DAMASK_EICMD/code/crystallite.f90

2834 lines
150 KiB
Fortran
Raw Blame History

!* $Id$
!***************************************
!* Module: CRYSTALLITE *
!***************************************
!* contains: *
!* - _init *
!* - materialpoint_stressAndItsTangent *
!* - _partitionDeformation *
!* - _updateState *
!* - _stressAndItsTangent *
!* - _postResults *
!***************************************
MODULE crystallite
use prec, only: pReal, pInt
implicit none
!
! ****************************************************************
! *** General variables for the crystallite calculation ***
! ****************************************************************
integer(pInt) crystallite_maxSizePostResults
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
character(len=64), dimension(:,:), allocatable :: crystallite_output ! name of each post result output
integer(pInt), dimension (:,:,:), allocatable :: &
crystallite_symmetryID ! crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
real(pReal), dimension (:,:,:), allocatable :: &
crystallite_dt, & ! requested time increment of each grain
crystallite_subdt, & ! substepped time increment of each grain
crystallite_subFrac, & ! already calculated fraction of increment
crystallite_subStep, & ! size of next integration step
crystallite_statedamper, & ! damping for state update
crystallite_Temperature, & ! Temp of each grain
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
crystallite_subTemperature0, & ! Temp of each grain at start of crystallite inc
crystallite_dotTemperature ! evolution of Temperature of each grain
real(pReal), dimension (:,:,:,:), allocatable :: &
crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
crystallite_subTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
crystallite_orientation, & ! orientation as quaternion
crystallite_orientation0, & ! initial orientation as quaternion
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
real(pReal), dimension (:,:,:,:,:), allocatable :: &
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
crystallite_Fp, & ! current plastic def grad (end of converged time step)
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
crystallite_Fp0, & ! plastic def grad at start of FE inc
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
crystallite_F0, & ! def grad at start of FE inc
crystallite_partionedF, & ! def grad to be reached at end of homog inc
crystallite_partionedF0, & ! def grad at start of homog inc
crystallite_subF, & ! def grad to be reached at end of crystallite inc
crystallite_subF0, & ! def grad at start of crystallite inc
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
crystallite_P, & ! 1st Piola-Kirchhoff stress per grain
crystallite_disorientation ! disorientation between two neighboring ips (only calculated for single grain IPs)
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
crystallite_dPdF, & ! current individual dPdF per grain (end of converged time step)
crystallite_dPdF0, & ! individual dPdF per grain at start of FE inc
crystallite_partioneddPdF0, & ! individual dPdF per grain at start of homog inc
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
logical, dimension (:,:,:), allocatable :: &
crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
crystallite_requested, & ! flag to request crystallite calculation
crystallite_todo, & ! flag to indicate need for further computation
crystallite_converged, & ! convergence flag
crystallite_stateConverged, & ! flag indicating convergence of state
crystallite_temperatureConverged ! flag indicating convergence of temperature
CONTAINS
!********************************************************************
! allocate and initialize per grain variables
!********************************************************************
subroutine crystallite_init(Temperature)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debug_info, &
debug_reset
use numerics, only: integrator, &
integratorStiffness, &
subStepSizeCryst, &
stepIncreaseCryst
use math, only: math_I3, &
math_EulerToR
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips, &
mesh_maxNipNeighbors
use IO
use material
use lattice, only: lattice_symmetryTypes
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
constitutive_phenopowerlaw_structure
use constitutive_titanmod, only: constitutive_titanmod_label, &
constitutive_titanmod_structure
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
constitutive_dislotwin_structure
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
constitutive_nonlocal_structure
implicit none
integer(pInt), parameter :: file = 200
!*** input variables ***!
real(pReal) Temperature
!*** output variables ***!
