844 lines
25 KiB
Python
844 lines
25 KiB
Python
"""Miscellaneous helper functionality."""
|
||
|
||
import sys
|
||
import datetime
|
||
import os
|
||
import subprocess
|
||
import shlex
|
||
import re
|
||
import signal
|
||
import fractions
|
||
from collections import abc
|
||
from functools import reduce, partial
|
||
from typing import Callable, Union, Iterable, Sequence, Dict, List, Tuple, Literal, Any, Collection
|
||
from pathlib import Path
|
||
|
||
import numpy as np
|
||
import h5py
|
||
|
||
from . import version
|
||
from ._typehints import FloatSequence, NumpyRngSeed, IntCollection
|
||
|
||
# limit visibility
|
||
__all__=[
|
||
'srepr',
|
||
'emph', 'deemph', 'warn', 'strikeout',
|
||
'run',
|
||
'natural_sort',
|
||
'show_progress',
|
||
'scale_to_coprime',
|
||
'project_equal_angle', 'project_equal_area',
|
||
'hybrid_IA',
|
||
'execution_stamp',
|
||
'shapeshifter', 'shapeblender',
|
||
'extend_docstring', 'extended_docstring',
|
||
'Bravais_to_Miller', 'Miller_to_Bravais',
|
||
'DREAM3D_base_group', 'DREAM3D_cell_data_group',
|
||
'dict_prune', 'dict_flatten',
|
||
'tail_repack',
|
||
]
|
||
|
||
# https://svn.blender.org/svnroot/bf-blender/trunk/blender/build_files/scons/tools/bcolors.py
|
||
# https://stackoverflow.com/questions/287871
|
||
_colors = {
|
||
'header' : '\033[95m',
|
||
'OK_blue': '\033[94m',
|
||
'OK_green': '\033[92m',
|
||
'warning': '\033[93m',
|
||
'fail': '\033[91m',
|
||
'end_color': '\033[0m',
|
||
'bold': '\033[1m',
|
||
'dim': '\033[2m',
|
||
'underline': '\033[4m',
|
||
'crossout': '\033[9m'
|
||
}
|
||
|
||
####################################################################################################
|
||
# Functions
|
||
####################################################################################################
|
||
def srepr(msg,
|
||
glue: str = '\n') -> str:
|
||
r"""
|
||
Join items with glue string.
|
||
|
||
Parameters
|
||
----------
|
||
msg : object with __repr__ or sequence of objects with __repr__
|
||
Items to join.
|
||
glue : str, optional
|
||
Glue used for joining operation. Defaults to '\n'.
|
||
|
||
Returns
|
||
-------
|
||
joined : str
|
||
String representation of the joined items.
|
||
|
||
"""
|
||
if (not hasattr(msg, 'strip') and
|
||
(hasattr(msg, '__getitem__') or
|
||
hasattr(msg, '__iter__'))):
|
||
return glue.join(str(x) for x in msg)
|
||
else:
|
||
return msg if isinstance(msg,str) else repr(msg)
|
||
|
||
|
||
def emph(msg) -> str:
|
||
"""
|
||
Format with emphasis.
|
||
|
||
Parameters
|
||
----------
|
||
msg : object with __repr__ or sequence of objects with __repr__
|
||
Message to format.
|
||
|
||
Returns
|
||
-------
|
||
formatted : str
|
||
Formatted string representation of the joined items.
|
||
|
||
"""
|
||
return _colors['bold']+srepr(msg)+_colors['end_color']
|
||
|
||
def deemph(msg) -> str:
|
||
"""
|
||
Format with deemphasis.
|
||
|
||
Parameters
|
||
----------
|
||
msg : object with __repr__ or sequence of objects with __repr__
|
||
Message to format.
|
||
|
||
Returns
|
||
-------
|
||
formatted : str
|
||
Formatted string representation of the joined items.
