DAMASK_EICMD/src/spectral_utilities.f90

1387 lines
70 KiB
Fortran
Executable File
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Utilities used by the different spectral solver variants
!--------------------------------------------------------------------------------------------------
module spectral_utilities
use, intrinsic :: iso_c_binding
use prec, only: &
pReal, &
pInt
use math, only: &
math_I3
implicit none
private
#include <petsc/finclude/petscsys.h>
include 'fftw3-mpi.f03'
logical, public :: cutBack =.false. !< cut back of BVP solver in case convergence is not achieved or a material point is terminally ill
integer(pInt), public, parameter :: maxPhaseFields = 2_pInt
integer(pInt), public :: nActiveFields = 0_pInt
!--------------------------------------------------------------------------------------------------
! field labels information
enum, bind(c)
enumerator :: FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID, &
FIELD_VACANCYDIFFUSION_ID
end enum
!--------------------------------------------------------------------------------------------------
! grid related information information
real(pReal), public :: wgt !< weighting factor 1/Nelems
!--------------------------------------------------------------------------------------------------
! variables storing information for spectral method and FFTW
integer(pInt), public :: grid1Red !< grid(1)/2
real (C_DOUBLE), public, dimension(:,:,:,:,:), pointer :: tensorField_real !< real representation (some stress or deformation) of field_fourier
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:,:), pointer :: tensorField_fourier !< field on which the Fourier transform operates
real(C_DOUBLE), public, dimension(:,:,:,:), pointer :: vectorField_real !< vector field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:,:), pointer :: vectorField_fourier !< vector field fourier representation for fftw
real(C_DOUBLE), public, dimension(:,:,:), pointer :: scalarField_real !< scalar field real representation for fftw
complex(C_DOUBLE_COMPLEX),public, dimension(:,:,:), pointer :: scalarField_fourier !< scalar field fourier representation for fftw
complex(pReal), private, dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat !< gamma operator (field) for spectral method
complex(pReal), private, dimension(:,:,:,:), allocatable :: xi1st !< wave vector field for first derivatives
complex(pReal), private, dimension(:,:,:,:), allocatable :: xi2nd !< wave vector field for second derivatives
real(pReal), private, dimension(3,3,3,3) :: C_ref !< mechanic reference stiffness
real(pReal), protected, public, dimension(3) :: scaledGeomSize !< scaled geometry size for calculation of divergence (Basic, Basic PETSc)
!--------------------------------------------------------------------------------------------------
! plans for FFTW
type(C_PTR), private :: &
planTensorForth, & !< FFTW MPI plan P(x) to P(k)
planTensorBack, & !< FFTW MPI plan F(k) to F(x)
planVectorForth, & !< FFTW MPI plan v(x) to v(k)
planVectorBack, & !< FFTW MPI plan v(k) to v(x)
planScalarForth, & !< FFTW MPI plan s(x) to s(k)
planScalarBack !< FFTW MPI plan s(k) to s(x)
!--------------------------------------------------------------------------------------------------
! variables controlling debugging
logical, private :: &
debugGeneral, & !< general debugging of spectral solver
debugRotation, & !< also printing out results in lab frame
debugPETSc !< use some in debug defined options for more verbose PETSc solution
!--------------------------------------------------------------------------------------------------
! derived types
type, public :: tSolutionState !< return type of solution from spectral solver variants
logical :: converged = .true.
logical :: regrid = .false.
logical :: stagConverged = .true.
logical :: termIll = .false.
integer(pInt) :: iterationsNeeded = 0_pInt
end type tSolutionState
type, public :: tBoundaryCondition !< set of parameters defining a boundary condition
real(pReal), dimension(3,3) :: values = 0.0_pReal
real(pReal), dimension(3,3) :: maskFloat = 0.0_pReal
logical, dimension(3,3) :: maskLogical = .false.
character(len=64) :: myType = 'None'
end type tBoundaryCondition
type, public :: tLoadCase
real(pReal), dimension (3,3) :: rotation = math_I3 !< rotation of BC
type(tBoundaryCondition) :: stress, & !< stress BC
deformation !< deformation BC (Fdot or L)
real(pReal) :: time = 0.0_pReal !< length of increment
integer(pInt) :: incs = 0_pInt, & !< number of increments
outputfrequency = 1_pInt, & !< frequency of result writes
restartfrequency = 0_pInt, & !< frequency of restart writes
logscale = 0_pInt !< linear/logarithmic time inc flag
logical :: followFormerTrajectory = .true. !< follow trajectory of former loadcase
integer(kind(FIELD_UNDEFINED_ID)), allocatable :: ID(:)
end type tLoadCase
type, public :: tSolutionParams !< @todo use here the type definition for a full loadcase including mask
real(pReal), dimension(3,3) :: stress_BC, rotation_BC
real(pReal) :: timeinc
real(pReal) :: timeincOld
real(pReal) :: density
end type tSolutionParams
type, public :: phaseFieldDataBin !< set of parameters defining a phase field
real(pReal) :: diffusion = 0.0_pReal, & !< thermal conductivity
mobility = 0.0_pReal, & !< thermal mobility
phaseField0 = 0.0_pReal !< homogeneous damage field starting condition
logical :: active = .false.
character(len=64) :: label = ''
end type phaseFieldDataBin
enum, bind(c)
enumerator :: DERIVATIVE_CONTINUOUS_ID, &
DERIVATIVE_CENTRAL_DIFF_ID, &
DERIVATIVE_FWBW_DIFF_ID
end enum
integer(kind(DERIVATIVE_CONTINUOUS_ID)) :: &
spectral_derivative_ID
public :: &
utilities_init, &
utilities_updateGamma, &
utilities_FFTtensorForward, &
utilities_FFTtensorBackward, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGammaConvolution, &
utilities_fourierGreenConvolution, &
utilities_divergenceRMS, &
utilities_curlRMS, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence, &
utilities_fourierVectorGradient, &
utilities_fourierTensorDivergence, &
utilities_maskedCompliance, &
utilities_constitutiveResponse, &
utilities_calculateRate, &
utilities_forwardField, &
utilities_destroy, &
utilities_updateIPcoords, &
FIELD_UNDEFINED_ID, &
FIELD_MECH_ID, &
FIELD_THERMAL_ID, &
FIELD_DAMAGE_ID, &
utilities_calcPlasticity
private :: &
utilities_getFreqDerivative
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, sets debug flags, create plans for FFTW
!> @details Sets the debug levels for general, divergence, restart and FFTW from the biwise coding
!> provided by the debug module to logicals.
!> Allocates all fields used by FFTW and create the corresponding plans depending on the debug
!> level chosen.
!> Initializes FFTW.
