125 lines
4.9 KiB
Python
Executable File
125 lines
4.9 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys
|
|
import numpy as np
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Blows up each value to a surrounding data block of size 'packing' thus increasing the former resolution
|
|
to resolution*packing.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-c','--coordinates',
|
|
dest = 'coords', metavar = 'string',
|
|
help = 'column label of coordinates [%default]')
|
|
parser.add_option('-p','--packing',
|
|
dest = 'packing', type = 'int', nargs = 3, metavar = 'int int int',
|
|
help = 'dimension of packed group [%default]')
|
|
parser.add_option('-g','--grid',
|
|
dest = 'resolution', type = 'int', nargs = 3, metavar = 'int int int',
|
|
help = 'resolution in x,y,z [autodetect]')
|
|
parser.add_option('-s','--size',
|
|
dest = 'dimension', type = 'float', nargs = 3, metavar = 'int int int',
|
|
help = 'dimension in x,y,z [autodetect]')
|
|
parser.set_defaults(coords = 'pos',
|
|
packing = (2,2,2),
|
|
grid = (0,0,0),
|
|
size = (0.0,0.0,0.0),
|
|
)
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
options.packing = np.array(options.packing)
|
|
prefix = 'blowUp{}x{}x{}_'.format(*options.packing)
|
|
|
|
# --- loop over input files -------------------------------------------------------------------------
|
|
|
|
if filenames == []: filenames = [None]
|
|
|
|
for name in filenames:
|
|
try: table = damask.ASCIItable(name = name,
|
|
outname = os.path.join(os.path.dirname(name),
|
|
prefix+os.path.basename(name)) if name else name,
|
|
buffered = False)
|
|
except: continue
|
|
damask.util.report(scriptName,name)
|
|
|
|
# ------------------------------------------ read header ------------------------------------------
|
|
|
|
table.head_read()
|
|
|
|
# ------------------------------------------ sanity checks ----------------------------------------
|
|
|
|
errors = []
|
|
remarks = []
|
|
|
|
if table.label_dimension(options.coords) != 3: errors.append('coordinates {} are not a vector.'.format(options.coords))
|
|
else: colCoord = table.label_index(options.coords)
|
|
|
|
colElem = table.label_index('elem')
|
|
|
|
if remarks != []: damask.util.croak(remarks)
|
|
if errors != []:
|
|
damask.util.croak(errors)
|
|
table.close(dismiss = True)
|
|
continue
|
|
|
|
# --------------- figure out size and grid ---------------------------------------------------------
|
|
|
|
table.data_readArray(options.coords)
|
|
table.data_rewind()
|
|
|
|
coords = [np.unique(table.data[:,i]) for i in xrange(3)]
|
|
mincorner = np.array(map(min,coords))
|
|
maxcorner = np.array(map(max,coords))
|
|
grid = np.array(map(len,coords),'i')
|
|
size = grid/np.maximum(np.ones(3,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
|
|
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 set to smallest among other spacings
|
|
|
|
packing = np.array(options.packing,'i')
|
|
outSize = grid*packing
|
|
|
|
# ------------------------------------------ assemble header --------------------------------------
|
|
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data -------------------------------------------
|
|
|
|
data = np.zeros(outSize.tolist()+[len(table.labels)])
|
|
p = np.zeros(3,'i')
|
|
|
|
for p[2] in xrange(grid[2]):
|
|
for p[1] in xrange(grid[1]):
|
|
for p[0] in xrange(grid[0]):
|
|
d = p*packing
|
|
table.data_read()
|
|
data[d[0]:d[0]+packing[0],
|
|
d[1]:d[1]+packing[1],
|
|
d[2]:d[2]+packing[2],
|
|
: ] = np.tile(np.array(table.data_asFloat(),'d'),packing.tolist()+[1]) # tile to match blowUp voxel size
|
|
elementSize = size/grid/packing
|
|
elem = 1
|
|
for c in xrange(outSize[2]):
|
|
for b in xrange(outSize[1]):
|
|
for a in xrange(outSize[0]):
|
|
data[a,b,c,colCoord:colCoord+3] = [a+0.5,b+0.5,c+0.5]*elementSize
|
|
if colElem != -1: data[a,b,c,colElem] = elem
|
|
table.data = data[a,b,c,:].tolist()
|
|
outputAlive = table.data_write() # output processed line
|
|
elem += 1
|
|
|
|
# ------------------------------------------ output finalization -----------------------------------
|
|
|
|
table.close() # close input ASCII table (works for stdin)
|