!*** local variables ***!
integer(pInt), parameter :: maxNchunks = 2
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) g, & ! grain number
i, & ! integration point number
e, & ! element number
gMax, & ! maximum number of grains
iMax, & ! maximum number of integration points
eMax, & ! maximum number of elements
nMax, & ! maximum number of ip neighbors
myNgrains, & ! number of grains in current IP
myCrystallite ! crystallite of current elem
integer(pInt) section, j,p, output, mySize
character(len=64) tag
character(len=1024) line
integer(pInt) myStructure, & ! lattice structure
myPhase
write(6,*)
write(6,*) '<<<+- crystallite init -+>>>'
write(6,*) '$Id$'
write(6,*)
gMax = homogenization_maxNgrains
iMax = mesh_maxNips
eMax = mesh_NcpElems
nMax = mesh_maxNipNeighbors
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
allocate(crystallite_dotTemperature(gMax,iMax,eMax)); crystallite_dotTemperature = 0.0_pReal
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF0 = 0.0_pReal
allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_partioneddPdF0 = 0.0_pReal
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
allocate(crystallite_statedamper(gMax,iMax,eMax)); crystallite_statedamper = 1.0_pReal
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0.0_pReal !NEW
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .false.
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
allocate(crystallite_output(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_output = ''
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
if(.not. IO_open_file(file,material_configFile)) call IO_error (100) ! corrupt config file
line = ''
section = 0
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
read(file,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(file,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1
output = 0 ! reset output counter
endif
if (section > 0) then
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
select case(tag)
case ('(output)')
output = output + 1
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2))
end select
endif
enddo
100 close(file)
do i = 1,material_Ncrystallite ! sanity checks
enddo
do i = 1,material_Ncrystallite
do j = 1,crystallite_Noutput(i)
select case(crystallite_output(j,i))
case('phase')
mySize = 1
case('volume')
mySize = 1
case('orientation') ! orientation as quaternion
mySize = 4
case('eulerangles') ! Bunge Euler angles
mySize = 3
case('grainrotation') ! Deviation from initial grain orientation in axis-angle form (angle in degrees)
mySize = 4
case('defgrad','f','fe','fp','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola')
mySize = 9
case default
mySize = 0
end select
if (mySize > 0_pInt) then ! any meaningful output found
crystallite_sizePostResult(j,i) = mySize
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
endif
enddo
enddo
crystallite_maxSizePostResults = maxval(crystallite_sizePostResults)
! write description file for crystallite output
if(.not. IO_open_jobFile(file,'outputCrystallite')) call IO_error (50) ! problems in writing file
do p = 1,material_Ncrystallite
write(file,*)
write(file,'(a)') '['//trim(crystallite_name(p))//']'
write(file,*)
do e = 1,crystallite_Noutput(p)
write(file,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
enddo
enddo
close(file)
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
do g = 1,myNgrains
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(:,g,i,e)) ! plastic def gradient reflects init orientation
crystallite_Fe(:,:,g,i,e) = transpose(crystallite_Fp0(:,:,g,i,e))
crystallite_F0(:,:,g,i,e) = math_I3
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
crystallite_requested(g,i,e) = .true.
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! Initialize crystallite_symmetryID(g,i,e)
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e))
myPhase = material_phase(g,i,e)
select case (phase_constitution(myPhase))
case (constitutive_phenopowerlaw_label)
myStructure = constitutive_phenopowerlaw_structure(phase_constitutionInstance(myPhase))
case (constitutive_titanmod_label)
myStructure = constitutive_titanmod_structure(phase_constitutionInstance(myPhase))
case (constitutive_dislotwin_label)
myStructure = constitutive_dislotwin_structure(phase_constitutionInstance(myPhase))
case (constitutive_nonlocal_label)
myStructure = constitutive_nonlocal_structure(phase_constitutionInstance(myPhase))
case default
myStructure = -1_pInt ! does this happen for j2 material?