!--------------------------------------------------------------------------------------------------
subroutine utilities_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use IO, only: &
IO_error, &
IO_warning, &
IO_timeStamp, &
IO_open_file
use numerics, only: &
spectral_derivative, &
fftw_planner_flag, &
fftw_timelimit, &
memory_efficient, &
petsc_defaultOptions, &
petsc_options, &
divergence_correction
use debug, only: &
debug_level, &
debug_SPECTRAL, &
debug_LEVELBASIC, &
debug_SPECTRALDIVERGENCE, &
debug_SPECTRALFFTW, &
debug_SPECTRALPETSC, &
debug_SPECTRALROTATION
use debug, only: &
PETSCDEBUG
use math
use mesh, only: &
grid, &
grid3, &
grid3Offset, &
geomSize
implicit none
external :: &
PETScOptionsClear, &
PETScOptionsInsertString, &
MPI_Abort
PetscErrorCode :: ierr
integer(pInt) :: i, j, k
integer(pInt), dimension(3) :: k_s
type(C_PTR) :: &
tensorField, & !< field containing data for FFTW in real and fourier space (in place)
vectorField, & !< field containing data for FFTW in real space when debugging FFTW (no in place)
scalarField !< field containing data for FFTW in real space when debugging FFTW (no in place)
integer(C_INTPTR_T), dimension(3) :: gridFFTW
integer(C_INTPTR_T) :: alloc_local, local_K, local_K_offset
integer(C_INTPTR_T), parameter :: &
scalarSize = 1_C_INTPTR_T, &
vecSize = 3_C_INTPTR_T, &
tensorSize = 9_C_INTPTR_T
write(6,'(/,a)') ' <<<+- spectral_utilities init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! set debugging parameters
debugGeneral = iand(debug_level(debug_SPECTRAL),debug_LEVELBASIC) /= 0
debugRotation = iand(debug_level(debug_SPECTRAL),debug_SPECTRALROTATION) /= 0
debugPETSc = iand(debug_level(debug_SPECTRAL),debug_SPECTRALPETSC) /= 0
if(debugPETSc) write(6,'(3(/,a),/)') &
' Initializing PETSc with debug options: ', &
trim(PETScDebug), &
' add more using the PETSc_Options keyword in numerics.config '; flush(6)
call PetscOptionsClear(PETSC_NULL_OBJECT,ierr)
CHKERRQ(ierr)
if(debugPETSc) call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(PETSCDEBUG),ierr)
CHKERRQ(ierr)
call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_defaultOptions),ierr)
CHKERRQ(ierr)
call PetscOptionsInsertString(PETSC_NULL_OBJECT,trim(petsc_options),ierr)
CHKERRQ(ierr)
grid1Red = grid(1)/2_pInt + 1_pInt
wgt = 1.0/real(product(grid),pReal)
write(6,'(a,3(i12 ))') ' grid a b c: ', grid
write(6,'(a,3(es12.5))') ' size x y z: ', geomSize
select case (spectral_derivative)
case ('continuous')
spectral_derivative_ID = DERIVATIVE_CONTINUOUS_ID
case ('central_difference')
spectral_derivative_ID = DERIVATIVE_CENTRAL_DIFF_ID
case ('fwbw_difference')
spectral_derivative_ID = DERIVATIVE_FWBW_DIFF_ID
case default
call IO_error(892_pInt,ext_msg=trim(spectral_derivative))
end select
!--------------------------------------------------------------------------------------------------
! scale dimension to calculate either uncorrected, dimension-independent, or dimension- and
! resolution-independent divergence
if (divergence_correction == 1_pInt) then
do j = 1_pInt, 3_pInt
if (j /= minloc(geomSize,1) .and. j /= maxloc(geomSize,1)) &
scaledGeomSize = geomSize/geomSize(j)
enddo
elseif (divergence_correction == 2_pInt) then
do j = 1_pInt, 3_pInt
if ( j /= int(minloc(geomSize/real(grid,pReal),1),pInt) &
.and. j /= int(maxloc(geomSize/real(grid,pReal),1),pInt)) &
scaledGeomSize = geomSize/geomSize(j)*real(grid(j),pReal)
enddo
else
scaledGeomSize = geomSize
endif
!--------------------------------------------------------------------------------------------------
! MPI allocation
gridFFTW = int(grid,C_INTPTR_T)
alloc_local = fftw_mpi_local_size_3d(gridFFTW(3), gridFFTW(2), gridFFTW(1)/2 +1, &
PETSC_COMM_WORLD, local_K, local_K_offset)
allocate (xi1st (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for first derivatives, only half the size for first dimension
allocate (xi2nd (3,grid1Red,grid(2),grid3),source = cmplx(0.0_pReal,0.0_pReal,pReal)) ! frequencies for second derivatives, only half the size for first dimension
tensorField = fftw_alloc_complex(tensorSize*alloc_local)
call c_f_pointer(tensorField, tensorField_real, [3_C_INTPTR_T,3_C_INTPTR_T, &
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real tensor representation
call c_f_pointer(tensorField, tensorField_fourier, [3_C_INTPTR_T,3_C_INTPTR_T, &
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T , gridFFTW(2),local_K]) ! place a pointer for a fourier tensor representation
vectorField = fftw_alloc_complex(vecSize*alloc_local)
call c_f_pointer(vectorField, vectorField_real, [3_C_INTPTR_T,&
2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T),gridFFTW(2),local_K]) ! place a pointer for a real vector representation
call c_f_pointer(vectorField, vectorField_fourier,[3_C_INTPTR_T,&
gridFFTW(1)/2_C_INTPTR_T + 1_C_INTPTR_T, gridFFTW(2),local_K]) ! place a pointer for a fourier vector representation
scalarField = fftw_alloc_complex(scalarSize*alloc_local) ! allocate data for real representation (no in place transform)
call c_f_pointer(scalarField, scalarField_real, &
[2_C_INTPTR_T*(gridFFTW(1)/2_C_INTPTR_T + 1),gridFFTW(2),local_K]) ! place a pointer for a real scalar representation
call c_f_pointer(scalarField, scalarField_fourier, &
[ gridFFTW(1)/2_C_INTPTR_T + 1 ,gridFFTW(2),local_K]) ! place a pointer for a fourier scarlar representation
!--------------------------------------------------------------------------------------------------
! tensor MPI fftw plans
planTensorForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
tensorField_real, tensorField_fourier, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
if (.not. C_ASSOCIATED(planTensorForth)) call IO_error(810, ext_msg='planTensorForth')
planTensorBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
tensorSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
tensorField_fourier,tensorField_real, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision
if (.not. C_ASSOCIATED(planTensorBack)) call IO_error(810, ext_msg='planTensorBack')
!--------------------------------------------------------------------------------------------------
! vector MPI fftw plans
planVectorForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, &! no. of transforms, default iblock and oblock
vectorField_real, vectorField_fourier, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
if (.not. C_ASSOCIATED(planVectorForth)) call IO_error(810, ext_msg='planVectorForth')
planVectorBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
vecSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
vectorField_fourier,vectorField_real, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! all processors, planer precision
if (.not. C_ASSOCIATED(planVectorBack)) call IO_error(810, ext_msg='planVectorBack')
!--------------------------------------------------------------------------------------------------
! scalar MPI fftw plans
planScalarForth = fftw_mpi_plan_many_dft_r2c(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order
scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
scalarField_real, scalarField_fourier, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
if (.not. C_ASSOCIATED(planScalarForth)) call IO_error(810, ext_msg='planScalarForth')
planScalarBack = fftw_mpi_plan_many_dft_c2r(3, [gridFFTW(3),gridFFTW(2),gridFFTW(1)], & ! dimension, logical length in each dimension in reversed order, no. of transforms
scalarSize, FFTW_MPI_DEFAULT_BLOCK, FFTW_MPI_DEFAULT_BLOCK, & ! no. of transforms, default iblock and oblock
scalarField_fourier,scalarField_real, & ! input data, output data
PETSC_COMM_WORLD, fftw_planner_flag) ! use all processors, planer precision
if (.not. C_ASSOCIATED(planScalarBack)) call IO_error(810, ext_msg='planScalarBack')
!--------------------------------------------------------------------------------------------------
! general initialization of FFTW (see manual on fftw.org for more details)
if (pReal /= C_DOUBLE .or. pInt /= C_INT) call IO_error(0_pInt,ext_msg='Fortran to C') ! check for correct precision in C
call fftw_set_timelimit(fftw_timelimit) ! set timelimit for plan creation
if (debugGeneral) write(6,'(/,a)') ' FFTW initialized'; flush(6)
!--------------------------------------------------------------------------------------------------
! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
do k = grid3Offset+1_pInt, grid3Offset+grid3
k_s(3) = k - 1_pInt
if(k > grid(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - grid(3) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
do j = 1_pInt, grid(2)
k_s(2) = j - 1_pInt
if(j > grid(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - grid(2) ! running from 0,1,...,N/2,N/2+1,-N/2,-N/2+1,...,-1
do i = 1_pInt, grid1Red
k_s(1) = i - 1_pInt ! symmetry, junst running from 0,1,...,N/2,N/2+1
xi2nd(1:3,i,j,k-grid3Offset) = utilities_getFreqDerivative(k_s) ! if divergence_correction is set, frequencies are calculated on unit length
where(mod(grid,2)==0 .and. [i,j,k] == grid/2+1 .and. &
spectral_derivative_ID == DERIVATIVE_CONTINUOUS_ID) ! for even grids, set the Nyquist Freq component to 0.0
xi1st(1:3,i,j,k-grid3Offset) = cmplx(0.0_pReal,0.0_pReal,pReal)
elsewhere
xi1st(1:3,i,j,k-grid3Offset) = xi2nd(1:3,i,j,k-grid3Offset)
endwhere
enddo; enddo; enddo
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(3,3,3,3,1,1,1), source = cmplx(0.0_pReal,0.0_pReal,pReal))
else ! precalculation of gamma_hat field
allocate (gamma_hat(3,3,3,3,grid1Red,grid(2),grid3), source = cmplx(0.0_pReal,0.0_pReal,pReal))
endif
end subroutine utilities_init
!--------------------------------------------------------------------------------------------------
!> @brief updates references stiffness and potentially precalculated gamma operator
!> @details Sets the current reference stiffness to the stiffness given as an argument.
!> If the gamma operator is precalculated, it is calculated with this stiffness.
!> In case of a on-the-fly calculation, only the reference stiffness is updated.
!> Also writes out the current reference stiffness for restart.
!--------------------------------------------------------------------------------------------------
subroutine utilities_updateGamma(C,saveReference)
use IO, only: &
IO_write_jobRealFile
use numerics, only: &
memory_efficient, &
worldrank
use mesh, only: &
grid3Offset, &
grid3,&
grid
use math, only: &
math_det33, &
math_invert
implicit none
real(pReal), intent(in), dimension(3,3,3,3) :: C !< input stiffness to store as reference stiffness
logical , intent(in) :: saveReference !< save reference stiffness to file for restart
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
real(pReal), dimension(6,6) :: matA, matInvA
integer(pInt) :: &
i, j, k, &
l, m, n, o
logical :: err
C_ref = C
if (saveReference) then
if (worldrank == 0_pInt) then
write(6,'(/,a)') ' writing reference stiffness to file'
flush(6)
call IO_write_jobRealFile(777,'C_ref',size(C_ref))
write (777,rec=1) C_ref
close(777)
endif
endif
if(.not. memory_efficient) then
gamma_hat = cmplx(0.0_pReal,0.0_pReal,pReal) ! for the singular point and any non invertible A
do k = grid3Offset+1_pInt, grid3Offset+grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
if (any([i,j,k] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex)
matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex)
if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then
call math_invert(6_pInt, matA, matInvA, err)
temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) &
gamma_hat(l,m,n,o,i,j,k-grid3Offset) = temp33_complex(l,n)* &
conjg(-xi1st(o,i,j,k-grid3Offset))*xi1st(m,i,j,k-grid3Offset)
endif
endif
enddo; enddo; enddo
endif
end subroutine utilities_updateGamma
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier
!> @details Does an unweighted filtered FFT transform from real to complex
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTtensorForward()
implicit none
!--------------------------------------------------------------------------------------------------
! doing the tensor FFT
call fftw_mpi_execute_dft_r2c(planTensorForth,tensorField_real,tensorField_fourier)
end subroutine utilities_FFTtensorForward
!--------------------------------------------------------------------------------------------------
!> @brief backward FFT of data in field_fourier to field_real
!> @details Does an weighted inverse FFT transform from complex to real
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTtensorBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planTensorBack,tensorField_fourier,tensorField_real)
tensorField_real = tensorField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTtensorBackward
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in scalarField_real to scalarField_fourier
!> @details Does an unweighted filtered FFT transform from real to complex
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarForward()
implicit none
!--------------------------------------------------------------------------------------------------
! doing the scalar FFT
call fftw_mpi_execute_dft_r2c(planScalarForth,scalarField_real,scalarField_fourier)
end subroutine utilities_FFTscalarForward
!--------------------------------------------------------------------------------------------------
!> @brief backward FFT of data in scalarField_fourier to scalarField_real
!> @details Does an weighted inverse FFT transform from complex to real
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTscalarBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planScalarBack,scalarField_fourier,scalarField_real)
scalarField_real = scalarField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTscalarBackward
!--------------------------------------------------------------------------------------------------
!> @brief forward FFT of data in field_real to field_fourier with highest freqs. removed
!> @details Does an unweighted filtered FFT transform from real to complex.
