_none_label = 'none', &
HOMOGENIZATION_isostrain_label = 'isostrain', &
HOMOGENIZATION_rgc_label = 'rgc'
enum, bind(c)
enumerator :: ELASTICITY_undefined_ID, &
ELASTICITY_hooke_ID
end enum
enum, bind(c)
enumerator :: PLASTICITY_undefined_ID, &
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_kinehardening_ID, &
PLASTICITY_dislotwin_ID, &
PLASTICITY_disloucla_ID, &
PLASTICITY_nonlocal_ID
end enum
enum, bind(c)
enumerator :: SOURCE_undefined_ID, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID
end enum
enum, bind(c)
enumerator :: KINEMATICS_undefined_ID, &
KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID, &
KINEMATICS_vacancy_strain_ID, &
KINEMATICS_hydrogen_strain_ID
end enum
enum, bind(c)
enumerator :: STIFFNESS_DEGRADATION_undefined_ID, &
STIFFNESS_DEGRADATION_damage_ID, &
STIFFNESS_DEGRADATION_porosity_ID
end enum
enum, bind(c)
enumerator :: THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID
end enum
enum, bind(c)
enumerator :: DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID
end enum
enum, bind(c)
enumerator :: VACANCYFLUX_isoconc_ID, &
VACANCYFLUX_isochempot_ID, &
VACANCYFLUX_cahnhilliard_ID
end enum
enum, bind(c)
enumerator :: POROSITY_none_ID, &
POROSITY_phasefield_ID
end enum
enum, bind(c)
enumerator :: HYDROGENFLUX_isoconc_ID, &
HYDROGENFLUX_cahnhilliard_ID
end enum
enum, bind(c)
enumerator :: HOMOGENIZATION_undefined_ID, &
HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, &
HOMOGENIZATION_rgc_ID
end enum
integer(kind(ELASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: &
phase_elasticity !< elasticity of each phase
integer(kind(PLASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: &
phase_plasticity !< plasticity of each phase
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable, public, protected :: &
thermal_type !< thermal transport model
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable, public, protected :: &
damage_type !< nonlocal damage model
integer(kind(VACANCYFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: &
vacancyflux_type !< vacancy transport model
integer(kind(POROSITY_none_ID)), dimension(:), allocatable, public, protected :: &
porosity_type !< porosity evolution model
integer(kind(HYDROGENFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: &
hydrogenflux_type !< hydrogen transport model
integer(kind(SOURCE_undefined_ID)), dimension(:,:), allocatable, public, protected :: &
phase_source, & !< active sources mechanisms of each phase
phase_kinematics, & !< active kinematic mechanisms of each phase
phase_stiffnessDegradation !< active stiffness degradation mechanisms of each phase
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable, public, protected :: &
homogenization_type !< type of each homogenization
integer(pInt), public, protected :: &
homogenization_maxNgrains !< max number of grains in any USED homogenization
integer(pInt), dimension(:), allocatable, public, protected :: &
phase_Nsources, & !< number of source mechanisms active in each phase
phase_Nkinematics, & !< number of kinematic mechanisms active in each phase
phase_NstiffnessDegradations, & !< number of stiffness degradation mechanisms active in each phase
phase_Noutput, & !< number of '(output)' items per phase
phase_elasticityInstance, & !< instance of particular elasticity of each phase
phase_plasticityInstance !< instance of particular plasticity of each phase
integer(pInt), dimension(:), allocatable, public, protected :: &
crystallite_Noutput !< number of '(output)' items per crystallite setting
integer(pInt), dimension(:), allocatable, public, protected :: &
homogenization_Ngrains, & !< number of grains in each homogenization
homogenization_Noutput, & !< number of '(output)' items per homogenization
homogenization_typeInstance, & !< instance of particular type of each homogenization
thermal_typeInstance, & !< instance of particular type of each thermal transport
damage_typeInstance, & !< instance of particular type of each nonlocal damage
vacancyflux_typeInstance, & !< instance of particular type of each vacancy flux
porosity_typeInstance, & !< instance of particular type of each porosity model
hydrogenflux_typeInstance, & !< instance of particular type of each hydrogen flux
microstructure_crystallite !< crystallite setting ID of each microstructure
real(pReal), dimension(:), allocatable, public, protected :: &
thermal_initialT, & !< initial temperature per each homogenization
damage_initialPhi, & !< initial damage per each homogenization
vacancyflux_initialCv, & !< initial vacancy concentration per each homogenization
porosity_initialPhi, & !< initial posority per each homogenization
hydrogenflux_initialCh !< initial hydrogen concentration per each homogenization
integer(pInt), dimension(:,:,:), allocatable, public :: &
material_phase !< phase (index) of each grain,IP,element
integer(pInt), dimension(:,:), allocatable, public :: &
material_homog !< homogenization (index) of each IP,element
type(tPlasticState), allocatable, dimension(:), public :: &
plasticState
type(tSourceState), allocatable, dimension(:), public :: &
sourceState
type(tState), allocatable, dimension(:), public :: &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
porosityState, &
hydrogenfluxState
integer(pInt), dimension(:,:,:), allocatable, public, protected :: &
material_texture !< texture (index) of each grain,IP,element
real(pReal), dimension(:,:,:,:), allocatable, public, protected :: &
material_EulerAngles !< initial orientation of each grain,IP,element
logical, dimension(:), allocatable, public, protected :: &
microstructure_active, &
microstructure_elemhomo, & !< flag to indicate homogeneous microstructure distribution over element's IPs
phase_localPlasticity !< flags phases with local constitutive law
character(len=65536), dimension(:), allocatable, private :: &
texture_ODFfile !< name of each ODF file
integer(pInt), private :: &
microstructure_maxNconstituents, & !< max number of constituents in any phase
texture_maxNgauss, & !< max number of Gauss components in any texture
texture_maxNfiber !< max number of Fiber components in any texture
integer(pInt), dimension(:), allocatable, private :: &
microstructure_Nconstituents, & !< number of constituents in each microstructure
texture_symmetry, & !< number of symmetric orientations per texture
texture_Ngauss, & !< number of Gauss components per texture
texture_Nfiber !< number of Fiber components per texture
integer(pInt), dimension(:,:), allocatable, private :: &
microstructure_phase, & !< phase IDs of each microstructure
microstructure_texture !< texture IDs of each microstructure
real(pReal), dimension(:,:), allocatable, private :: &
microstructure_fraction !< vol fraction of each constituent in microstructure
real(pReal), dimension(:,:,:), allocatable, private :: &
material_volume, & !< volume of each grain,IP,element
texture_Gauss, & !< data of each Gauss component
texture_Fiber, & !< data of each Fiber component
texture_transformation !< transformation for each texture
