DAMASK_EICMD/python/damask/mechanics.py

325 lines
7.4 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

"""Finite-strain continuum mechanics."""
from . import tensor
import numpy as _np
def Cauchy_Green_deformation_left(F):
"""
Calculate left Cauchy-Green deformation tensor (Finger deformation tensor).
Parameters
----------
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
B : numpy.ndarray of shape (...,3,3)
Left Cauchy-Green deformation tensor.
"""
return _np.matmul(F,tensor.transpose(F))
def Cauchy_Green_deformation_right(F):
"""
Calculate right Cauchy-Green deformation tensor.
Parameters
----------
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
C : numpy.ndarray of shape (...,3,3)
Right Cauchy-Green deformation tensor.
"""
return _np.matmul(tensor.transpose(F),F)
def Cauchy(P,F):
"""
Calculate the Cauchy stress (true stress).
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Parameters
----------
P : numpy.ndarray of shape (...,3,3)
First Piola-Kirchhoff stress.
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
sigma : numpy.ndarray of shape (...,3,3)
Cauchy stress.
"""
sigma = _np.einsum('...,...ij,...kj',1.0/_np.linalg.det(F),P,F)
return tensor.symmetric(sigma)
def deviatoric_part(T):
"""
Calculate deviatoric part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the deviatoric part is computed.
Returns
-------
T' : numpy.ndarray of shape (...,3,3)
Deviatoric part of T.
"""
return T - _np.einsum('...ij,...',_np.eye(3),spherical_part(T))
def maximum_shear(T_sym):
"""
Calculate the maximum shear component of a symmetric tensor.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the maximum shear is computed.
Returns
-------
gamma_max : numpy.ndarray of shape (...)
Maximum shear of T_sym.
"""
w = tensor.eigenvalues(T_sym)
return (w[...,0] - w[...,2])*0.5
def Mises_strain(epsilon):
"""
Calculate the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.ndarray of shape (...,3,3)
Symmetric strain tensor of which the von Mises equivalent is computed.
Returns
-------
epsilon_vM : numpy.ndarray of shape (...)
Von Mises equivalent strain of epsilon.
"""
return _Mises(epsilon,2.0/3.0)
def Mises_stress(sigma):
"""
Calculate the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.ndarray of shape (...,3,3)
Symmetric stress tensor of which the von Mises equivalent is computed.
Returns
-------
sigma_vM : numpy.ndarray of shape (...)
Von Mises equivalent stress of sigma.
"""
return _Mises(sigma,3.0/2.0)
def PK2(P,F):
"""
Calculate the second Piola-Kirchhoff stress.
Resulting tensor is symmetrized as the second Piola-Kirchhoff stress
needs to be symmetric.
Parameters
----------
P : numpy.ndarray of shape (...,3,3)
First Piola-Kirchhoff stress.
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
Returns
-------
S : numpy.ndarray of shape (...,3,3)
Second Piola-Kirchhoff stress.
"""
S = _np.einsum('...jk,...kl',_np.linalg.inv(F),P)
return tensor.symmetric(S)
def rotational_part(T):
"""
Calculate the rotational part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the rotational part is computed.
Returns
-------
R : numpy.ndarray of shape (...,3,3)
Rotational part.
"""
return _polar_decomposition(T,'R')[0]
def spherical_part(T,tensor=False):
"""
Calculate spherical (hydrostatic) part of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the hydrostatic part is computed.
tensor : bool, optional
Map spherical part onto identity tensor. Defaults to false
Returns
-------
p : numpy.ndarray of shape (...)
unless tensor == True: shape (...,3,3)
Spherical part of tensor T, e.g. the hydrostatic part/pressure
of a stress tensor.
"""
sph = _np.trace(T,axis2=-2,axis1=-1)/3.0
return _np.einsum('...jk,...',_np.eye(3),sph) if tensor else sph
def strain(F,t,m):
"""
Calculate strain tensor (SethHill family).
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
https://de.wikipedia.org/wiki/Verzerrungstensor
Parameters
----------
F : numpy.ndarray of shape (...,3,3)
Deformation gradient.
t : {V, U}
Type of the polar decomposition, V for left stretch tensor
and U for right stretch tensor.
m : float
Order of the strain.
Returns
-------
epsilon : numpy.ndarray of shape (...,3,3)
Strain of F.
"""
if t == 'V':
w,n = _np.linalg.eigh(Cauchy_Green_deformation_left(F))
elif t == 'U':
w,n = _np.linalg.eigh(Cauchy_Green_deformation_right(F))
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ _np.einsum('...j,...kj,...lj',w**m,n,n) - _np.eye(3))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- _np.einsum('...j,...kj,...lj',w**m,n,n) + _np.eye(3))
else:
eps = _np.einsum('...j,...kj,...lj',0.5*_np.log(w),n,n)
return eps
def stretch_left(T):
"""
Calculate left stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the left stretch is computed.
Returns
-------
V : numpy.ndarray of shape (...,3,3)
Left stretch tensor from Polar decomposition of T.
"""
return _polar_decomposition(T,'V')[0]
def stretch_right(T):
"""
Calculate right stretch of a tensor.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the right stretch is computed.
Returns
-------
U : numpy.ndarray of shape (...,3,3)
Left stretch tensor from Polar decomposition of T.
"""
return _polar_decomposition(T,'U')[0]
def _polar_decomposition(T,requested):
"""
Perform singular value decomposition.
Parameters
----------
T : numpy.ndarray of shape (...,3,3)
Tensor of which the singular values are computed.
requested : iterable of str
Requested outputs: R for the rotation tensor,
V for left stretch tensor and U for right stretch tensor.
"""
u, _, vh = _np.linalg.svd(T)
R = _np.einsum('...ij,...jk',u,vh)
output = []
if 'R' in requested:
output.append(R)
if 'V' in requested:
output.append(_np.einsum('...ij,...kj',T,R))
if 'U' in requested:
output.append(_np.einsum('...ji,...jk',R,T))
return tuple(output)
def _Mises(T_sym,s):
"""
Base equation for Mises equivalent of a stress or strain tensor.
Parameters
----------
T_sym : numpy.ndarray of shape (...,3,3)
Symmetric tensor of which the von Mises equivalent is computed.
s : float
Scaling factor (2/3 for strain, 3/2 for stress).
"""
d = deviatoric_part(T_sym)
return _np.sqrt(s*_np.sum(d**2.0,axis=(-1,-2)))
# for compatibility
strain_tensor = strain