|
||
|
||
"""
|
||
return _colors['dim']+srepr(msg)+_colors['end_color']
|
||
|
||
def warn(msg) -> str:
|
||
"""
|
||
Format for warning.
|
||
|
||
Parameters
|
||
----------
|
||
msg : object with __repr__ or sequence of objects with __repr__
|
||
Message to format.
|
||
|
||
Returns
|
||
-------
|
||
formatted : str
|
||
Formatted string representation of the joined items.
|
||
|
||
"""
|
||
return _colors['warning']+emph(msg)+_colors['end_color']
|
||
|
||
def strikeout(msg) -> str:
|
||
"""
|
||
Format as strikeout.
|
||
|
||
Parameters
|
||
----------
|
||
msg : object with __repr__ or iterable of objects with __repr__
|
||
Message to format.
|
||
|
||
Returns
|
||
-------
|
||
formatted : str
|
||
Formatted string representation of the joined items.
|
||
|
||
"""
|
||
return _colors['crossout']+srepr(msg)+_colors['end_color']
|
||
|
||
|
||
def run(cmd: str,
|
||
wd: str = './',
|
||
env: Dict[str, str] = None,
|
||
timeout: int = None) -> Tuple[str, str]:
|
||
"""
|
||
Run a command.
|
||
|
||
Parameters
|
||
----------
|
||
cmd : str
|
||
Command to be executed.
|
||
wd : str, optional
|
||
Working directory of process. Defaults to './'.
|
||
env : dict, optional
|
||
Environment for execution.
|
||
timeout : integer, optional
|
||
Timeout in seconds.
|
||
|
||
Returns
|
||
-------
|
||
stdout, stderr : (str, str)
|
||
Output of the executed command.
|
||
|
||
"""
|
||
def pass_signal(sig,_,proc,default):
|
||
proc.send_signal(sig)
|
||
signal.signal(sig,default)
|
||
signal.raise_signal(sig)
|
||
|
||
signals = [signal.SIGINT,signal.SIGTERM]
|
||
|
||
print(f"running '{cmd}' in '{wd}'")
|
||
process = subprocess.Popen(shlex.split(cmd),
|
||
stdout = subprocess.PIPE,
|
||
stderr = subprocess.PIPE,
|
||
env = os.environ if env is None else env,
|
||
cwd = wd,
|
||
encoding = 'utf-8')
|
||
# ensure that process is terminated (https://stackoverflow.com/questions/22916783)
|
||
sig_states = [signal.signal(sig,partial(pass_signal,proc=process,default=signal.getsignal(sig))) for sig in signals]
|
||
|
||
try:
|
||
stdout,stderr = process.communicate(timeout=timeout)
|
||
finally:
|
||
for sig,state in zip(signals,sig_states):
|
||
signal.signal(sig,state)
|
||
|
||
if process.returncode != 0:
|
||
print(stdout)
|
||
print(stderr)
|
||
raise RuntimeError(f"'{cmd}' failed with returncode {process.returncode}")
|
||
|
||
return stdout, stderr
|
||
|
||
|
||
execute = run
|
||
|
||
|
||
def natural_sort(key: str) -> List[Union[int, str]]:
|
||
"""
|
||
Natural sort.
|
||
|
||
For use in python's 'sorted'.
|
||
|
||
References
|
||
----------
|
||
https://en.wikipedia.org/wiki/Natural_sort_order
|
||
|
||
"""
|
||
convert = lambda text: int(text) if text.isdigit() else text
|
||
return [ convert(c) for c in re.split('([0-9]+)', key) ]
|
||
|
||
|
||
def show_progress(iterable: Iterable,
|
||
N_iter: int = None,
|
||
prefix: str = '',
|
||
bar_length: int = 50) -> Any:
|
||
"""
|
||
Decorate a loop with a progress bar.
|
||
|
||
Use similar like enumerate.
|
||
|
||
Parameters
|
||
----------
|
||
iterable : iterable
|
||
Iterable to be decorated.