logical, dimension(:), allocatable, private :: &
homogenization_active
integer(pInt), dimension(:,:,:), allocatable, public :: phaseAt !< phase ID of every material point (ipc,ip,el)
integer(pInt), dimension(:,:,:), allocatable, public :: phasememberAt !< memberID of given phase at every material point (ipc,ip,el)
integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingCrystallite
integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingHomogenization !< mapping from material points to offset in heterogenous state/field
integer(pInt), dimension(:,:), allocatable, public, target :: mappingHomogenizationConst !< mapping from material points to offset in constant state/field
type(tHomogMapping), allocatable, dimension(:), public :: &
thermalMapping, & !< mapping for thermal state/fields
damageMapping, & !< mapping for damage state/fields
vacancyfluxMapping, & !< mapping for vacancy conc state/fields
porosityMapping, & !< mapping for porosity state/fields
hydrogenfluxMapping !< mapping for hydrogen conc state/fields
type(group_float), allocatable, dimension(:), public :: &
temperature, & !< temperature field
damage, & !< damage field
vacancyConc, & !< vacancy conc field
porosity, & !< porosity field
hydrogenConc, & !< hydrogen conc field
temperatureRate, & !< temperature change rate field
vacancyConcRate, & !< vacancy conc change field
hydrogenConcRate !< hydrogen conc change field
public :: &
material_init, &
ELASTICITY_hooke_ID ,&
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_kinehardening_ID, &
PLASTICITY_dislotwin_ID, &
PLASTICITY_disloucla_ID, &
PLASTICITY_nonlocal_ID, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID, &
KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID, &
KINEMATICS_vacancy_strain_ID, &
KINEMATICS_hydrogen_strain_ID, &
STIFFNESS_DEGRADATION_damage_ID, &
STIFFNESS_DEGRADATION_porosity_ID, &
THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID, &
DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID, &
VACANCYFLUX_isoconc_ID, &
VACANCYFLUX_isochempot_ID, &
VACANCYFLUX_cahnhilliard_ID, &
POROSITY_none_ID, &
POROSITY_phasefield_ID, &
HYDROGENFLUX_isoconc_ID, &
HYDROGENFLUX_cahnhilliard_ID, &
HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, &
HOMOGENIZATION_RGC_ID
private :: &
material_parseHomogenization, &
material_parseMicrostructure, &
material_parseCrystallite, &
material_parsePhase, &
material_parseTexture, &
material_populateGrains
contains
!--------------------------------------------------------------------------------------------------
!> @brief parses material configuration file
!> @details figures out if solverJobName.materialConfig is present, if not looks for
!> material.config
!--------------------------------------------------------------------------------------------------
subroutine material_init()
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
use, intrinsic :: iso_fortran_env, only: &
compiler_version, &
compiler_options
#endif
use IO, only: &
IO_error, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_material, &
debug_levelBasic, &
debug_levelExtensive
use config, only: &
config_crystallite, &
config_homogenization, &
config_microstructure, &
config_phase, &
config_texture, &
homogenization_name, &
microstructure_name, &
phase_name, &
texture_name
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
implicit none
integer(pInt), parameter :: FILEUNIT = 210_pInt
integer(pInt) :: m,c,h, myDebug, myPhase, myHomog
integer(pInt) :: &
g, & !< grain number
i, & !< integration point number
e, & !< element number
phase
integer(pInt), dimension(:), allocatable :: ConstitutivePosition
integer(pInt), dimension(:), allocatable :: CrystallitePosition
integer(pInt), dimension(:), allocatable :: HomogenizationPosition
myDebug = debug_level(debug_material)
write(6,'(/,a)') ' <<<+- material init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
call material_parsePhase()
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Phase parsed'; flush(6)
call material_parseMicrostructure()
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Microstructure parsed'; flush(6)
call material_parseCrystallite()
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Crystallite parsed'; flush(6)
call material_parseHomogenization()
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Homogenization parsed'; flush(6)
call material_parseTexture()
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Texture parsed'; flush(6)
allocate(plasticState (size(config_phase)))
allocate(sourceState (size(config_phase)))
do myPhase = 1,size(config_phase)
allocate(sourceState(myPhase)%p(phase_Nsources(myPhase)))
enddo
allocate(homogState (size(config_homogenization)))
allocate(thermalState (size(config_homogenization)))
allocate(damageState (size(config_homogenization)))
allocate(vacancyfluxState (size(config_homogenization)))
allocate(porosityState (size(config_homogenization)))
allocate(hydrogenfluxState (size(config_homogenization)))
allocate(thermalMapping (size(config_homogenization)))
allocate(damageMapping (size(config_homogenization)))
allocate(vacancyfluxMapping (size(config_homogenization)))
allocate(porosityMapping (size(config_homogenization)))
allocate(hydrogenfluxMapping(size(config_homogenization)))
allocate(temperature (size(config_homogenization)))
allocate(damage (size(config_homogenization)))
allocate(vacancyConc (size(config_homogenization)))
allocate(porosity (size(config_homogenization)))
allocate(hydrogenConc (size(config_homogenization)))
allocate(temperatureRate (size(config_homogenization)))
allocate(vacancyConcRate (size(config_homogenization)))
allocate(hydrogenConcRate (size(config_homogenization)))
do m = 1_pInt,size(config_microstructure)
if(microstructure_crystallite(m) < 1_pInt .or. &
microstructure_crystallite(m) > size(config_crystallite)) &
call IO_error(150_pInt,m,ext_msg='crystallite')
if(minval(microstructure_phase(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. &
maxval(microstructure_phase(1:microstructure_Nconstituents(m),m)) > size(config_phase)) &
call IO_error(150_pInt,m,ext_msg='phase')
if(minval(microstructure_texture(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. &
maxval(microstructure_texture(1:microstructure_Nconstituents(m),m)) > size(config_texture)) &
call IO_error(150_pInt,m,ext_msg='texture')
if(microstructure_Nconstituents(m) < 1_pInt) &
call IO_error(151_pInt,m)
enddo
debugOut: if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
write(6,'(/,a,/)') ' MATERIAL configuration'
write(6,'(a32,1x,a16,1x,a6)') 'homogenization ','type ','grains'
do h = 1_pInt,size(config_homogenization)
write(6,'(1x,a32,1x,a16,1x,i6)') homogenization_name(h),homogenization_type(h),homogenization_Ngrains(h)
enddo
write(6,'(/,a14,18x,1x,a11,1x,a12,1x,a13)') 'microstructure','crystallite','constituents','homogeneous'
do m = 1_pInt,size(config_microstructure)
write(6,'(1x,a32,1x,i11,1x,i12,1x,l13)') microstructure_name(m), &
microstructure_crystallite(m), &
microstructure_Nconstituents(m), &