end select
if (myStructure>0_pInt) then
crystallite_symmetryID(g,i,e)=lattice_symmetryTypes(myStructure) ! structure = 1(fcc) or 2(bcc) => 1; 3(hex)=>2
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
call crystallite_orientations()
crystallite_orientation0 = crystallite_orientation ! Store initial orientations for calculation of grain rotations
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
! *** Output to MARC output file ***
!$OMP CRITICAL (write2out)
write(6,'(a35,x,7(i5,x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
write(6,'(a35,x,7(i5,x))') 'crystallite_dotTemperature: ', shape(crystallite_dotTemperature)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp: ', shape(crystallite_Lp)
write(6,'(a35,x,7(i5,x))') 'crystallite_F0: ', shape(crystallite_F0)
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subF: ', shape(crystallite_subF)
write(6,'(a35,x,7(i5,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
write(6,'(a35,x,7(i5,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
write(6,'(a35,x,7(i5,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
write(6,'(a35,x,7(i5,x))') 'crystallite_P: ', shape(crystallite_P)
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
write(6,'(a35,x,7(i5,x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation: ', shape(crystallite_orientation)
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
write(6,'(a35,x,7(i5,x))') 'crystallite_rotation: ', shape(crystallite_rotation)
write(6,'(a35,x,7(i5,x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
write(6,'(a35,x,7(i5,x))') 'crystallite_dt: ', shape(crystallite_dt)
write(6,'(a35,x,7(i5,x))') 'crystallite_subdt: ', shape(crystallite_subdt)
write(6,'(a35,x,7(i5,x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
write(6,'(a35,x,7(i5,x))') 'crystallite_subStep: ', shape(crystallite_subStep)
write(6,'(a35,x,7(i5,x))') 'crystallite_stateDamper: ', shape(crystallite_stateDamper)
write(6,'(a35,x,7(i5,x))') 'crystallite_localConstitution: ', shape(crystallite_localConstitution)
write(6,'(a35,x,7(i5,x))') 'crystallite_requested: ', shape(crystallite_requested)
write(6,'(a35,x,7(i5,x))') 'crystallite_todo: ', shape(crystallite_todo)
write(6,'(a35,x,7(i5,x))') 'crystallite_converged: ', shape(crystallite_converged)
write(6,'(a35,x,7(i5,x))') 'crystallite_stateConverged: ', shape(crystallite_stateConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_temperatureConverged: ', shape(crystallite_temperatureConverged)
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
write(6,*)
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localConstitution)
call flush(6)
!$OMPEND CRITICAL (write2out)
call debug_info()
call debug_reset()
return
endsubroutine
!********************************************************************
! calculate stress (P) and tangent (dPdF) for crystallites
!********************************************************************
subroutine crystallite_stressAndItsTangent(updateJaco)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use numerics, only: subStepMinCryst, &
subStepSizeCryst, &
stepIncreaseCryst, &
pert_Fg, &
pert_method, &
nCryst, &
iJacoStiffness, &
integratorStiffness, &
integrator
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_CrystalliteLoopDistribution
use IO, only: IO_warning
use math, only: math_inv3x3, &
math_mul33x33, &
math_mul66x6, &
math_Mandel6to33, &
math_Mandel33to6, &
math_I3
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP, &
theInc, &
cycleCounter
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_maxSizeState, &
constitutive_maxSizeDotState, &
constitutive_sizeState, &
constitutive_sizeDotState, &
constitutive_state, &
constitutive_state_backup, &
constitutive_subState0, &
constitutive_partionedState0, &
constitutive_homogenizedC, &
constitutive_dotState, &
constitutive_dotState_backup, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
logical, intent(in) :: updateJaco ! flag indicating wehther we want to update the Jacobian (stiffness) or not
!*** output variables ***!