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorForward()
implicit none
!--------------------------------------------------------------------------------------------------
! doing the vector FFT
call fftw_mpi_execute_dft_r2c(planVectorForth,vectorField_real,vectorField_fourier)
end subroutine utilities_FFTvectorForward
!--------------------------------------------------------------------------------------------------
!> @brief backward FFT of data in field_fourier to field_real
!> @details Does an weighted inverse FFT transform from complex to real
!--------------------------------------------------------------------------------------------------
subroutine utilities_FFTvectorBackward()
implicit none
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
vectorField_real = vectorField_real * wgt ! normalize the result by number of elements
end subroutine utilities_FFTvectorBackward
!--------------------------------------------------------------------------------------------------
!> @brief doing convolution gamma_hat * field_real, ensuring that average value = fieldAim
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierGammaConvolution(fieldAim)
use numerics, only: &
memory_efficient
use math, only: &
math_det33, &
math_invert
use mesh, only: &
grid3, &
grid, &
grid3Offset
implicit none
real(pReal), intent(in), dimension(3,3) :: fieldAim !< desired average value of the field after convolution
complex(pReal), dimension(3,3) :: temp33_complex, xiDyad_cmplx
real(pReal) :: matA(6,6), matInvA(6,6)
integer(pInt) :: &
i, j, k, &
l, m, n, o
logical :: err
write(6,'(/,a)') ' ... doing gamma convolution ...............................................'
flush(6)
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation (mechanical equilibrium)
memoryEfficient: if(memory_efficient) then
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
if (any([i,j,k+grid3Offset] /= 1_pInt)) then ! singular point at xi=(0.0,0.0,0.0) i.e. i=j=k=1
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
xiDyad_cmplx(l,m) = conjg(-xi1st(l,i,j,k))*xi1st(m,i,j,k)
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_complex(l,m) = sum(cmplx(C_ref(l,1:3,m,1:3),0.0_pReal)*xiDyad_cmplx)
matA(1:3,1:3) = real(temp33_complex); matA(4:6,4:6) = real(temp33_complex)
matA(1:3,4:6) = aimag(temp33_complex); matA(4:6,1:3) = -aimag(temp33_complex)
if (abs(math_det33(matA(1:3,1:3))) > 1e-16) then
call math_invert(6_pInt, matA, matInvA, err)
temp33_complex = cmplx(matInvA(1:3,1:3),matInvA(1:3,4:6),pReal)
forall(l=1_pInt:3_pInt, m=1_pInt:3_pInt, n=1_pInt:3_pInt, o=1_pInt:3_pInt) &
gamma_hat(l,m,n,o,1,1,1) = temp33_complex(l,n)*conjg(-xi1st(o,i,j,k))*xi1st(m,i,j,k)
else
gamma_hat(1:3,1:3,1:3,1:3,1,1,1) = cmplx(0.0_pReal,0.0_pReal,pReal)
endif
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,1,1,1)*tensorField_fourier(1:3,1:3,i,j,k))
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
endif
enddo; enddo; enddo
else memoryEfficient
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
forall(l = 1_pInt:3_pInt, m = 1_pInt:3_pInt) &
temp33_Complex(l,m) = sum(gamma_hat(l,m,1:3,1:3,i,j,k) * tensorField_fourier(1:3,1:3,i,j,k))
tensorField_fourier(1:3,1:3,i,j,k) = temp33_Complex
enddo; enddo; enddo
endif memoryEfficient
if (grid3Offset == 0_pInt) &
tensorField_fourier(1:3,1:3,1,1,1) = cmplx(fieldAim/wgt,0.0_pReal,pReal)
end subroutine utilities_fourierGammaConvolution
!--------------------------------------------------------------------------------------------------
!> @brief doing convolution DamageGreenOp_hat * field_real
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierGreenConvolution(D_ref, mobility_ref, deltaT)
use math, only: &
math_mul33x3, &
PI
use mesh, only: &
grid, &
grid3
implicit none
real(pReal), dimension(3,3), intent(in) :: D_ref !< desired average value of the field after convolution
real(pReal), intent(in) :: mobility_ref, deltaT !< desired average value of the field after convolution
complex(pReal) :: GreenOp_hat
integer(pInt) :: i, j, k
!--------------------------------------------------------------------------------------------------
! do the actual spectral method calculation
do k = 1_pInt, grid3; do j = 1_pInt, grid(2) ;do i = 1_pInt, grid1Red
GreenOp_hat = cmplx(1.0_pReal,0.0_pReal,pReal)/ &
(cmplx(mobility_ref,0.0_pReal,pReal) + cmplx(deltaT,0.0_pReal)*&
sum(conjg(xi1st(1:3,i,j,k))* matmul(cmplx(D_ref,0.0_pReal),xi1st(1:3,i,j,k)))) ! why not use dot_product
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k)*GreenOp_hat
enddo; enddo; enddo
end subroutine utilities_fourierGreenConvolution
!--------------------------------------------------------------------------------------------------
!> @brief calculate root mean square of divergence of field_fourier
!--------------------------------------------------------------------------------------------------
real(pReal) function utilities_divergenceRMS()
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
implicit none
integer(pInt) :: i, j, k, ierr
complex(pReal), dimension(3) :: rescaledGeom
external :: &
MPI_Allreduce
write(6,'(/,a)') ' ... calculating divergence ................................................'
flush(6)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!--------------------------------------------------------------------------------------------------
! calculating RMS divergence criterion in Fourier space
utilities_divergenceRMS = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2)
do i = 2_pInt, grid1Red -1_pInt ! Has somewhere a conj. complex counterpart. Therefore count it twice.
utilities_divergenceRMS = utilities_divergenceRMS &
+ 2.0_pReal*(sum (real(matmul(tensorField_fourier(1:3,1:3,i,j,k),& ! (sqrt(real(a)**2 + aimag(a)**2))**2 = real(a)**2 + aimag(a)**2. do not take square root and square again
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal)& ! --> sum squared L_2 norm of vector
+sum(aimag(matmul(tensorField_fourier(1:3,1:3,i,j,k),&
conjg(-xi1st(1:3,i,j,k))*rescaledGeom))**2.0_pReal))
enddo
utilities_divergenceRMS = utilities_divergenceRMS & ! these two layers (DC and Nyquist) do not have a conjugate complex counterpart (if grid(1) /= 1)
+ sum( real(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,1 ,j,k), &
conjg(-xi1st(1:3,1,j,k))*rescaledGeom))**2.0_pReal) &
+ sum( real(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal) &
+ sum(aimag(matmul(tensorField_fourier(1:3,1:3,grid1Red,j,k), &
conjg(-xi1st(1:3,grid1Red,j,k))*rescaledGeom))**2.0_pReal)
enddo; enddo
if(grid(1) == 1_pInt) utilities_divergenceRMS = utilities_divergenceRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
call MPI_Allreduce(MPI_IN_PLACE,utilities_divergenceRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_divergenceRMS')
utilities_divergenceRMS = sqrt(utilities_divergenceRMS) * wgt ! RMS in real space calculated with Parsevals theorem from Fourier space
end function utilities_divergenceRMS
!--------------------------------------------------------------------------------------------------
!> @brief calculate max of curl of field_fourier
!--------------------------------------------------------------------------------------------------
real(pReal) function utilities_curlRMS()
use IO, only: &
IO_error
use mesh, only: &
geomSize, &
grid, &
grid3
implicit none
integer(pInt) :: i, j, k, l, ierr
complex(pReal), dimension(3,3) :: curl_fourier
complex(pReal), dimension(3) :: rescaledGeom
external :: &
MPI_Allreduce
write(6,'(/,a)') ' ... calculating curl ......................................................'