microstructure_elemhomo(m)
if (microstructure_Nconstituents(m) > 0_pInt) then
do c = 1_pInt,microstructure_Nconstituents(m)
write(6,'(a1,1x,a32,1x,a32,1x,f7.4)') '>',phase_name(microstructure_phase(c,m)),&
texture_name(microstructure_texture(c,m)),&
microstructure_fraction(c,m)
enddo
write(6,*)
endif
enddo
endif debugOut
call material_populateGrains
allocate(phaseAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(phasememberAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(mappingHomogenization (2, mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(mappingCrystallite (2,homogenization_maxNgrains, mesh_NcpElems),source=0_pInt)
allocate(mappingHomogenizationConst( mesh_maxNips,mesh_NcpElems),source=1_pInt)
allocate(ConstitutivePosition (size(config_phase)), source=0_pInt)
allocate(HomogenizationPosition(size(config_homogenization)),source=0_pInt)
allocate(CrystallitePosition (size(config_phase)), source=0_pInt)
ElemLoop:do e = 1_pInt,mesh_NcpElems
myHomog = mesh_element(3,e)
IPloop:do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
HomogenizationPosition(myHomog) = HomogenizationPosition(myHomog) + 1_pInt
mappingHomogenization(1:2,i,e) = [HomogenizationPosition(myHomog),myHomog]
GrainLoop:do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
phase = material_phase(g,i,e)
ConstitutivePosition(phase) = ConstitutivePosition(phase)+1_pInt ! not distinguishing between instances of same phase
phaseAt(g,i,e) = phase
phasememberAt(g,i,e) = ConstitutivePosition(phase)
enddo GrainLoop
enddo IPloop
enddo ElemLoop
! hack needed to initialize field values used during constitutive and crystallite initializations
do myHomog = 1,size(config_homogenization)
thermalMapping (myHomog)%p => mappingHomogenizationConst
damageMapping (myHomog)%p => mappingHomogenizationConst
vacancyfluxMapping (myHomog)%p => mappingHomogenizationConst
porosityMapping (myHomog)%p => mappingHomogenizationConst
hydrogenfluxMapping(myHomog)%p => mappingHomogenizationConst
allocate(temperature (myHomog)%p(1), source=thermal_initialT(myHomog))
allocate(damage (myHomog)%p(1), source=damage_initialPhi(myHomog))
allocate(vacancyConc (myHomog)%p(1), source=vacancyflux_initialCv(myHomog))
allocate(porosity (myHomog)%p(1), source=porosity_initialPhi(myHomog))
allocate(hydrogenConc (myHomog)%p(1), source=hydrogenflux_initialCh(myHomog))
allocate(temperatureRate (myHomog)%p(1), source=0.0_pReal)
allocate(vacancyConcRate (myHomog)%p(1), source=0.0_pReal)
allocate(hydrogenConcRate(myHomog)%p(1), source=0.0_pReal)
enddo
end subroutine material_init
!--------------------------------------------------------------------------------------------------
!> @brief parses the homogenization part from the material configuration
!--------------------------------------------------------------------------------------------------
subroutine material_parseHomogenization
use config, only : &
config_homogenization
use IO, only: &
IO_error
use mesh, only: &
mesh_element
implicit none
integer(pInt) :: h
character(len=65536) :: tag
allocate(homogenization_type(size(config_homogenization)), source=HOMOGENIZATION_undefined_ID)
allocate(thermal_type(size(config_homogenization)), source=THERMAL_isothermal_ID)
allocate(damage_type (size(config_homogenization)), source=DAMAGE_none_ID)
allocate(vacancyflux_type(size(config_homogenization)), source=VACANCYFLUX_isoconc_ID)
allocate(porosity_type (size(config_homogenization)), source=POROSITY_none_ID)
allocate(hydrogenflux_type(size(config_homogenization)), source=HYDROGENFLUX_isoconc_ID)
allocate(homogenization_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(thermal_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(damage_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(vacancyflux_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(porosity_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(hydrogenflux_typeInstance(size(config_homogenization)), source=0_pInt)
allocate(homogenization_Ngrains(size(config_homogenization)), source=0_pInt)
allocate(homogenization_Noutput(size(config_homogenization)), source=0_pInt)
allocate(homogenization_active(size(config_homogenization)), source=.false.) !!!!!!!!!!!!!!!
allocate(thermal_initialT(size(config_homogenization)), source=300.0_pReal)
allocate(damage_initialPhi(size(config_homogenization)), source=1.0_pReal)
allocate(vacancyflux_initialCv(size(config_homogenization)), source=0.0_pReal)
allocate(porosity_initialPhi(size(config_homogenization)), source=1.0_pReal)
allocate(hydrogenflux_initialCh(size(config_homogenization)), source=0.0_pReal)
forall (h = 1_pInt:size(config_homogenization)) homogenization_active(h) = any(mesh_element(3,:) == h)
do h=1_pInt, size(config_homogenization)
homogenization_Noutput(h) = config_homogenization(h)%countKeys('(output)')
tag = config_homogenization(h)%getString('mech')
select case (trim(tag))
case(HOMOGENIZATION_NONE_label)
homogenization_type(h) = HOMOGENIZATION_NONE_ID
homogenization_Ngrains(h) = 1_pInt
case(HOMOGENIZATION_ISOSTRAIN_label)
homogenization_type(h) = HOMOGENIZATION_ISOSTRAIN_ID
homogenization_Ngrains(h) = config_homogenization(h)%getInt('nconstituents')
case(HOMOGENIZATION_RGC_label)
homogenization_type(h) = HOMOGENIZATION_RGC_ID
homogenization_Ngrains(h) = config_homogenization(h)%getInt('nconstituents')
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
homogenization_typeInstance(h) = count(homogenization_type==homogenization_type(h))
if (config_homogenization(h)%keyExists('thermal')) then
thermal_initialT(h) = config_homogenization(h)%getFloat('t0',defaultVal=300.0_pReal)
tag = config_homogenization(h)%getString('thermal')
select case (trim(tag))
case(THERMAL_isothermal_label)
thermal_type(h) = THERMAL_isothermal_ID
case(THERMAL_adiabatic_label)
thermal_type(h) = THERMAL_adiabatic_ID
case(THERMAL_conduction_label)
thermal_type(h) = THERMAL_conduction_ID
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
endif
if (config_homogenization(h)%keyExists('damage')) then
damage_initialPhi(h) = config_homogenization(h)%getFloat('initialdamage',defaultVal=1.0_pReal)
tag = config_homogenization(h)%getString('damage')
select case (trim(tag))
case(DAMAGE_NONE_label)
damage_type(h) = DAMAGE_none_ID
case(DAMAGE_LOCAL_label)
damage_type(h) = DAMAGE_local_ID
case(DAMAGE_NONLOCAL_label)
damage_type(h) = DAMAGE_nonlocal_ID
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
endif
if (config_homogenization(h)%keyExists('vacancyflux')) then
vacancyflux_initialCv(h) = config_homogenization(h)%getFloat('cv0',defaultVal=0.0_pReal)
tag = config_homogenization(h)%getString('vacancyflux')
select case (trim(tag))
case(VACANCYFLUX_isoconc_label)
vacancyflux_type(h) = VACANCYFLUX_isoconc_ID
case(VACANCYFLUX_isochempot_label)
vacancyflux_type(h) = VACANCYFLUX_isochempot_ID
case(VACANCYFLUX_cahnhilliard_label)
vacancyflux_type(h) = VACANCYFLUX_cahnhilliard_ID
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
endif
if (config_homogenization(h)%keyExists('porosity')) then
!ToDo?