!*** local variables ***!
real(pReal) myTemperature, & ! local copy of the temperature
myPert, & ! perturbation with correct sign
formerSubStep
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
Fe_guess, & ! guess for elastic deformation gradient
Tstar ! 2nd Piola-Kirchhoff stress tensor
real(pReal), dimension(9,9) :: dPdF99
real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
dPdF_perturbation1, &
dPdF_perturbation2
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
F_backup, &
Fp_backup, &
InvFp_backup, &
Fe_backup, &
Lp_backup, &
P_backup
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
Tstar_v_backup
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
Temperature_backup
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
e, & ! element index
i, & ! integration point index
g, & ! grain index
k, &
l, &
perturbation , & ! loop counter for forward,backward perturbation mode
myNgrains, &
mySizeState, &
mySizeDotState
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
convergenceFlag_backup
! --+>> INITIALIZE TO STARTING CONDITION <<+--
crystallite_subStep = 0.0_pReal
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
if (crystallite_requested(g,i,e)) then ! initialize restoration point of ...
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
crystallite_subFp0(:,:,g,i,e) = crystallite_partionedFp0(:,:,g,i,e) ! ...plastic def grad
crystallite_subLp0(:,:,g,i,e) = crystallite_partionedLp0(:,:,g,i,e) ! ...plastic velocity grad
crystallite_dPdF0(:,:,:,:,g,i,e) = crystallite_partioneddPdF0(:,:,:,:,g,i,e) ! ...stiffness
crystallite_subF0(:,:,g,i,e) = crystallite_partionedF0(:,:,g,i,e) ! ...def grad
crystallite_subTstar0_v(:,g,i,e) = crystallite_partionedTstar0_v(:,g,i,e) !...2nd PK stress
crystallite_subFrac(g,i,e) = 0.0_pReal
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
crystallite_todo(g,i,e) = .true.
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --+>> CRYSTALLITE CUTBACK LOOP <<+--
NiterationCrystallite = 0_pInt
do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinCryst)) ! cutback loop for crystallites
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
! --- wind forward ---
if (crystallite_converged(g,i,e)) then
if (debugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a21,f10.8,a32,f10.8,a35)') 'winding forward from ', &
crystallite_subFrac(g,i,e),' to current crystallite_subfrac ', &
crystallite_subFrac(g,i,e)+crystallite_subStep(g,i,e),' in crystallite_stressAndItsTangent'
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
formerSubStep = crystallite_subStep(g,i,e)
crystallite_subStep(g,i,e) = min( 1.0_pReal - crystallite_subFrac(g,i,e), &
stepIncreaseCryst * crystallite_subStep(g,i,e) )
if (crystallite_subStep(g,i,e) > subStepMinCryst) then
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
crystallite_subF0(:,:,g,i,e) = crystallite_subF(:,:,g,i,e) ! ...def grad
crystallite_subFp0(:,:,g,i,e) = crystallite_Fp(:,:,g,i,e) ! ...plastic def grad
crystallite_subLp0(:,:,g,i,e) = crystallite_Lp(:,:,g,i,e) ! ...plastic velocity gradient
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
crystallite_subTstar0_v(:,g,i,e) = crystallite_Tstar_v(:,g,i,e) ! ...2nd PK stress
elseif (formerSubStep > subStepMinCryst) then ! this crystallite just converged
!$OMP CRITICAL (distributionCrystallite)
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) = &
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) + 1
!$OMPEND CRITICAL (distributionCrystallite)
endif
! --- cutback ---
else
crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore...