|
||
N_iter : int, optional
|
||
Total number of iterations. Required if iterable is not a sequence.
|
||
prefix : str, optional
|
||
Prefix string.
|
||
bar_length : int, optional
|
||
Length of progress bar in characters. Defaults to 50.
|
||
|
||
"""
|
||
if isinstance(iterable,abc.Sequence):
|
||
if N_iter is None:
|
||
N = len(iterable)
|
||
else:
|
||
raise ValueError('N_iter given for sequence')
|
||
else:
|
||
if N_iter is None:
|
||
raise ValueError('N_iter not given')
|
||
|
||
N = N_iter
|
||
|
||
if N <= 1:
|
||
for item in iterable:
|
||
yield item
|
||
else:
|
||
status = ProgressBar(N,prefix,bar_length)
|
||
for i,item in enumerate(iterable):
|
||
yield item
|
||
status.update(i)
|
||
|
||
|
||
def scale_to_coprime(v: FloatSequence) -> np.ndarray:
|
||
"""
|
||
Scale vector to co-prime (relatively prime) integers.
|
||
|
||
Parameters
|
||
----------
|
||
v : sequence of float, len (:)
|
||
Vector to scale.
|
||
|
||
Returns
|
||
-------
|
||
m : numpy.ndarray, shape (:)
|
||
Vector scaled to co-prime numbers.
|
||
|
||
"""
|
||
MAX_DENOMINATOR = 1000000
|
||
|
||
def get_square_denominator(x):
|
||
"""Denominator of the square of a number."""
|
||
return fractions.Fraction(x ** 2).limit_denominator(MAX_DENOMINATOR).denominator
|
||
|
||
def lcm(a,b):
|
||
"""Least common multiple."""
|
||
try:
|
||
return np.lcm(a,b) # numpy > 1.18
|
||
except AttributeError:
|
||
return a * b // np.gcd(a, b)
|
||
|
||
v_ = np.array(v)
|
||
m = (v_ * reduce(lcm, map(lambda x: int(get_square_denominator(x)),v_))**0.5).astype(int)
|
||
m = m//reduce(np.gcd,m)
|
||
|
||
with np.errstate(invalid='ignore'):
|
||
if not np.allclose(np.ma.masked_invalid(v_/m),v_[np.argmax(abs(v_))]/m[np.argmax(abs(v_))]):
|
||
raise ValueError(f'invalid result "{m}" for input "{v_}"')
|
||
|
||
return m
|
||
|
||
|
||
def project_equal_angle(vector: np.ndarray,
|
||
direction: Literal['x', 'y', 'z'] = 'z',
|
||
normalize: bool = True,
|
||
keepdims: bool = False) -> np.ndarray:
|
||
"""
|
||
Apply equal-angle projection to vector.
|
||
|
||
Parameters
|
||
----------
|
||
vector : numpy.ndarray, shape (...,3)
|
||
Vector coordinates to be projected.
|
||
direction : {'x', 'y', 'z'}
|
||
Projection direction. Defaults to 'z'.
|
||
normalize : bool
|
||
Ensure unit length of input vector. Defaults to True.
|
||
keepdims : bool
|
||
Maintain three-dimensional output coordinates.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
coordinates : numpy.ndarray, shape (...,2 | 3)
|
||
Projected coordinates.
|
||
|
||
Notes
|
||
-----
|
||
Two-dimensional output uses right-handed frame spanned by
|
||
the next and next-next axis relative to the projection direction,
|
||
e.g. x-y when projecting along z and z-x when projecting along y.