tag = config_homogenization(h)%getString('porosity')
select case (trim(tag))
case(POROSITY_NONE_label)
porosity_type(h) = POROSITY_none_ID
case(POROSITY_phasefield_label)
porosity_type(h) = POROSITY_phasefield_ID
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
endif
if (config_homogenization(h)%keyExists('hydrogenflux')) then
hydrogenflux_initialCh(h) = config_homogenization(h)%getFloat('ch0',defaultVal=0.0_pReal)
tag = config_homogenization(h)%getString('hydrogenflux')
select case (trim(tag))
case(HYDROGENFLUX_isoconc_label)
hydrogenflux_type(h) = HYDROGENFLUX_isoconc_ID
case(HYDROGENFLUX_cahnhilliard_label)
hydrogenflux_type(h) = HYDROGENFLUX_cahnhilliard_ID
case default
call IO_error(500_pInt,ext_msg=trim(tag))
end select
endif
enddo
do h=1_pInt, size(config_homogenization)
homogenization_typeInstance(h) = count(homogenization_type(1:h) == homogenization_type(h))
thermal_typeInstance(h) = count(thermal_type (1:h) == thermal_type (h))
damage_typeInstance(h) = count(damage_type (1:h) == damage_type (h))
vacancyflux_typeInstance(h) = count(vacancyflux_type (1:h) == vacancyflux_type (h))
porosity_typeInstance(h) = count(porosity_type (1:h) == porosity_type (h))
hydrogenflux_typeInstance(h) = count(hydrogenflux_type (1:h) == hydrogenflux_type (h))
enddo
homogenization_maxNgrains = maxval(homogenization_Ngrains,homogenization_active)
end subroutine material_parseHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief parses the microstructure part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseMicrostructure
use prec, only: &
dNeq
use IO, only: &
IO_floatValue, &
IO_intValue, &
IO_stringValue, &
IO_stringPos, &
IO_error
use config, only: &
config_microstructure, &
microstructure_name
use mesh, only: &
mesh_element, &
mesh_NcpElems
implicit none
character(len=65536), dimension(:), allocatable :: &
strings
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: e, m, c, i
character(len=65536) :: &
tag
allocate(microstructure_crystallite(size(config_microstructure)), source=0_pInt)
allocate(microstructure_Nconstituents(size(config_microstructure)), source=0_pInt)
allocate(microstructure_active(size(config_microstructure)), source=.false.)
allocate(microstructure_elemhomo(size(config_microstructure)), source=.false.)
if(any(mesh_element(4,1:mesh_NcpElems) > size(config_microstructure))) &
call IO_error(155_pInt,ext_msg='More microstructures in geometry than sections in material.config')
forall (e = 1_pInt:mesh_NcpElems) microstructure_active(mesh_element(4,e)) = .true. ! current microstructure used in model? Elementwise view, maximum N operations for N elements
do m=1_pInt, size(config_microstructure)
microstructure_Nconstituents(m) = config_microstructure(m)%countKeys('(constituent)')
microstructure_crystallite(m) = config_microstructure(m)%getInt('crystallite')
microstructure_elemhomo(m) = config_microstructure(m)%keyExists('/elementhomogeneous/')
enddo
microstructure_maxNconstituents = maxval(microstructure_Nconstituents)
allocate(microstructure_phase (microstructure_maxNconstituents,size(config_microstructure)),source=0_pInt)
allocate(microstructure_texture (microstructure_maxNconstituents,size(config_microstructure)),source=0_pInt)
allocate(microstructure_fraction(microstructure_maxNconstituents,size(config_microstructure)),source=0.0_pReal)
allocate(strings(1)) ! Intel 16.0 Bug
do m=1_pInt, size(config_microstructure)
strings = config_microstructure(m)%getStrings('(constituent)',raw=.true.)
do c = 1_pInt, size(strings)
chunkPos = IO_stringPos(strings(c))
do i = 1_pInt,5_pInt,2_pInt
tag = IO_stringValue(strings(c),chunkPos,i)
select case (tag)
case('phase')
microstructure_phase(c,m) = IO_intValue(strings(c),chunkPos,i+1_pInt)
case('texture')
microstructure_texture(c,m) = IO_intValue(strings(c),chunkPos,i+1_pInt)
case('fraction')
microstructure_fraction(c,m) = IO_floatValue(strings(c),chunkPos,i+1_pInt)
end select
enddo
enddo
enddo
do m = 1_pInt, size(config_microstructure)
if (dNeq(sum(microstructure_fraction(:,m)),1.0_pReal)) &
call IO_error(153_pInt,ext_msg=microstructure_name(m))
enddo
end subroutine material_parseMicrostructure
!--------------------------------------------------------------------------------------------------
!> @brief parses the crystallite part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseCrystallite
use config, only: &
config_crystallite
implicit none
integer(pInt) :: c
allocate(crystallite_Noutput(size(config_crystallite)),source=0_pInt)
do c=1_pInt, size(config_crystallite)
crystallite_Noutput(c) = config_crystallite(c)%countKeys('(output)')
enddo
end subroutine material_parseCrystallite
!--------------------------------------------------------------------------------------------------
!> @brief parses the phase part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parsePhase
use IO, only: &
IO_error, &
IO_getTag, &
IO_stringValue
use config, only: &
config_phase
implicit none
integer(pInt) :: sourceCtr, kinematicsCtr, stiffDegradationCtr, p
character(len=65536), dimension(:), allocatable :: str
allocate(phase_elasticity(size(config_phase)),source=ELASTICITY_undefined_ID)
allocate(phase_plasticity(size(config_phase)),source=PLASTICITY_undefined_ID)
allocate(phase_Nsources(size(config_phase)), source=0_pInt)
allocate(phase_Nkinematics(size(config_phase)), source=0_pInt)
allocate(phase_NstiffnessDegradations(size(config_phase)),source=0_pInt)
allocate(phase_Noutput(size(config_phase)), source=0_pInt)
allocate(phase_localPlasticity(size(config_phase)), source=.false.)