flush(6)
rescaledGeom = cmplx(geomSize/scaledGeomSize,0.0_pReal)
!--------------------------------------------------------------------------------------------------
! calculating max curl criterion in Fourier space
utilities_curlRMS = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2);
do i = 2_pInt, grid1Red - 1_pInt
do l = 1_pInt, 3_pInt
curl_fourier(l,1) = (+tensorField_fourier(l,3,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3))
curl_fourier(l,2) = (+tensorField_fourier(l,1,i,j,k)*xi1st(3,i,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1))
curl_fourier(l,3) = (+tensorField_fourier(l,2,i,j,k)*xi1st(1,i,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,i,j,k)*xi1st(2,i,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+2.0_pReal*sum(real(curl_fourier)**2.0_pReal+aimag(curl_fourier)**2.0_pReal) ! Has somewhere a conj. complex counterpart. Therefore count it twice.
enddo
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,1,j,k)*xi1st(3,1,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,1,j,k)*xi1st(1,1,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,1,j,k)*xi1st(2,1,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (DC) does not have a conjugate complex counterpart (if grid(1) /= 1)
do l = 1_pInt, 3_pInt
curl_fourier = (+tensorField_fourier(l,3,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2) &
-tensorField_fourier(l,2,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3))
curl_fourier = (+tensorField_fourier(l,1,grid1Red,j,k)*xi1st(3,grid1Red,j,k)*rescaledGeom(3) &
-tensorField_fourier(l,3,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1))
curl_fourier = (+tensorField_fourier(l,2,grid1Red,j,k)*xi1st(1,grid1Red,j,k)*rescaledGeom(1) &
-tensorField_fourier(l,1,grid1Red,j,k)*xi1st(2,grid1Red,j,k)*rescaledGeom(2))
enddo
utilities_curlRMS = utilities_curlRMS &
+ sum(real(curl_fourier)**2.0_pReal + aimag(curl_fourier)**2.0_pReal) ! this layer (Nyquist) does not have a conjugate complex counterpart (if grid(1) /= 1)
enddo; enddo
call MPI_Allreduce(MPI_IN_PLACE,utilities_curlRMS,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='utilities_curlRMS')
utilities_curlRMS = sqrt(utilities_curlRMS) * wgt
if(grid(1) == 1_pInt) utilities_curlRMS = utilities_curlRMS * 0.5_pReal ! counted twice in case of grid(1) == 1
end function utilities_curlRMS
!--------------------------------------------------------------------------------------------------
!> @brief calculates mask compliance tensor used to adjust F to fullfill stress BC
!--------------------------------------------------------------------------------------------------
function utilities_maskedCompliance(rot_BC,mask_stress,C)
use, intrinsic :: &
IEEE_arithmetic
use IO, only: &
IO_error
use math, only: &
math_Plain3333to99, &
math_plain99to3333, &
math_rotate_forward3333, &
math_rotate_forward33, &
math_invert
implicit none
real(pReal), dimension(3,3,3,3) :: utilities_maskedCompliance !< masked compliance
real(pReal), intent(in) , dimension(3,3,3,3) :: C !< current average stiffness
real(pReal), intent(in) , dimension(3,3) :: rot_BC !< rotation of load frame
logical, intent(in), dimension(3,3) :: mask_stress !< mask of stress BC
integer(pInt) :: j, k, m, n
logical, dimension(9) :: mask_stressVector
real(pReal), dimension(9,9) :: temp99_Real
integer(pInt) :: size_reduced = 0_pInt
real(pReal), dimension(:,:), allocatable :: &
s_reduced, & !< reduced compliance matrix (depending on number of stress BC)
c_reduced, & !< reduced stiffness (depending on number of stress BC)
sTimesC !< temp variable to check inversion
logical :: errmatinv
character(len=1024):: formatString
mask_stressVector = reshape(transpose(mask_stress), [9])
size_reduced = int(count(mask_stressVector), pInt)
if(size_reduced > 0_pInt )then
allocate (c_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (s_reduced(size_reduced,size_reduced), source =0.0_pReal)
allocate (sTimesC(size_reduced,size_reduced), source =0.0_pReal)
temp99_Real = math_Plain3333to99(math_rotate_forward3333(C,rot_BC))
if(debugGeneral) then
write(6,'(/,a)') ' ... updating masked compliance ............................................'
write(6,'(/,a,/,9(9(2x,f12.7,1x)/))',advance='no') ' Stiffness C (load) / GPa =',&
transpose(temp99_Real)/1.e9_pReal
flush(6)
endif
k = 0_pInt ! calculate reduced stiffness
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
c_reduced(k,j) = temp99_Real(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, errmatinv) ! invert reduced stiffness
if (any(IEEE_is_NaN(s_reduced))) errmatinv = .true.
if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance')
temp99_Real = 0.0_pReal ! fill up compliance with zeros
k = 0_pInt
do n = 1_pInt,9_pInt
if(mask_stressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(mask_stressVector(m)) then
j = j + 1_pInt
temp99_Real(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
!--------------------------------------------------------------------------------------------------
! check if inversion was successful
sTimesC = matmul(c_reduced,s_reduced)
do m=1_pInt, size_reduced
do n=1_pInt, size_reduced
if(m==n .and. abs(sTimesC(m,n)) > (1.0_pReal + 10.0e-12_pReal)) errmatinv = .true. ! diagonal elements of S*C should be 1
if(m/=n .and. abs(sTimesC(m,n)) > (0.0_pReal + 10.0e-12_pReal)) errmatinv = .true. ! off diagonal elements of S*C should be 0
enddo
enddo
if(debugGeneral .or. errmatinv) then
write(formatString, '(I16.16)') size_reduced
formatString = '(/,a,/,'//trim(formatString)//'('//trim(formatString)//'(2x,es9.2,1x)/))'
write(6,trim(formatString),advance='no') ' C * S (load) ', &
transpose(matmul(c_reduced,s_reduced))
write(6,trim(formatString),advance='no') ' S (load) ', transpose(s_reduced)
endif
if(errmatinv) call IO_error(error_ID=400_pInt,ext_msg='utilities_maskedCompliance')