|
||
|
||
Examples
|
||
--------
|
||
>>> import damask
|
||
>>> import numpy as np
|
||
>>> project_equal_angle(np.ones(3))
|
||
[0.3660254, 0.3660254]
|
||
>>> project_equal_angle(np.ones(3),direction='x',normalize=False,keepdims=True)
|
||
[0, 0.5, 0.5]
|
||
>>> project_equal_angle([0,1,1],direction='y',normalize=True,keepdims=False)
|
||
[0.41421356, 0]
|
||
|
||
"""
|
||
shift = 'zyx'.index(direction)
|
||
v = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
|
||
shift,axis=-1)
|
||
return np.roll(np.block([v[...,:2]/(1.0+np.abs(v[...,2:3])),np.zeros_like(v[...,2:3])]),
|
||
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
|
||
|
||
def project_equal_area(vector: np.ndarray,
|
||
direction: Literal['x', 'y', 'z'] = 'z',
|
||
normalize: bool = True,
|
||
keepdims: bool = False) -> np.ndarray:
|
||
"""
|
||
Apply equal-area projection to vector.
|
||
|
||
Parameters
|
||
----------
|
||
vector : numpy.ndarray, shape (...,3)
|
||
Vector coordinates to be projected.
|
||
direction : {'x', 'y', 'z'}
|
||
Projection direction. Defaults to 'z'.
|
||
normalize : bool
|
||
Ensure unit length of input vector. Defaults to True.
|
||
keepdims : bool
|
||
Maintain three-dimensional output coordinates.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
coordinates : numpy.ndarray, shape (...,2 | 3)
|
||
Projected coordinates.
|
||
|
||
Notes
|
||
-----
|
||
Two-dimensional output uses right-handed frame spanned by
|
||
the next and next-next axis relative to the projection direction,
|
||
e.g. x-y when projecting along z and z-x when projecting along y.
|
||
|
||
|
||
Examples
|
||
--------
|
||
>>> import damask
|
||
>>> import numpy as np
|
||
>>> project_equal_area(np.ones(3))
|
||
[0.45970084, 0.45970084]
|
||
>>> project_equal_area(np.ones(3),direction='x',normalize=False,keepdims=True)
|
||
[0.0, 0.70710678, 0.70710678]
|
||
>>> project_equal_area([0,1,1],direction='y',normalize=True,keepdims=False)
|
||
[0.5411961, 0.0]
|
||
|
||
"""
|
||
shift = 'zyx'.index(direction)
|
||
v = np.roll(vector/np.linalg.norm(vector,axis=-1,keepdims=True) if normalize else vector,
|
||
shift,axis=-1)
|
||
return np.roll(np.block([v[...,:2]/np.sqrt(1.0+np.abs(v[...,2:3])),np.zeros_like(v[...,2:3])]),
|
||
-shift if keepdims else 0,axis=-1)[...,:3 if keepdims else 2]
|
||
|
||
def execution_stamp(class_name: str,
|
||
function_name: str = None) -> str:
|
||
"""Timestamp the execution of a (function within a) class."""
|
||
now = datetime.datetime.now().astimezone().strftime('%Y-%m-%d %H:%M:%S%z')
|
||
_function_name = '' if function_name is None else f'.{function_name}'
|
||
return f'damask.{class_name}{_function_name} v{version} ({now})'
|
||
|
||
|
||
def hybrid_IA(dist: np.ndarray,
|
||
N: int,
|
||
rng_seed: NumpyRngSeed = None) -> np.ndarray:
|
||
"""
|
||
Hybrid integer approximation.
|
||
|
||
Parameters
|
||
----------
|
||
dist : numpy.ndarray
|
||
Distribution to be approximated
|
||
N : int
|
||
Number of samples to draw.
|
||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||
A seed to initialize the BitGenerator. Defaults to None.
