133 lines
6.6 KiB
TeX
133 lines
6.6 KiB
TeX
\documentclass[a4paper,12pt]{article}
|
|
\usepackage{bm}
|
|
\usepackage{mathbbol} %poor substitute for mathbb. Changed to mathbbg to have an option for greek bb
|
|
\usepackage{amssymb}
|
|
\usepackage{amsmath}
|
|
\usepackage{amsfonts}
|
|
\usepackage{graphicx}
|
|
|
|
\newcommand{\term}[1]{\textsc{#1}}
|
|
\newcommand{\eref}[1]{eq.~\eqref{#1}}
|
|
\newcommand{\Eref}[1]{Eq.~\eqref{#1}}
|
|
\newcommand{\fref}[1]{fig.~\ref{#1}}
|
|
\newcommand{\Fref}[1]{Fig.~\ref{#1}}
|
|
\newcommand{\tref}[1]{tab.~\ref{#1}}
|
|
\newcommand{\Tref}[1]{Tab.~\ref{#1}}
|
|
\newcommand{\cref}[1]{chapter~\ref{#1}}
|
|
\newcommand{\Cref}[1]{Chapter~\ref{#1}}
|
|
\newcommand{\sref}[1]{section~\ref{#1}}
|
|
\newcommand{\Sref}[1]{Section~\ref{#1}}
|
|
\newcommand{\lref}[1]{listing~\ref{#1}}
|
|
\newcommand{\Lref}[1]{Listing~\ref{#1}}
|
|
|
|
\newcommand{\ie}{i.e.}
|
|
\newcommand{\eg}{e.g.}
|
|
\newcommand{\cf}{cf.}
|
|
|
|
\newcommand{\field}[1]{\ensuremath{\mathcal{#1}}}
|
|
\newcommand{\tnsr}[1]{\ensuremath{\bm{{#1}}}}
|
|
\newcommand{\tnsrfour}[1]{\ensuremath{\mathbb{#1}}}
|
|
\newcommand{\gammaop}{\ensuremath{\mathbbg{\Gamma}}}
|
|
\newcommand{\abs}[1]{\ensuremath{\left|{#1}\right|}}
|
|
\newcommand{\norm}[1]{\ensuremath{\left|\left|{#1}\right|\right|}}
|
|
\newcommand{\vctr}[1]{\ensuremath{\bm{#1}}}
|
|
\newcommand{\inc}[1]{\ensuremath{{\rm d}{#1}}}
|
|
\newcommand{\sign}[1]{\ensuremath{\operatorname{sign}\left({#1}\right)}}
|
|
\newcommand{\grad}[1][]{\ensuremath{\operatorname{grad}{#1}}}
|
|
\newcommand{\divergence}[1][]{\ensuremath{\operatorname{div}{#1}}}
|
|
\newcommand{\totalder}[2]{\ensuremath{\frac{\inc{#1}}{\inc{#2}}}}
|
|
\newcommand{\partialder}[2]{\ensuremath{\frac{\partial{#1}}{\partial{#2}}}}
|
|
|
|
\newcommand{\identity}{\ensuremath{\tnsr I}}
|
|
\newcommand{\F}[1][]{\ensuremath{\tnsr F^{{\rm #1}}}}
|
|
\newcommand{\Favg}{{\ensuremath{\overline{\F}^{(n)}}}}
|
|
\newcommand{\Fp}[1][]{\ensuremath{\tnsr F_\text{p}^{#1}}}
|
|
\newcommand{\Fe}[1][]{\ensuremath{\tnsr F_\text{e}^{#1}}}
|
|
\newcommand{\Lp}{\ensuremath{\tnsr L_\text{p}}}
|
|
%\newcommand{\Q}[1]{\ensuremath{\tnsr Q^{(#1)}}}
|
|
%\newcommand{\x}[2][]{\ensuremath{\vctr x^{(#2)}_\text{#1}}}
|
|
%\newcommand{\y}[2][]{\ensuremath{\vctr x^{(#2)}_\text{#1}}}
|
|
\newcommand{\dg}[2][]{\ensuremath{\Delta\vctr g^{(#2)}_\text{#1}}}
|
|
\newcommand{\g}[1][]{\ensuremath{\vctr g_\text{#1}}}
|
|
%\newcommand{\A}[2][]{\ensuremath{A^{(#2)}_\text{#1}}}
|
|
\newcommand{\N}[2]{\ensuremath{\varrho^{(#1)}_\text{#2}}}
|
|
\newcommand{\Burgers}[1]{\ensuremath{\vctr s^{(#1)}}}
|
|
\newcommand{\n}[1]{\ensuremath{\vctr n^{(#1)}}}
|
|
\newcommand{\m}[2]{\ensuremath{\vctr m^{(#1)}_{#2}}}
|
|
\newcommand{\ld}[1]{\ensuremath{\vctr p^{(#1)}}}
|
|
\newcommand{\velocity}[2]{\ensuremath{v^{(#1)}_\text{#2}}}
|
|
\newcommand{\avgvelocity}[2]{\ensuremath{{\overline v}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\flux}[2]{\ensuremath{\vctr f^{(#1)}_ \text{#2}}}
|
|
\newcommand{\averageflux}[2]{\ensuremath{\overline{\vctr f}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\interfaceflux}[2]{\ensuremath{\tilde{\vctr f}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\transmissivity}[1]{\ensuremath{\chi^{(#1)}}}
|
|
\newcommand{\galpha}{\ensuremath{\gamma^{(\alpha)}}}
|
|
\newcommand{\dotgalpha}{\ensuremath{\dot{\gamma}^{(\alpha)}}}
|
|
\newcommand{\taualpha}{\ensuremath{\tau^{(\alpha)}}}
|
|
\newcommand{\taualphamax}{\ensuremath{\hat\tau^{(\alpha)}}}
|
|
\newcommand{\density}[2]{\ensuremath{\varrho^{(#1)}_ \text{#2}}}
|
|