deallocate(c_reduced)
deallocate(s_reduced)
deallocate(sTimesC)
else
temp99_real = 0.0_pReal
endif
if(debugGeneral) &
write(6,'(/,a,/,9(9(2x,f12.7,1x)/),/)',advance='no') ' Masked Compliance (load) * GPa =', &
transpose(temp99_Real*1.e9_pReal)
flush(6)
utilities_maskedCompliance = math_Plain99to3333(temp99_Real)
end function utilities_maskedCompliance
!--------------------------------------------------------------------------------------------------
!> @brief calculate scalar gradient in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierScalarGradient()
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
vectorField_fourier(1:3,i,j,k) = scalarField_fourier(i,j,k)*xi1st(1:3,i,j,k)
end subroutine utilities_fourierScalarGradient
!--------------------------------------------------------------------------------------------------
!> @brief calculate vector divergence in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorDivergence()
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k
scalarField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
forall(k = 1_pInt:grid3, j = 1_pInt:grid(2), i = 1_pInt:grid1Red) &
scalarField_fourier(i,j,k) = scalarField_fourier(i,j,k) + &
sum(vectorField_fourier(1:3,i,j,k)*conjg(-xi1st(1:3,i,j,k)))
end subroutine utilities_fourierVectorDivergence
!--------------------------------------------------------------------------------------------------
!> @brief calculate vector gradient in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierVectorGradient()
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k, m, n
tensorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
tensorField_fourier(m,n,i,j,k) = vectorField_fourier(m,i,j,k)*xi1st(n,i,j,k)
enddo; enddo
enddo; enddo; enddo
end subroutine utilities_fourierVectorGradient
!--------------------------------------------------------------------------------------------------
!> @brief calculate tensor divergence in fourier field
!--------------------------------------------------------------------------------------------------
subroutine utilities_fourierTensorDivergence()
use mesh, only: &
grid3, &
grid
implicit none
integer(pInt) :: i, j, k, m, n
vectorField_fourier = cmplx(0.0_pReal,0.0_pReal,pReal)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid1Red
do m = 1_pInt, 3_pInt; do n = 1_pInt, 3_pInt
vectorField_fourier(m,i,j,k) = &
vectorField_fourier(m,i,j,k) + &
tensorField_fourier(m,n,i,j,k)*conjg(-xi1st(n,i,j,k))
enddo; enddo
enddo; enddo; enddo
end subroutine utilities_fourierTensorDivergence
!--------------------------------------------------------------------------------------------------
!> @brief calculates constitutive response
!--------------------------------------------------------------------------------------------------
subroutine utilities_constitutiveResponse(F_lastInc,F,timeinc, &
P,C_volAvg,C_minmaxAvg,P_av,forwardData,rotation_BC)
use IO, only: &
IO_error
use debug, only: &
debug_reset, &
debug_info
use math, only: &
math_transpose33, &
math_rotate_forward33, &
math_det33
use mesh, only: &
grid,&
grid3
use FEsolving, only: &
restartWrite
use CPFEM2, only: &
CPFEM_general
use homogenization, only: &
materialpoint_F0, &
materialpoint_F, &
materialpoint_P, &
materialpoint_dPdF
implicit none
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: &
F_lastInc, & !< target deformation gradient
F !< previous deformation gradient
real(pReal), intent(in) :: timeinc !< loading time
logical, intent(in) :: forwardData !< age results
real(pReal), intent(in), dimension(3,3) :: rotation_BC !< rotation of load frame
real(pReal),intent(out), dimension(3,3,3,3) :: C_volAvg, C_minmaxAvg !< average stiffness
real(pReal),intent(out), dimension(3,3) :: P_av !< average PK stress
real(pReal),intent(out), dimension(3,3,grid(1),grid(2),grid3) :: P !< PK stress
logical :: &
age
integer(pInt) :: &
j,k,ierr
real(pReal), dimension(3,3,3,3) :: max_dPdF, min_dPdF
real(pReal) :: max_dPdF_norm, min_dPdF_norm, defgradDetMin, defgradDetMax, defgradDet
write(6,'(/,a)') ' ... evaluating constitutive response ......................................'
flush(6)
age = .False.
if (forwardData) then ! aging results
age = .True.
materialpoint_F0 = reshape(F_lastInc, [3,3,1,product(grid(1:2))*grid3])
endif
if (cutBack) age = .False. ! restore saved variables
materialpoint_F = reshape(F,[3,3,1,product(grid(1:2))*grid3])
call debug_reset() ! this has no effect on rank >0
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do j = 1_pInt, product(grid(1:2))*grid3
defgradDet = math_det33(materialpoint_F(1:3,1:3,1,j))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
end do
write(6,'(a,1x,es11.4)') ' max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') ' min determinant of deformation =', defgradDetMin
flush(6)
endif
call CPFEM_general(age,timeinc)
max_dPdF = 0.0_pReal
max_dPdF_norm = 0.0_pReal
min_dPdF = huge(1.0_pReal)
min_dPdF_norm = huge(1.0_pReal)
do k = 1_pInt, product(grid(1:2))*grid3
if (max_dPdF_norm < sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then
max_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)
max_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)
endif
if (min_dPdF_norm > sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)) then
min_dPdF = materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)
min_dPdF_norm = sum(materialpoint_dPdF(1:3,1:3,1:3,1:3,1,k)**2.0_pReal)
endif
end do
call MPI_Allreduce(MPI_IN_PLACE,max_dPdF,81,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce max')
call MPI_Allreduce(MPI_IN_PLACE,min_dPdF,81,MPI_DOUBLE,MPI_MIN,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='MPI_Allreduce min')
C_minmaxAvg = 0.5_pReal*(max_dPdF + min_dPdF)
C_volAvg = sum(sum(materialpoint_dPdF,dim=6),dim=5) * wgt
call MPI_Allreduce(MPI_IN_PLACE,C_volAvg,81,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