|
||
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
||
|
||
"""
|
||
N_opt_samples,N_inv_samples = (max(np.count_nonzero(dist),N),0) # random subsampling if too little samples requested
|
||
|
||
scale_,scale,inc_factor = (0.0,float(N_opt_samples),1.0)
|
||
while (not np.isclose(scale, scale_)) and (N_inv_samples != N_opt_samples):
|
||
repeats = np.rint(scale*dist).astype(int)
|
||
N_inv_samples = np.sum(repeats)
|
||
scale_,scale,inc_factor = (scale,scale+inc_factor*0.5*(scale - scale_), inc_factor*2.0) \
|
||
if N_inv_samples < N_opt_samples else \
|
||
(scale_,0.5*(scale_ + scale), 1.0)
|
||
|
||
return np.repeat(np.arange(len(dist)),repeats)[np.random.default_rng(rng_seed).permutation(N_inv_samples)[:N]]
|
||
|
||
|
||
def shapeshifter(fro: Tuple[int, ...],
|
||
to: Tuple[int, ...],
|
||
mode: Literal['left','right'] = 'left',
|
||
keep_ones: bool = False) -> Tuple[int, ...]:
|
||
"""
|
||
Return dimensions that reshape 'fro' to become broadcastable to 'to'.
|
||
|
||
Parameters
|
||
----------
|
||
fro : tuple
|
||
Original shape of array.
|
||
to : tuple
|
||
Target shape of array after broadcasting.
|
||
len(to) cannot be less than len(fro).
|
||
mode : {'left', 'right'}, optional
|
||
Indicates whether new axes are preferably added to
|
||
either left or right of the original shape.
|
||
Defaults to 'left'.
|
||
keep_ones : bool, optional
|
||
Treat '1' in fro as literal value instead of dimensional placeholder.
|
||
Defaults to False.
|
||
|
||
Returns
|
||
-------
|
||
new_dims : tuple
|
||
Dimensions for reshape.
|
||
|
||
Example
|
||
-------
|
||
>>> import numpy as np
|
||
>>> from damask import util
|
||
>>> a = np.ones((3,4,2))
|
||
>>> b = np.ones(4)
|
||
>>> b_extended = b.reshape(util.shapeshifter(b.shape,a.shape))
|
||
>>> (a * np.broadcast_to(b_extended,a.shape)).shape
|
||
(3,4,2)
|
||
|
||
|
||
"""
|
||
if len(fro) == 0 and len(to) == 0: return ()
|
||
|
||
beg = dict(left ='(^.*\\b)',
|
||
right='(^.*?\\b)')
|
||
sep = dict(left ='(.*\\b)',
|
||
right='(.*?\\b)')
|
||
end = dict(left ='(.*?$)',
|
||
right='(.*$)')
|
||
fro = (1,) if len(fro) == 0 else fro
|
||
to = (1,) if len(to) == 0 else to
|
||
try:
|
||
match = re.match(beg[mode]
|
||
+f',{sep[mode]}'.join(map(lambda x: f'{x}'
|
||
if x>1 or (keep_ones and len(fro)>1) else
|
||
'\\d+',fro))
|
||
+f',{end[mode]}',','.join(map(str,to))+',')
|
||
assert match
|
||
grp = match.groups()
|
||
except AssertionError:
|
||
raise ValueError(f'shapes cannot be shifted {fro} --> {to}')
|
||
fill: Any = ()
|
||
for g,d in zip(grp,fro+(None,)):
|
||
fill += (1,)*g.count(',')+(d,)
|
||
return fill[:-1]
|
||
|
||
|
||
def shapeblender(a: Tuple[int, ...],
|
||
b: Tuple[int, ...]) -> Tuple[int, ...]:
|
||
"""
|
||
Return a shape that overlaps the rightmost entries of 'a' with the leftmost of 'b'.
|
||
|
||
Parameters
|
||
----------
|
||
a : tuple
|
||
Shape of first array.
|
||
b : tuple
|
||
Shape of second array.