do p=1_pInt, size(config_phase)
phase_Noutput(p) = config_phase(p)%countKeys('(output)')
phase_Nsources(p) = config_phase(p)%countKeys('(source)')
phase_Nkinematics(p) = config_phase(p)%countKeys('(kinematics)')
phase_NstiffnessDegradations(p) = config_phase(p)%countKeys('(stiffness_degradation)')
phase_localPlasticity(p) = .not. config_phase(p)%KeyExists('/nonlocal/')
select case (config_phase(p)%getString('elasticity'))
case (ELASTICITY_HOOKE_label)
phase_elasticity(p) = ELASTICITY_HOOKE_ID
case default
call IO_error(200_pInt,ext_msg=trim(config_phase(p)%getString('elasticity')))
end select
select case (config_phase(p)%getString('plasticity'))
case (PLASTICITY_NONE_label)
phase_plasticity(p) = PLASTICITY_NONE_ID
case (PLASTICITY_ISOTROPIC_label)
phase_plasticity(p) = PLASTICITY_ISOTROPIC_ID
case (PLASTICITY_PHENOPOWERLAW_label)
phase_plasticity(p) = PLASTICITY_PHENOPOWERLAW_ID
case (PLASTICITY_KINEHARDENING_label)
phase_plasticity(p) = PLASTICITY_KINEHARDENING_ID
case (PLASTICITY_DISLOTWIN_label)
phase_plasticity(p) = PLASTICITY_DISLOTWIN_ID
case (PLASTICITY_DISLOUCLA_label)
phase_plasticity(p) = PLASTICITY_DISLOUCLA_ID
case (PLASTICITY_NONLOCAL_label)
phase_plasticity(p) = PLASTICITY_NONLOCAL_ID
case default
call IO_error(201_pInt,ext_msg=trim(config_phase(p)%getString('plasticity')))
end select
enddo
allocate(phase_source(maxval(phase_Nsources),size(config_phase)), source=SOURCE_undefined_ID)
allocate(phase_kinematics(maxval(phase_Nkinematics),size(config_phase)), source=KINEMATICS_undefined_ID)
allocate(phase_stiffnessDegradation(maxval(phase_NstiffnessDegradations),size(config_phase)), &
source=STIFFNESS_DEGRADATION_undefined_ID)
do p=1_pInt, size(config_phase)
#if defined(__GFORTRAN__)
str = ['GfortranBug86277']
str = config_phase(p)%getStrings('(source)',defaultVal=str)
if (str(1) == 'GfortranBug86277') str = [character(len=65536)::]
#else
str = config_phase(p)%getStrings('(source)',defaultVal=[character(len=65536)::])
#endif
do sourceCtr = 1_pInt, size(str)
select case (trim(str(sourceCtr)))
case (SOURCE_thermal_dissipation_label)
phase_source(sourceCtr,p) = SOURCE_thermal_dissipation_ID
case (SOURCE_thermal_externalheat_label)
phase_source(sourceCtr,p) = SOURCE_thermal_externalheat_ID
case (SOURCE_damage_isoBrittle_label)
phase_source(sourceCtr,p) = SOURCE_damage_isoBrittle_ID
case (SOURCE_damage_isoDuctile_label)
phase_source(sourceCtr,p) = SOURCE_damage_isoDuctile_ID
case (SOURCE_damage_anisoBrittle_label)
phase_source(sourceCtr,p) = SOURCE_damage_anisoBrittle_ID
case (SOURCE_damage_anisoDuctile_label)
phase_source(sourceCtr,p) = SOURCE_damage_anisoDuctile_ID
case (SOURCE_vacancy_phenoplasticity_label)
phase_source(sourceCtr,p) = SOURCE_vacancy_phenoplasticity_ID
case (SOURCE_vacancy_irradiation_label)
phase_source(sourceCtr,p) = SOURCE_vacancy_irradiation_ID
case (SOURCE_vacancy_thermalfluc_label)
phase_source(sourceCtr,p) = SOURCE_vacancy_thermalfluc_ID
end select
enddo
#if defined(__GFORTRAN__)
str = ['GfortranBug86277']
str = config_phase(p)%getStrings('(kinematics)',defaultVal=str)
if (str(1) == 'GfortranBug86277') str = [character(len=65536)::]
#else
str = config_phase(p)%getStrings('(kinematics)',defaultVal=[character(len=65536)::])
#endif
do kinematicsCtr = 1_pInt, size(str)
select case (trim(str(kinematicsCtr)))
case (KINEMATICS_cleavage_opening_label)
phase_kinematics(kinematicsCtr,p) = KINEMATICS_cleavage_opening_ID
case (KINEMATICS_slipplane_opening_label)
phase_kinematics(kinematicsCtr,p) = KINEMATICS_slipplane_opening_ID
case (KINEMATICS_thermal_expansion_label)
phase_kinematics(kinematicsCtr,p) = KINEMATICS_thermal_expansion_ID
case (KINEMATICS_vacancy_strain_label)
phase_kinematics(kinematicsCtr,p) = KINEMATICS_vacancy_strain_ID
case (KINEMATICS_hydrogen_strain_label)
phase_kinematics(kinematicsCtr,p) = KINEMATICS_hydrogen_strain_ID
end select
enddo
#if defined(__GFORTRAN__)
str = ['GfortranBug86277']
str = config_phase(p)%getStrings('(stiffness_degradation)',defaultVal=str)
if (str(1) == 'GfortranBug86277') str = [character(len=65536)::]
#else
str = config_phase(p)%getStrings('(stiffness_degradation)',defaultVal=[character(len=65536)::])
#endif
do stiffDegradationCtr = 1_pInt, size(str)
select case (trim(str(stiffDegradationCtr)))
case (STIFFNESS_DEGRADATION_damage_label)
phase_stiffnessDegradation(stiffDegradationCtr,p) = STIFFNESS_DEGRADATION_damage_ID
case (STIFFNESS_DEGRADATION_porosity_label)
phase_stiffnessDegradation(stiffDegradationCtr,p) = STIFFNESS_DEGRADATION_porosity_ID
end select
enddo
enddo