call debug_info() ! this has no effect on rank >0
restartWrite = .false. ! reset restartWrite status
cutBack = .false. ! reset cutBack status
P = reshape(materialpoint_P, [3,3,grid(1),grid(2),grid3])
P_av = sum(sum(sum(P,dim=5),dim=4),dim=3) * wgt ! average of P
call MPI_Allreduce(MPI_IN_PLACE,P_av,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
if (debugRotation) &
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress (lab) / MPa =',&
math_transpose33(P_av)*1.e-6_pReal
P_av = math_rotate_forward33(P_av,rotation_BC)
write(6,'(/,a,/,3(3(2x,f12.4,1x)/))',advance='no') ' Piola--Kirchhoff stress / MPa =',&
math_transpose33(P_av)*1.e-6_pReal
flush(6)
end subroutine utilities_constitutiveResponse
!--------------------------------------------------------------------------------------------------
!> @brief calculates yield stress, plastic strain, total strain and their equivalent values
!--------------------------------------------------------------------------------------------------
subroutine utilities_calcPlasticity(yieldStress, plasticStrain, eqStress, eqTotalStrain, eqPlasticStrain, plasticWork)
use crystallite, only: &
crystallite_Fp, &
crystallite_P, &
crystallite_subF
use material, only: &
homogenization_maxNgrains
use mesh, only: &
mesh_maxNips,&
mesh_NcpElems
use math, only: &
math_det33, &
math_inv33, &
math_mul33x33, &
math_trace33, &
math_transpose33, &
math_identity2nd, &
math_crossproduct, &
math_eigenvectorBasisSym, &
math_eigenvectorBasisSym33, &
math_eigenvectorBasisSym33_log, &
math_eigenValuesVectorsSym33
implicit none
real(pReal), intent(out) :: eqStress, eqTotalStrain, eqPlasticStrain, plasticWork
real(pReal), dimension(3,3),intent(out) :: yieldStress, plasticStrain
real(pReal), dimension(3,3) :: cauchy, cauchy_av, P, Vp_av, V_total_av !< average
real(pReal), dimension(3) :: Values, S
real(pReal), dimension(3,3) :: Vectors, diag
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
Bp, Vp, F, F_temp, Fp, U, VT, R, V, V_total
real(pReal), dimension(15) :: WORK !< previous deformation gradient
integer(pInt) :: INFO, i, j, k, l, ierr
real(pReal) :: stress, stress_av, strain_total, strain_total_av, strain_plastic, strain_plastic_av, wgtm
external :: dgesvd
wgtm = 1.0/real(mesh_NcpElems*mesh_maxNips*homogenization_maxNgrains,pReal)
Vp_av = 0.0_pReal
V_total_av = 0.0_pReal
strain_plastic_av = 0.0_pReal
strain_total_av = 0.0_pReal
cauchy_av = 0.0_pReal
diag = 0.0_pReal
do k = 1_pInt, mesh_NcpElems; do j = 1_pInt, mesh_maxNips; do i = 1_pInt,homogenization_maxNgrains
F(1:3,1:3,i,j,k) = crystallite_subF(1:3,1:3,i,j,k)
Fp(1:3,1:3,i,j,k) = crystallite_Fp(1:3,1:3,i,j,k)
P = crystallite_P(1:3,1:3,i,j,k)
cauchy = 1.0/math_det33(F(1:3,1:3,i,j,k))*math_mul33x33(P,transpose(F(1:3,1:3,i,j,k)))
cauchy_av = cauchy_av + cauchy
stress = Mises(cauchy, 'stress')
stress_av = stress_av + stress
Bp(1:3,1:3,i,j,k) = math_mul33x33(Fp(1:3,1:3,i,j,k),math_transpose33(Fp(1:3,1:3,i,j,k))) ! plastic part of left CauchyGreen deformation tensor
Vp(1:3,1:3,i,j,k) = math_eigenvectorBasisSym33_log(Bp(1:3,1:3,i,j,k))
strain_plastic = Mises(Vp(1:3,1:3,i,j,k), 'strain')
strain_plastic_av = strain_plastic_av + strain_plastic
Vp_av = Vp_av + Vp(1:3,1:3,i,j,k)
F_temp(1:3,1:3,i,j,k) = F(1:3,1:3,i,j,k)
call dgesvd ('A', 'A', 3, 3, F_temp(1:3,1:3,i,j,k), 3, &
S, U(1:3,1:3,i,j,k), 3, VT(1:3,1:3,i,j,k), 3, WORK, 15, INFO) ! singular value decomposition
R(1:3,1:3,i,j,k) = math_mul33x33(U(1:3,1:3,i,j,k), VT(1:3,1:3,i,j,k)) ! rotation of polar decomposition
V(1:3,1:3,i,j,k) = math_mul33x33(F(1:3,1:3,i,j,k),math_inv33(R(1:3,1:3,i,j,k)))
call math_eigenValuesVectorsSym33(V(1:3,1:3,i,j,k),Values,Vectors)
do l = 1_pInt, 3_pInt
if (Values(l) < 0.0_pReal) then
Values(l) = -Values(l)
Vectors(1:3, l) = -Vectors(1:3, l)
endif
Values(l) = log(Values(l))
diag(l,l) = Values(l)
enddo
if (dot_product(Vectors(1:3,1),Vectors(1:3,2)) /= 0) then
Vectors(1:3,2) = math_crossproduct(Vectors(1:3,3), Vectors(1:3,1))
Vectors(1:3,2) = Vectors(1:3,2)/sqrt(dot_product(Vectors(1:3,2),Vectors(1:3,2)))
endif
if (dot_product(Vectors(1:3,2),Vectors(1:3,3)) /= 0) then
Vectors(1:3,3) = math_crossproduct(Vectors(1:3,1), Vectors(1:3,2))
Vectors(1:3,3) = Vectors(1:3,3)/sqrt(dot_product(Vectors(1:3,3),Vectors(1:3,3)))
endif
if (dot_product(Vectors(1:3,3),Vectors(1:3,1)) /= 0) then
Vectors(1:3,1) = math_crossproduct(Vectors(1:3,2), Vectors(1:3,3))
Vectors(1:3,1) = Vectors(1:3,1)/sqrt(dot_product(Vectors(1:3,1),Vectors(1:3,1)))
endif
V_total(1:3,1:3,i,j,k) = REAL(math_mul33x33(Vectors, math_mul33x33(diag, transpose(Vectors))))
strain_total = Mises(V_total(1:3,1:3,i,j,k), 'strain')
strain_total_av = strain_total_av + strain_total
enddo; enddo; enddo
yieldStress = cauchy_av * wgtm
call MPI_Allreduce(MPI_IN_PLACE,yieldStress,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
plasticStrain = Vp_av * wgtm
call MPI_Allreduce(MPI_IN_PLACE,plasticStrain,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
plasticWork = plasticWork + 0.5*(eqStress + stress_av * wgtm) * (strain_total_av * wgtm - eqTotalStrain)
call MPI_Allreduce(MPI_IN_PLACE,plasticWork,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
eqStress = stress_av * wgtm
call MPI_Allreduce(MPI_IN_PLACE,eqStress,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
eqTotalStrain = strain_total_av * wgtm
call MPI_Allreduce(MPI_IN_PLACE,eqTotalStrain,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
eqPlasticStrain = strain_plastic_av * wgtm
call MPI_Allreduce(MPI_IN_PLACE,eqPlasticStrain,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine utilities_calcPlasticity
!--------------------------------------------------------------------------------------------------
!> @brief vonMises equivalent values for symmetric part of requested strains and/or stresses.