|
||
|
||
Examples
|
||
--------
|
||
>>> shapeblender((4,4,3),(3,2,1))
|
||
(4,4,3,2,1)
|
||
>>> shapeblender((1,2),(1,2,3))
|
||
(1,2,3)
|
||
>>> shapeblender((1,),(2,2,1))
|
||
(1,2,2,1)
|
||
>>> shapeblender((3,2),(3,2))
|
||
(3,2)
|
||
|
||
"""
|
||
i = min(len(a),len(b))
|
||
while i > 0 and a[-i:] != b[:i]: i -= 1
|
||
return a + b[i:]
|
||
|
||
|
||
def extend_docstring(extra_docstring: str) -> Callable:
|
||
"""
|
||
Decorator: Append to function's docstring.
|
||
|
||
Parameters
|
||
----------
|
||
extra_docstring : str
|
||
Docstring to append.
|
||
|
||
"""
|
||
def _decorator(func):
|
||
func.__doc__ += extra_docstring
|
||
return func
|
||
return _decorator
|
||
|
||
|
||
def extended_docstring(f: Callable,
|
||
extra_docstring: str) -> Callable:
|
||
"""
|
||
Decorator: Combine another function's docstring with a given docstring.
|
||
|
||
Parameters
|
||
----------
|
||
f : function
|
||
Function of which the docstring is taken.
|
||
extra_docstring : str
|
||
Docstring to append.
|
||
|
||
"""
|
||
def _decorator(func):
|
||
func.__doc__ = f.__doc__ + extra_docstring
|
||
return func
|
||
return _decorator
|
||
|
||
|
||
def DREAM3D_base_group(fname: Union[str, Path]) -> str:
|
||
"""
|
||
Determine the base group of a DREAM.3D file.
|
||
|
||
The base group is defined as the group (folder) that contains
|
||
a 'SPACING' dataset in a '_SIMPL_GEOMETRY' group.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or pathlib.Path
|
||
Filename of the DREAM.3D (HDF5) file.
|
||
|
||
Returns
|
||
-------
|
||
path : str
|
||
Path to the base group.
|
||
|
||
"""
|
||
with h5py.File(Path(fname).expanduser(),'r') as f:
|
||
base_group = f.visit(lambda path: path.rsplit('/',2)[0] if '_SIMPL_GEOMETRY/SPACING' in path else None)
|
||
|
||
if base_group is None:
|
||
raise ValueError(f'could not determine base group in file "{fname}"')
|
||
|
||
return base_group
|
||
|
||
def DREAM3D_cell_data_group(fname: Union[str, Path]) -> str:
|
||
"""
|
||
Determine the cell data group of a DREAM.3D file.
|
||
|
||
The cell data group is defined as the group (folder) that contains
|
||
a dataset in the base group whose length matches the total number
|
||
of points as specified in '_SIMPL_GEOMETRY/DIMENSIONS'.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or pathlib.Path
|
||
Filename of the DREAM.3D (HDF5) file.
|
||
|
||
Returns
|
||
-------
|
||
path : str
|
||
Path to the cell data group.
|
||
|
||
"""
|
||
base_group = DREAM3D_base_group(fname)
|
||
with h5py.File(Path(fname).expanduser(),'r') as f:
|
||
cells = tuple(f['/'.join([base_group,'_SIMPL_GEOMETRY','DIMENSIONS'])][()][::-1])
|
||
cell_data_group = f[base_group].visititems(lambda path,obj: path.split('/')[0] \
|
||
if isinstance(obj,h5py._hl.dataset.Dataset) and np.shape(obj)[:-1] == cells \
|
||
else None)
|
||
|
||
if cell_data_group is None:
|
||
raise ValueError(f'could not determine cell-data group in file "{fname}/{base_group}"')
|
||
|
||
return cell_data_group
|
||
|
||
|
||
def Bravais_to_Miller(*,
|
||
uvtw: np.ndarray = None,
|
||
hkil: np.ndarray = None) -> np.ndarray:
|
||
"""
|
||
Transform 4 Miller–Bravais indices to 3 Miller indices of crystal direction [uvw] or plane normal (hkl).