allocate(phase_plasticityInstance(size(config_phase)), source=0_pInt)
allocate(phase_elasticityInstance(size(config_phase)), source=0_pInt)
do p=1_pInt, size(config_phase)
phase_elasticityInstance(p) = count(phase_elasticity(1:p) == phase_elasticity(p))
phase_plasticityInstance(p) = count(phase_plasticity(1:p) == phase_plasticity(p))
enddo
end subroutine material_parsePhase
!--------------------------------------------------------------------------------------------------
!> @brief parses the texture part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseTexture
use prec, only: &
dNeq
use IO, only: &
IO_error, &
IO_stringPos, &
IO_floatValue, &
IO_stringValue
use config, only: &
config_deallocate, &
config_texture
use math, only: &
inRad, &
math_sampleRandomOri, &
math_I3, &
math_det33
implicit none
integer(pInt) :: section, gauss, fiber, j, t, i
character(len=65536), dimension(:), allocatable :: strings ! Values for given key in material config
integer(pInt), dimension(:), allocatable :: chunkPos
character(len=65536) :: tag
allocate(texture_ODFfile(size(config_texture))); texture_ODFfile=''
allocate(texture_symmetry(size(config_texture)), source=1_pInt)
allocate(texture_Ngauss(size(config_texture)), source=0_pInt)
allocate(texture_Nfiber(size(config_texture)), source=0_pInt)
do t=1_pInt, size(config_texture)
texture_Ngauss(t) = config_texture(t)%countKeys('(gauss)') &
+ config_texture(t)%countKeys('(random)')
texture_Nfiber(t) = config_texture(t)%countKeys('(fiber)')
enddo
texture_maxNgauss = maxval(texture_Ngauss)
texture_maxNfiber = maxval(texture_Nfiber)
allocate(texture_Gauss (5,texture_maxNgauss,size(config_texture)), source=0.0_pReal)
allocate(texture_Fiber (6,texture_maxNfiber,size(config_texture)), source=0.0_pReal)
allocate(texture_transformation(3,3,size(config_texture)), source=0.0_pReal)
texture_transformation = spread(math_I3,3,size(config_texture))
do t=1_pInt, size(config_texture)
section = t
gauss = 0_pInt
fiber = 0_pInt
if (config_texture(t)%keyExists('axes')) then
strings = config_texture(t)%getStrings('axes')
do j = 1_pInt, 3_pInt ! look for "x", "y", and "z" entries
select case (strings(j))
case('x', '+x')
texture_transformation(j,1:3,t) = [ 1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now +x-axis
case('-x')
texture_transformation(j,1:3,t) = [-1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now -x-axis
case('y', '+y')
texture_transformation(j,1:3,t) = [ 0.0_pReal, 1.0_pReal, 0.0_pReal] ! original axis is now +y-axis
case('-y')
texture_transformation(j,1:3,t) = [ 0.0_pReal,-1.0_pReal, 0.0_pReal] ! original axis is now -y-axis
case('z', '+z')
texture_transformation(j,1:3,t) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal] ! original axis is now +z-axis
case('-z')
texture_transformation(j,1:3,t) = [ 0.0_pReal, 0.0_pReal,-1.0_pReal] ! original axis is now -z-axis
case default
call IO_error(157_pInt,t)
end select
enddo
if(dNeq(math_det33(texture_transformation(1:3,1:3,t)),1.0_pReal)) call IO_error(157_pInt,t)
endif
tag=''
texture_ODFfile(t) = config_texture(t)%getString('hybridia',defaultVal=tag)
if (config_texture(t)%keyExists('symmetry')) then
select case (config_texture(t)%getString('symmetry'))
case('orthotropic')
texture_symmetry(t) = 4_pInt
case('monoclinic')
texture_symmetry(t) = 2_pInt
case default
texture_symmetry(t) = 1_pInt
end select
endif
if (config_texture(t)%keyExists('(random)')) then
strings = config_texture(t)%getStrings('(random)',raw=.true.)
do i = 1_pInt, size(strings)
gauss = gauss + 1_pInt
texture_Gauss(1:3,gauss,t) = math_sampleRandomOri()
chunkPos = IO_stringPos(strings(i))
do j = 1_pInt,3_pInt,2_pInt
select case (IO_stringValue(strings(i),chunkPos,j))
case('scatter')
texture_Gauss(4,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)
end select
enddo
enddo
endif
if (config_texture(t)%keyExists('(gauss)')) then
gauss = gauss + 1_pInt
strings = config_texture(t)%getStrings('(gauss)',raw= .true.)
do i = 1_pInt , size(strings)
chunkPos = IO_stringPos(strings(i))
do j = 1_pInt,9_pInt,2_pInt
select case (IO_stringValue(strings(i),chunkPos,j))
case('phi1')
texture_Gauss(1,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('phi')
texture_Gauss(2,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('phi2')
texture_Gauss(3,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('scatter')
texture_Gauss(4,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)
end select
enddo
enddo
endif
if (config_texture(t)%keyExists('(fiber)')) then
fiber = fiber + 1_pInt
strings = config_texture(t)%getStrings('(fiber)',raw= .true.)