\newcommand{\densityfunc}[2]{\ensuremath{{\tilde\varrho}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\avgdensity}[2]{\ensuremath{{\overline\varrho}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\dotdensity}[2]{\ensuremath{\dot{\varrho}^{(#1)}_ \text{#2}}}
|
|
\newcommand{\densityexcess}[2]{\ensuremath{\Delta\varrho^{(#1)}_ \text{#2}}}
|
|
\newcommand{\cs}[2][]{\ensuremath{\sigma^{(#1)}_ \text{#2}}}
|
|
\title{Geometry reconstruction using Fast Fourier transform}
|
|
\date{\today}
|
|
|
|
\author{Martin Diehl}
|
|
\begin{document}
|
|
\maketitle
|
|
|
|
The presented method allows the shape reconstruction of a volume element with periodic boundary conditions.
|
|
The deformation gradient on each point of a regular, three-dimensional lattice in undeformed configuration must be known.
|
|
|
|
The deformation gradient maps each point (or a line in the infinitesimal neighborhood of the point) into the current configuration.
|
|
It is defined as:
|
|
\begin{equation}
|
|
\F(\vctr x) = \left(
|
|
\begin{array}{ccc}
|
|
\frac{\partial y_1}{\partial x_1} & \frac{\partial y_1}{\partial x_2} & \frac{\partial y_1}{\partial x_3} \\
|
|
\frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial x_2} & \frac{\partial y_2}{\partial x_3} \\
|
|
\frac{\partial y_3}{\partial x_1} & \frac{\partial y_3}{\partial x_2} & \frac{\partial y_3}{\partial x_3} \\
|
|
\end{array}
|
|
\right)
|
|
\end{equation}
|
|
with \vctr y\ are the coordinates in current configuration and \vctr x\ are the coordinates in reference configuration.
|
|
|
|
The three-dimensional field of second order tensors is transformed to the Fourier space, giving three-dimensional field of second order tensors that depend on the three dimensional wave vector instead on the vector of spatial coordinates:
|
|
\begin{equation}
|
|
\mathcal F \left( \F(\vctr x) \right)= \hat{\F}(\vctr k)
|
|
\end{equation}
|
|
|
|
Integration in Fourier space works is defined for the one dimensional case as:
|
|
\begin{equation}
|
|
\mathcal{F} \left( \int_{-\infty}^{x} g (\tau) d \tau \right) = \frac{\mathcal{F}{g(x)}}{i2 \pi k} + c \delta(k)
|
|
\end{equation}
|
|
where the last term is the integration constant.
|
|
Constant (or linear after integration) terms cannot properly handled when using the integration property of the Fourier domain, as a division by the ``constant wave'' ($k=0$) is not possible.
|
|
Thus, to carry out the integration the function is separated into an average and a locally fluctuating part.
|
|
The locally fluctuating part is integrated in Fourier space, while the integration of the constant part is easier in the real domain.
|
|
|
|
The fluctuation field of the position vector in deformed configuration in Fourier space reads as:
|
|
\begin{equation}
|
|
\hat{\tilde{y}}_{\rm j}(\vctr k) = \hat{F_{\rm ji}}(\vctr k) \left(k_{\rm i}(\vctr k) i 2 \pi \right)^{-1} \forall k_i \neq 0
|
|
\end{equation}
|
|
The average part ($k_i=0$) is set to zero in Fourier space:
|
|
|
|
\begin{equation}
|
|
\hat{\tilde{y}}_{\rm j}(\vctr k) = \hat{F_{\rm ji}}(\vctr k) \left(k_{\rm i}(\vctr k) 0 \right) \forall k_i = 0
|
|
\end{equation}
|
|
|
|
The inverse Fourier transform gives the locally fluctuating part of each position in current configuration:
|
|
\begin{equation}
|
|
\mathcal{F}^{-1}\left(\hat{\tilde{\vctr y}}(\vctr k) \right) = \tilde{\vctr y}(\vctr x)
|
|
\end{equation}
|
|
As the average part is set to zero, the same integration scheme works if $\tilde{\tnsr F}$ is used instead of ${\tnsr F}$.
|
|
|
|
The position vector in undeformed configuration is given as:
|
|
\begin{equation}
|
|
\vctr y(\vctr x) = \overline{\F}: \vctr x + \tilde{\vctr y}(\vctr x)
|
|
\end{equation}
|
|
|
|
\end{document}
|