|
||
|
||
Parameters
|
||
----------
|
||
uvtw|hkil : numpy.ndarray, shape (...,4)
|
||
Miller–Bravais indices of crystallographic direction [uvtw] or plane normal (hkil).
|
||
|
||
Returns
|
||
-------
|
||
uvw|hkl : numpy.ndarray, shape (...,3)
|
||
Miller indices of [uvw] direction or (hkl) plane normal.
|
||
|
||
"""
|
||
if (uvtw is not None) ^ (hkil is None):
|
||
raise KeyError('specify either "uvtw" or "hkil"')
|
||
axis,basis = (np.array(uvtw),np.array([[1,0,-1,0],
|
||
[0,1,-1,0],
|
||
[0,0, 0,1]])) \
|
||
if hkil is None else \
|
||
(np.array(hkil),np.array([[1,0,0,0],
|
||
[0,1,0,0],
|
||
[0,0,0,1]]))
|
||
return np.einsum('il,...l',basis,axis)
|
||
|
||
|
||
def Miller_to_Bravais(*,
|
||
uvw: np.ndarray = None,
|
||
hkl: np.ndarray = None) -> np.ndarray:
|
||
"""
|
||
Transform 3 Miller indices to 4 Miller–Bravais indices of crystal direction [uvtw] or plane normal (hkil).
|
||
|
||
Parameters
|
||
----------
|
||
uvw|hkl : numpy.ndarray, shape (...,3)
|
||
Miller indices of crystallographic direction [uvw] or plane normal (hkl).
|
||
|
||
Returns
|
||
-------
|
||
uvtw|hkil : numpy.ndarray, shape (...,4)
|
||
Miller–Bravais indices of [uvtw] direction or (hkil) plane normal.
|
||
|
||
"""
|
||
if (uvw is not None) ^ (hkl is None):
|
||
raise KeyError('specify either "uvw" or "hkl"')
|
||
axis,basis = (np.array(uvw),np.array([[ 2,-1, 0],
|
||
[-1, 2, 0],
|
||
[-1,-1, 0],
|
||
[ 0, 0, 3]])/3) \
|
||
if hkl is None else \
|
||
(np.array(hkl),np.array([[ 1, 0, 0],
|
||
[ 0, 1, 0],
|
||
[-1,-1, 0],
|
||
[ 0, 0, 1]]))
|
||
return np.einsum('il,...l',basis,axis)
|
||
|
||
|
||
def dict_prune(d: Dict) -> Dict:
|
||
"""
|
||
Recursively remove empty dictionaries.
|
||
|
||
Parameters
|
||
----------
|
||
d : dict
|
||
Dictionary to prune.
|
||
|
||
Returns
|
||
-------
|
||
pruned : dict
|
||
Pruned dictionary.
|
||
|
||
"""
|
||
# https://stackoverflow.com/questions/48151953
|
||
new = {}
|
||
for k,v in d.items():
|
||
if isinstance(v, dict):
|
||
v = dict_prune(v)
|
||
if not isinstance(v,dict) or v != {}:
|
||
new[k] = v
|
||
|
||
return new
|
||
|
||
|
||
def dict_flatten(d: Dict) -> Dict:
|
||
"""
|
||
Recursively remove keys of single-entry dictionaries.
|
||
|
||
Parameters
|
||
----------
|
||
d : dict
|
||
Dictionary to flatten.
|
||
|
||
Returns
|
||
-------
|
||
flattened : dict
|
||
Flattened dictionary.
|
||
|
||
"""
|
||
if isinstance(d,dict) and len(d) == 1:
|
||
entry = d[list(d.keys())[0]]
|
||
new = dict_flatten(entry.copy()) if isinstance(entry,dict) else entry
|
||
else:
|
||
new = {k: (dict_flatten(v) if isinstance(v, dict) else v) for k,v in d.items()}
|
||
|
||
return new
|
||
|
||
|
||
def tail_repack(extended: Union[str, Sequence[str]],
|
||
existing: List[str] = []) -> List[str]:
|
||
"""
|
||
Repack tailing characters into single string if all are new.