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
crystallite_Fp(:,:,g,i,e) = crystallite_subFp0(:,:,g,i,e) ! ...plastic def grad
crystallite_invFp(:,:,g,i,e) = math_inv3x3(crystallite_Fp(:,:,g,i,e))
crystallite_Lp(:,:,g,i,e) = crystallite_subLp0(:,:,g,i,e) ! ...plastic velocity grad
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
crystallite_Tstar_v(:,g,i,e) = crystallite_subTstar0_v(:,g,i,e) ! ...2nd PK stress
! can<61>t restore dotState here, since not yet calculated in first cutback after initialization
if (debugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a78,f10.8)') 'cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',&
crystallite_subStep(g,i,e)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
endif
! --- prepare for integration ---
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
if (crystallite_todo(g,i,e)) then
crystallite_subF(:,:,g,i,e) = crystallite_subF0(:,:,g,i,e) + &
crystallite_subStep(g,i,e) * &
(crystallite_partionedF(:,:,g,i,e) - crystallite_partionedF0(:,:,g,i,e))
crystallite_Fe(:,:,g,i,e) = math_mul33x33(crystallite_subF(:,:,g,i,e),crystallite_invFp(:,:,g,i,e))
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
crystallite_converged(g,i,e) = .false. ! start out non-converged
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --- integrate ---
if (any(crystallite_todo)) then
select case(integrator)
case (1)
call crystallite_integrateStateFPI(1)
case (2)
call crystallite_integrateStateEuler(1)
case (3)
call crystallite_integrateStateAdaptiveEuler(1)
case (4)
call crystallite_integrateStateRK4(1)
case(5)
call crystallite_integrateStateRKCK45(1)
endselect
endif
NiterationCrystallite = NiterationCrystallite + 1
enddo ! cutback loop
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
invFp = math_inv3x3(crystallite_partionedFp0(:,:,g,i,e))
Fe_guess = math_mul33x33(crystallite_partionedF(:,:,g,i,e),invFp)
Tstar = math_Mandel6to33( math_mul66x6( 0.5_pReal*constitutive_homogenizedC(g,i,e), &
math_Mandel33to6( math_mul33x33(transpose(Fe_guess),Fe_guess) - math_I3 ) ) )
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
endif
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write (6,*) '#############'
write (6,*) 'central solution of cryst_StressAndTangent'
write (6,*) '#############'
write (6,'(a8,3(x,i4),/,3(3(f12.4,x)/))') ' P of', g, i, e, P_backup(1:3,:,g,i,e)/1e6
write (6,'(a8,3(x,i4),/,3(3(f14.9,x)/))') ' Fp of', g, i, e, Fp_backup(1:3,:,g,i,e)
write (6,'(a8,3(x,i4),/,3(3(f14.9,x)/))') ' Lp of', g, i, e, Lp_backup(1:3,:,g,i,e)
!$OMPEND CRITICAL (write2out)
endif
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --+>> STIFFNESS CALCULATION <<+--
if(updateJaco) then ! Jacobian required
! --- BACKUP ---
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
constitutive_state_backup(g,i,e)%p(1:mySizeState) = &
constitutive_state(g,i,e)%p(1:mySizeState) ! remember unperturbed, converged state, ...
constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState) = &
constitutive_dotState(g,i,e)%p(1:mySizeDotState) ! ... dotStates, ...
enddo; enddo; enddo
Temperature_backup = crystallite_Temperature ! ... Temperature, ...