!--------------------------------------------------------------------------------------------------
function Mises(m, mType)
use math, only: &
math_trace33, &
math_identity2nd
implicit none
real(pReal), intent(in), dimension(3,3) :: m
character(len=*), intent(in) :: mType
real(pReal) :: trace, Mises
real(pReal), dimension(3,3) :: eye, dev, symdev
eye = math_identity2nd(3)
trace = math_trace33(m)
dev = m - trace/3.0*eye
symdev = 0.5*(dev+transpose(dev))
if (mType .eq. 'stress') then
Mises = sqrt(3.0/2.0*sum(symdev*transpose(symdev)))
else
Mises = sqrt(2.0/3.0*sum(symdev*transpose(symdev)))
endif
end function Mises
!--------------------------------------------------------------------------------------------------
!> @brief calculates forward rate, either guessing or just add delta/timeinc
!--------------------------------------------------------------------------------------------------
pure function utilities_calculateRate(avRate,timeinc_old,guess,field_lastInc,field)
use mesh, only: &
grid3, &
grid
implicit none
real(pReal), intent(in), dimension(3,3) :: avRate !< homogeneous addon
real(pReal), intent(in) :: &
timeinc_old !< timeinc of last step
logical, intent(in) :: &
guess !< guess along former trajectory
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: &
field_lastInc, & !< data of previous step
field !< data of current step
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: &
utilities_calculateRate
if (guess) then
utilities_calculateRate = (field-field_lastInc) / timeinc_old
else
utilities_calculateRate = spread(spread(spread(avRate,3,grid(1)),4,grid(2)),5,grid3)
endif
end function utilities_calculateRate
!--------------------------------------------------------------------------------------------------
!> @brief forwards a field with a pointwise given rate, if aim is given,
!> ensures that the average matches the aim
!--------------------------------------------------------------------------------------------------
function utilities_forwardField(timeinc,field_lastInc,rate,aim)
use mesh, only: &
grid3, &
grid
implicit none
real(pReal), intent(in) :: &
timeinc !< timeinc of current step
real(pReal), intent(in), dimension(3,3,grid(1),grid(2),grid3) :: &
field_lastInc, & !< initial field
rate !< rate by which to forward
real(pReal), intent(in), optional, dimension(3,3) :: &
aim !< average field value aim
real(pReal), dimension(3,3,grid(1),grid(2),grid3) :: &
utilities_forwardField
real(pReal), dimension(3,3) :: fieldDiff !< <a + adot*t> - aim
PetscErrorCode :: ierr
external :: &
MPI_Allreduce
utilities_forwardField = field_lastInc + rate*timeinc
if (present(aim)) then !< correct to match average
fieldDiff = sum(sum(sum(utilities_forwardField,dim=5),dim=4),dim=3)*wgt
call MPI_Allreduce(MPI_IN_PLACE,fieldDiff,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
fieldDiff = fieldDiff - aim
utilities_forwardField = utilities_forwardField - &
spread(spread(spread(fieldDiff,3,grid(1)),4,grid(2)),5,grid3)
endif
end function utilities_forwardField
!--------------------------------------------------------------------------------------------------
!> @brief calculates filter for fourier convolution depending on type given in numerics.config
!> @details this is the full operator to calculate derivatives, i.e. 2 \pi i k for the
! standard approach
!--------------------------------------------------------------------------------------------------
pure function utilities_getFreqDerivative(k_s)
use math, only: &
PI
use mesh, only: &
geomSize, &
grid
implicit none
integer(pInt), intent(in), dimension(3) :: k_s !< indices of frequency
complex(pReal), dimension(3) :: utilities_getFreqDerivative
select case (spectral_derivative_ID)
case (DERIVATIVE_CONTINUOUS_ID)
utilities_getFreqDerivative = cmplx(0.0_pReal, 2.0_pReal*PI*real(k_s,pReal)/geomSize,pReal)
case (DERIVATIVE_CENTRAL_DIFF_ID)
utilities_getFreqDerivative = cmplx(0.0_pReal, sin(2.0_pReal*PI*real(k_s,pReal)/real(grid,pReal)), pReal)/ &
cmplx(2.0_pReal*geomSize/real(grid,pReal), 0.0_pReal, pReal)
case (DERIVATIVE_FWBW_DIFF_ID)
utilities_getFreqDerivative(1) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) - 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(1)/real(grid(1),pReal), 0.0_pReal, pReal)
utilities_getFreqDerivative(2) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) - 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(2)/real(grid(2),pReal), 0.0_pReal, pReal)
utilities_getFreqDerivative(3) = &
cmplx(cos(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(1),pReal)/real(grid(1),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)) + 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(2),pReal)/real(grid(2),pReal)), pReal)* &
cmplx(cos(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)) - 1.0_pReal, &
sin(2.0_pReal*PI*real(k_s(3),pReal)/real(grid(3),pReal)), pReal)/ &
cmplx(4.0_pReal*geomSize(3)/real(grid(3),pReal), 0.0_pReal, pReal)
end select
end function utilities_getFreqDerivative
!--------------------------------------------------------------------------------------------------
!> @brief calculate coordinates in current configuration for given defgrad field
! using integration in Fourier space. Similar as in mesh.f90, but using data already defined for
! convolution
!--------------------------------------------------------------------------------------------------
subroutine utilities_updateIPcoords(F)
use prec, only: &
cNeq
use IO, only: &
IO_error
use math, only: &
math_mul33x3
use mesh, only: &
grid, &
grid3, &
grid3Offset, &
geomSize, &
mesh_ipCoordinates
implicit none
real(pReal), dimension(3,3,grid(1),grid(2),grid3), intent(in) :: F
integer(pInt) :: i, j, k, m, ierr
real(pReal), dimension(3) :: step, offset_coords
real(pReal), dimension(3,3) :: Favg
external &
MPI_Bcast
!--------------------------------------------------------------------------------------------------
! integration in Fourier space
tensorField_real = 0.0_pReal
tensorField_real(1:3,1:3,1:grid(1),1:grid(2),1:grid3) = F
call utilities_FFTtensorForward()
call utilities_fourierTensorDivergence()
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt, grid1Red
if (any(cNeq(xi1st(1:3,i,j,k),cmplx(0.0_pReal,0.0_pReal)))) &
vectorField_fourier(1:3,i,j,k) = vectorField_fourier(1:3,i,j,k)/ &
sum(conjg(-xi1st(1:3,i,j,k))*xi1st(1:3,i,j,k))
enddo; enddo; enddo
call fftw_mpi_execute_dft_c2r(planVectorBack,vectorField_fourier,vectorField_real)
!--------------------------------------------------------------------------------------------------
! average F
if (grid3Offset == 0_pInt) Favg = real(tensorField_fourier(1:3,1:3,1,1,1),pReal)*wgt
call MPI_Bcast(Favg,9,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords')
!--------------------------------------------------------------------------------------------------
! add average to fluctuation and put (0,0,0) on (0,0,0)
step = geomSize/real(grid, pReal)
if (grid3Offset == 0_pInt) offset_coords = vectorField_real(1:3,1,1,1)
call MPI_Bcast(offset_coords,3,MPI_DOUBLE,0,PETSC_COMM_WORLD,ierr)
if(ierr /=0_pInt) call IO_error(894_pInt, ext_msg='update_IPcoords')
offset_coords = math_mul33x3(Favg,step/2.0_pReal) - offset_coords
m = 1_pInt
do k = 1_pInt,grid3; do j = 1_pInt,grid(2); do i = 1_pInt,grid(1)
mesh_ipCoordinates(1:3,1,m) = vectorField_real(1:3,i,j,k) &
+ offset_coords &
+ math_mul33x3(Favg,step*real([i,j,k+grid3Offset]-1_pInt,pReal))
m = m+1_pInt
enddo; enddo; enddo
end subroutine utilities_updateIPcoords
!--------------------------------------------------------------------------------------------------
!> @brief cleans up
!--------------------------------------------------------------------------------------------------
subroutine utilities_destroy()
implicit none
call fftw_destroy_plan(planTensorForth)
call fftw_destroy_plan(planTensorBack)
call fftw_destroy_plan(planVectorForth)
call fftw_destroy_plan(planVectorBack)
call fftw_destroy_plan(planScalarForth)
call fftw_destroy_plan(planScalarBack)
end subroutine utilities_destroy
end module spectral_utilities