|
||
|
||
Parameters
|
||
----------
|
||
extended : str or list of str
|
||
Extended string list with potentially autosplitted tailing string relative to `existing`.
|
||
existing : list of str
|
||
Base string list.
|
||
|
||
Returns
|
||
-------
|
||
repacked : list of str
|
||
Repacked version of `extended`.
|
||
|
||
Examples
|
||
--------
|
||
>>> tail_repack(['a','new','e','n','t','r','y'],['a','new'])
|
||
['a','new','entry']
|
||
>>> tail_repack(['a','new','shiny','e','n','t','r','y'],['a','new'])
|
||
['a','new','shiny','e','n','t','r','y']
|
||
|
||
"""
|
||
return [extended] if isinstance(extended,str) else existing + \
|
||
([''.join(extended[len(existing):])] if np.prod([len(i) for i in extended[len(existing):]]) == 1 else
|
||
list(extended[len(existing):]))
|
||
|
||
|
||
def aslist(arg: Union[IntCollection,int,None]) -> List:
|
||
"""
|
||
Transform argument to list.
|
||
|
||
Parameters
|
||
----------
|
||
arg : int or collection of int or None
|
||
Entity to transform into list.
|
||
|
||
Returns
|
||
-------
|
||
transformed : list
|
||
Entity transformed into list.
|
||
|
||
"""
|
||
return [] if arg is None else list(arg) if isinstance(arg,(np.ndarray,Collection)) else [arg]
|
||
|
||
|
||
####################################################################################################
|
||
# Classes
|
||
####################################################################################################
|
||
class ProgressBar:
|
||
"""
|
||
Report progress of an interation as a status bar.
|
||
|
||
Works for 0-based loops, ETA is estimated by linear extrapolation.
|
||
"""
|
||
|
||
def __init__(self,
|
||
total: int,
|
||
prefix: str,
|
||
bar_length: int):
|
||
"""
|
||
Set current time as basis for ETA estimation.
|
||
|
||
Parameters
|
||
----------
|
||
total : int
|
||
Total # of iterations.
|
||
prefix : str
|
||
Prefix string.
|
||
bar_length : int
|
||
Character length of bar.
|
||
|
||
"""
|
||
self.total = total
|
||
self.prefix = prefix
|
||
self.bar_length = bar_length
|
||
self.time_start = self.time_last_update = datetime.datetime.now()
|
||
self.fraction_last = 0.0
|
||
|
||
sys.stderr.write(f"{self.prefix} {'░'*self.bar_length} 0% ETA n/a")
|
||
sys.stderr.flush()
|
||
|
||
def update(self,
|
||
iteration: int) -> None:
|
||
|
||
fraction = (iteration+1) / self.total
|
||
|
||
if (filled_length := int(self.bar_length * fraction)) > int(self.bar_length * self.fraction_last) or \
|
||
datetime.datetime.now() - self.time_last_update > datetime.timedelta(seconds=10):
|
||
self.time_last_update = datetime.datetime.now()
|
||
bar = '█' * filled_length + '░' * (self.bar_length - filled_length)
|
||
remaining_time = (datetime.datetime.now() - self.time_start) \
|
||
* (self.total - (iteration+1)) / (iteration+1)
|
||
remaining_time -= datetime.timedelta(microseconds=remaining_time.microseconds) # remove μs
|
||
sys.stderr.write(f'\r{self.prefix} {bar} {fraction:>4.0%} ETA {remaining_time}')
|
||
sys.stderr.flush()
|
||
|
||
self.fraction_last = fraction
|
||
|
||
if iteration == self.total - 1:
|
||
sys.stderr.write('\n')
|
||
sys.stderr.flush()
|