do i = 1_pInt, size(strings)
chunkPos = IO_stringPos(strings(i))
do j = 1_pInt,11_pInt,2_pInt
select case (IO_stringValue(strings(i),chunkPos,j))
case('alpha1')
texture_Fiber(1,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('alpha2')
texture_Fiber(2,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('beta1')
texture_Fiber(3,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('beta2')
texture_Fiber(4,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('scatter')
texture_Fiber(5,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Fiber(6,fiber,t) = IO_floatValue(strings(i),chunkPos,j+1_pInt)
end select
enddo
enddo
endif
enddo
call config_deallocate('material.config/texture')
end subroutine material_parseTexture
!--------------------------------------------------------------------------------------------------
!> @brief populates the grains
!> @details populates the grains by identifying active microstructure/homogenization pairs,
!! calculates the volume of the grains and deals with texture components and hybridIA
!--------------------------------------------------------------------------------------------------
subroutine material_populateGrains
use prec, only: &
dEq
use math, only: &
math_RtoEuler, &
math_EulerToR, &
math_mul33x33, &
math_range, &
math_sampleRandomOri, &
math_sampleGaussOri, &
math_sampleFiberOri, &
math_symmetricEulers
use mesh, only: &
mesh_element, &
mesh_maxNips, &
mesh_NcpElems, &
mesh_ipVolume, &
FE_Nips, &
FE_geomtype
use config, only: &
config_homogenization, &
config_microstructure, &
config_deallocate, &
homogenization_name, &
microstructure_name
use IO, only: &
IO_error, &
IO_hybridIA
use debug, only: &
debug_level, &
debug_material, &
debug_levelBasic
implicit none
integer(pInt), dimension (:,:), allocatable :: Ngrains
integer(pInt), dimension (microstructure_maxNconstituents) :: &
NgrainsOfConstituent, &
currentGrainOfConstituent, &
randomOrder
real(pReal), dimension (microstructure_maxNconstituents) :: &
rndArray
real(pReal), dimension (:), allocatable :: volumeOfGrain
real(pReal), dimension (:,:), allocatable :: orientationOfGrain
real(pReal), dimension (3) :: orientation
real(pReal), dimension (3,3) :: symOrientation
integer(pInt), dimension (:), allocatable :: phaseOfGrain, textureOfGrain
integer(pInt) :: t,e,i,g,j,m,c,r,homog,micro,sgn,hme, myDebug, &
phaseID,textureID,dGrains,myNgrains,myNorientations,myNconstituents, &
grain,constituentGrain,ipGrain,symExtension, ip
real(pReal) :: deviation,extreme,rnd
integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array
type(group_int), dimension (:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array
myDebug = debug_level(debug_material)
allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_homog(mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_texture(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
allocate(Ngrains(size(config_homogenization),size(config_microstructure)), source=0_pInt)
allocate(Nelems (size(config_homogenization),size(config_microstructure)), source=0_pInt)
! populating homogenization schemes in each
!--------------------------------------------------------------------------------------------------
do e = 1_pInt, mesh_NcpElems
material_homog(1_pInt:FE_Nips(FE_geomtype(mesh_element(2,e))),e) = mesh_element(3,e)
enddo
!--------------------------------------------------------------------------------------------------
! precounting of elements for each homog/micro pair
do e = 1_pInt, mesh_NcpElems
homog = mesh_element(3,e)
micro = mesh_element(4,e)
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt
enddo
allocate(elemsOfHomogMicro(size(config_homogenization),size(config_microstructure)))
do homog = 1,size(config_homogenization)
do micro = 1,size(config_microstructure)
if (Nelems(homog,micro) > 0_pInt) then
allocate(elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)))
elemsOfHomogMicro(homog,micro)%p = 0_pInt
endif
enddo
enddo
!--------------------------------------------------------------------------------------------------
! identify maximum grain count per IP (from element) and find grains per homog/micro pair
Nelems = 0_pInt ! reuse as counter
elementLooping: do e = 1_pInt,mesh_NcpElems
t = FE_geomtype(mesh_element(2,e))
homog = mesh_element(3,e)
micro = mesh_element(4,e)
if (homog < 1_pInt .or. homog > size(config_homogenization)) & ! out of bounds
call IO_error(154_pInt,e,0_pInt,0_pInt)
if (micro < 1_pInt .or. micro > size(config_microstructure)) & ! out of bounds
call IO_error(155_pInt,e,0_pInt,0_pInt)
if (microstructure_elemhomo(micro)) then ! how many grains are needed at this element?
dGrains = homogenization_Ngrains(homog) ! only one set of Ngrains (other IPs are plain copies)
else
dGrains = homogenization_Ngrains(homog) * FE_Nips(t) ! each IP has Ngrains
endif
Ngrains(homog,micro) = Ngrains(homog,micro) + dGrains ! total grain count
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt ! total element count
elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)) = e ! remember elements active in this homog/micro pair
enddo elementLooping
allocate(volumeOfGrain(maxval(Ngrains)), source=0.0_pReal) ! reserve memory for maximum case
allocate(phaseOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case
allocate(textureOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case
allocate(orientationOfGrain(3,maxval(Ngrains)),source=0.0_pReal) ! reserve memory for maximum case
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
write(6,'(/,a/)') ' MATERIAL grain population'
write(6,'(a32,1x,a32,1x,a6)') 'homogenization_name','microstructure_name','grain#'
endif
homogenizationLoop: do homog = 1_pInt,size(config_homogenization)
dGrains = homogenization_Ngrains(homog) ! grain number per material point
microstructureLoop: do micro = 1_pInt,size(config_microstructure) ! all pairs of homog and micro
activePair: if (Ngrains(homog,micro) > 0_pInt) then
myNgrains = Ngrains(homog,micro) ! assign short name for total number of grains to populate
myNconstituents = microstructure_Nconstituents(micro) ! assign short name for number of constituents
if (iand(myDebug,debug_levelBasic) /= 0_pInt) &
write(6,'(/,a32,1x,a32,1x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains
!--------------------------------------------------------------------------------------------------
! calculate volume of each grain
volumeOfGrain = 0.0_pReal
grain = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(homog,micro)%p(hme) ! my combination of homog and micro, only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
t = FE_geomtype(mesh_element(2,e))
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
volumeOfGrain(grain+1_pInt:grain+dGrains) = sum(mesh_ipVolume(1:FE_Nips(t),e))/&
real(dGrains,pReal) ! each grain combines size of all IPs in that element
grain = grain + dGrains ! wind forward by Ngrains@IP
else
forall (i = 1_pInt:FE_Nips(t)) & ! loop over IPs
volumeOfGrain(grain+(i-1)*dGrains+1_pInt:grain+i*dGrains) = &
mesh_ipVolume(i,e)/real(dGrains,pReal) ! assign IPvolume/Ngrains@IP to all grains of IP
grain = grain + FE_Nips(t) * dGrains ! wind forward by Nips*Ngrains@IP
endif
enddo
if (grain /= myNgrains) &
call IO_error(0,el = homog,ip = micro,ext_msg = 'inconsistent grain count after volume calc')
!--------------------------------------------------------------------------------------------------
! divide myNgrains as best over constituents
!
! example: three constituents with fractions of 0.25, 0.25, and 0.5 distributed over 20 (microstructure) grains
!
! ***** ***** **********
! NgrainsOfConstituent: 5, 5, 10
! counters:
! |-----> grain (if constituent == 2)
! |--> constituentGrain (of constituent 2)
!
NgrainsOfConstituent = 0_pInt ! reset counter of grains per constituent
forall (i = 1_pInt:myNconstituents) &
NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro)*real(myNgrains,pReal),pInt)! do rounding integer conversion
do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong?
sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change
extreme = 0.0_pReal
t = 0_pInt
do i = 1_pInt,myNconstituents ! find largest deviator
deviation = real(sgn,pReal)*log( microstructure_fraction(i,micro) / &
!-------------------------------- &
(real(NgrainsOfConstituent(i),pReal)/real(myNgrains,pReal) ) )
if (deviation > extreme) then
extreme = deviation
t = i
endif
enddo
NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one
enddo
!--------------------------------------------------------------------------------------------------
! assign phase and texture info
phaseOfGrain = 0_pInt
textureOfGrain = 0_pInt
orientationOfGrain = 0.0_pReal
texture: do i = 1_pInt,myNconstituents ! loop over constituents
grain = sum(NgrainsOfConstituent(1_pInt:i-1_pInt)) ! set microstructure grain index of current constituent
! "grain" points to start of this constituent's grain population
constituentGrain = 0_pInt ! constituent grain index
phaseID = microstructure_phase(i,micro)
textureID = microstructure_texture(i,micro)
phaseOfGrain (grain+1_pInt:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase
textureOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = textureID ! assign resp. texture
myNorientations = ceiling(real(NgrainsOfConstituent(i),pReal)/&
real(texture_symmetry(textureID),pReal),pInt) ! max number of unique orientations (excl. symmetry)
!--------------------------------------------------------------------------------------------------
! ...has texture components
if (texture_ODFfile(textureID) == '') then
gauss: do t = 1_pInt,texture_Ngauss(textureID) ! loop over Gauss components
do g = 1_pInt,int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleGaussOri(texture_Gauss(1:3,t,textureID),&
texture_Gauss( 4,t,textureID))
enddo
constituentGrain = &
constituentGrain + int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID)) ! advance counter for grains of current constituent
enddo gauss
fiber: do t = 1_pInt,texture_Nfiber(textureID) ! loop over fiber components
do g = 1_pInt,int(real(myNorientations,pReal)*texture_Fiber(6,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleFiberOri(texture_Fiber(1:2,t,textureID),&
texture_Fiber(3:4,t,textureID),&
texture_Fiber( 5,t,textureID))
enddo
constituentGrain = &
constituentGrain + int(real(myNorientations,pReal)*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent
enddo fiber
random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random
orientationOfGrain(:,grain+constituentGrain) = math_sampleRandomOri()
enddo random
!--------------------------------------------------------------------------------------------------
! ...has hybrid IA
else
orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = &
IO_hybridIA(myNorientations,texture_ODFfile(textureID))
if (all(dEq(orientationOfGrain(1:3,grain+1_pInt),-1.0_pReal))) call IO_error(156_pInt)
endif
!--------------------------------------------------------------------------------------------------
! ...texture transformation
do j = 1_pInt,myNorientations ! loop over each "real" orientation
orientationOfGrain(1:3,grain+j) = math_RtoEuler( & ! translate back to Euler angles
math_mul33x33( & ! pre-multiply
math_EulertoR(orientationOfGrain(1:3,grain+j)), & ! face-value orientation
texture_transformation(1:3,1:3,textureID) & ! and transformation matrix
) &
)
enddo
!--------------------------------------------------------------------------------------------------
! ...sample symmetry
symExtension = texture_symmetry(textureID) - 1_pInt
if (symExtension > 0_pInt) then ! sample symmetry (number of additional equivalent orientations)
constituentGrain = myNorientations ! start right after "real" orientations
do j = 1_pInt,myNorientations ! loop over each "real" orientation
symOrientation = math_symmetricEulers(texture_symmetry(textureID), &
orientationOfGrain(1:3,grain+j)) ! get symmetric equivalents
e = min(symExtension,NgrainsOfConstituent(i)-constituentGrain) ! do not overshoot end of constituent grain array
if (e > 0_pInt) then
orientationOfGrain(1:3,grain+constituentGrain+1: &
grain+constituentGrain+e) = &
symOrientation(1:3,1:e)
constituentGrain = constituentGrain + e ! remainder shrinks by e
endif
enddo
endif
!--------------------------------------------------------------------------------------------------
! shuffle grains within current constituent
do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent
call random_number(rnd)
t = nint(rnd*real(NgrainsOfConstituent(i)-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! select a grain in remaining list
m = phaseOfGrain(grain+t) ! exchange current with random
phaseOfGrain(grain+t) = phaseOfGrain(grain+j)
phaseOfGrain(grain+j) = m
m = textureOfGrain(grain+t) ! exchange current with random
textureOfGrain(grain+t) = textureOfGrain(grain+j)
textureOfGrain(grain+j) = m
orientation = orientationOfGrain(1:3,grain+t) ! exchange current with random
orientationOfGrain(1:3,grain+t) = orientationOfGrain(1:3,grain+j)
orientationOfGrain(1:3,grain+j) = orientation
enddo
enddo texture
!< @todo calc fraction after weighing with volumePerGrain, exchange in MC steps to improve result (humbug at the moment)
!--------------------------------------------------------------------------------------------------
! distribute grains of all constituents as accurately as possible to given constituent fractions
ip = 0_pInt
currentGrainOfConstituent = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(homog,micro)%p(hme) ! only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
t = FE_geomtype(mesh_element(2,e))
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
m = 1_pInt ! process only first IP
else
m = FE_Nips(t) ! process all IPs
endif
do i = 1_pInt, m ! loop over necessary IPs
ip = ip + 1_pInt ! keep track of total ip count
ipGrain = 0_pInt ! count number of grains assigned at this IP
randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents
call random_number(rndArray) ! as many rnd numbers as (max) constituents
do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ...
r = nint(rndArray(j)*real(myNconstituents-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! ... select one in remaining list
c = randomOrder(r) ! ... call it "c"
randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list
grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population
do g = 1_pInt, min(dGrains-ipGrain, & ! leftover number of grains at this IP
max(0_pInt, & ! no negative values
nint(real(ip * dGrains * NgrainsOfConstituent(c)) / & ! fraction of grains scaled to this constituent...
real(myNgrains),pInt) - & ! ...minus those already distributed
currentGrainOfConstituent(c)))
ipGrain = ipGrain + 1_pInt ! advance IP grain counter
currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt ! advance index of grain population for constituent c
material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) ! assign properties
material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c))
material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c))
material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c))
enddo; enddo
c = randomOrder(microstructure_Nconstituents(micro)) ! look up constituent remaining after random shuffling
grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population
do ipGrain = ipGrain + 1_pInt, dGrains ! ensure last constituent fills up to dGrains
currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt
material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c))
material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c))
material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c))
material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c))
enddo
enddo
do i = i, FE_Nips(t) ! loop over IPs to (possibly) distribute copies from first IP
material_volume (1_pInt:dGrains,i,e) = material_volume (1_pInt:dGrains,1,e)
material_phase (1_pInt:dGrains,i,e) = material_phase (1_pInt:dGrains,1,e)
material_texture(1_pInt:dGrains,i,e) = material_texture(1_pInt:dGrains,1,e)
material_EulerAngles(1:3,1_pInt:dGrains,i,e) = material_EulerAngles(1:3,1_pInt:dGrains,1,e)
enddo
enddo
endif activePair
enddo microstructureLoop
enddo homogenizationLoop
deallocate(volumeOfGrain)
deallocate(phaseOfGrain)
deallocate(textureOfGrain)
deallocate(orientationOfGrain)
deallocate(texture_transformation)
deallocate(Nelems)
deallocate(elemsOfHomogMicro)
call config_deallocate('material.config/microstructure')
end subroutine material_populateGrains
end module material