F_backup = crystallite_subF ! ... and kinematics
Fp_backup = crystallite_Fp
InvFp_backup = crystallite_invFp
Fe_backup = crystallite_Fe
Lp_backup = crystallite_Lp
Tstar_v_backup = crystallite_Tstar_v
P_backup = crystallite_P
convergenceFlag_backup = crystallite_converged
! --- CALCULATE STATE AND STRESS FOR PERTURBATION ---
dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
do perturbation = 1,2 ! forward and backward perturbation
if (iand(pert_method,perturbation) > 0) then ! mask for desired direction
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
do k = 1,3; do l = 1,3 ! ...alter individual components
if (verboseDebugger .and. selectiveDebugger) &
write (6,'(a,x,i1,x,i1,x,a)') '[[[[[[[ Stiffness perturbation',k,l,']]]]]]]'
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert ! perturb either forward or backward
crystallite_todo = crystallite_requested .and. crystallite_converged
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
select case(integratorStiffness)
case (1)
call crystallite_integrateStateFPI(2)
case (2)
call crystallite_integrateStateEuler(2)
case (3)
call crystallite_integrateStateAdaptiveEuler(2)
case (4)
call crystallite_integrateStateRK4(2)
case(5)
call crystallite_integrateStateRKCK45(2)
end select
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged state warrants stiffness update
select case(perturbation)
case (1)
dPdF_perturbation1(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - P_backup(:,:,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
case (2)
dPdF_perturbation2(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - P_backup(:,:,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
end select
endif
enddo; enddo; enddo
! --- RESTORE ---
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
mySizeState = constitutive_sizeState(g,i,e)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
enddo; enddo; enddo
crystallite_Temperature = Temperature_backup
crystallite_subF = F_backup
crystallite_Fp = Fp_backup
crystallite_invFp = InvFp_backup
crystallite_Fe = Fe_backup
crystallite_Lp = Lp_backup
crystallite_Tstar_v = Tstar_v_backup
crystallite_P = P_backup
crystallite_converged = convergenceFlag_backup
enddo; enddo ! k,l loop
endif
enddo ! perturbation direction
! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE ---
do e = FEsolving_execElem(1),FEsolving_execElem(2)
myNgrains = homogenization_Ngrains(mesh_element(3,e))
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,myNgrains
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! central solution converged
select case(pert_method)
case (1)
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation1(:,:,:,:,g,i,e)
case (2)
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation2(:,:,:,:,g,i,e)
case (3)
crystallite_dPdF(:,:,:,:,g,i,e) = 0.5_pReal* (dPdF_perturbation1(:,:,:,:,g,i,e) + dPdF_perturbation2(:,:,:,:,g,i,e))
end select
elseif (crystallite_requested(g,i,e) .and. .not. crystallite_converged(g,i,e)) then ! central solution did not converge
crystallite_dPdF(:,:,:,:,g,i,e) = crystallite_fallbackdPdF(:,:,:,:,g,i,e) ! use (elastic) fallback
endif
enddo; enddo; enddo
endif ! jacobian calculation
endsubroutine
!********************************************************************
! integrate stress, state and Temperature with
! 4h order explicit Runge Kutta method
!********************************************************************
subroutine crystallite_integrateStateRK4(mode,gg,ii,ee)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_RK4dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
real(pReal), dimension(4), parameter :: timeStepFraction = (/0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal/) ! weight of slope used for Runge Kutta integration
real(pReal), dimension(3), parameter :: weight = (/2.0_pReal, 2.0_pReal, 1.0_pReal/) ! factor giving the fraction of the original timestep used for Runge Kutta Integration
!*** input variables ***!
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
n, &
mySizeDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration
logical singleRun ! flag indicating computation for single (g,i,e) triple
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(:,ee) = ii
gIter(:,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(:,e) = FEsolving_execIP(1:2,e)
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
enddo
singleRun = .false.
endif
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- FIRST RUNGE KUTTA STEP ---
RK4dotTemperature = 0.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
else ! everything is fine
constitutive_RK4dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p ! initial contribution to RK slope
RK4dotTemperature(g,i,e) = crystallite_dotTemperature(g,i,e)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
do n = 1,4
! --- state update ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) * timeStepFraction(n)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) * timeStepFraction(n)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- update dependent states ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- stress integration ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_integrateStress(mode,g,i,e,timeStepFraction(n))) then ! fraction of original times step
if (n == 4) then ! final integration step
if (mode==1 .and. verboseDebugger .and. e == debug_e .and. i == debug_i .and. g == debug_g) then
mySizeDotState = constitutive_sizeDotState(g,i,e)
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState',g,i,e
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
crystallite_converged(g,i,e) = .true. ! ... converged per definition
crystallite_todo(g,i,e) = .false. ! ... integration done
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(n,mode) = debug_StateLoopDistribution(n,mode) + 1
!$OMPEND CRITICAL (distributionState)
endif
else ! broken stress integration
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- dot state and RK dot state---
if (n < 4) then
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
else ! everything is fine
constitutive_RK4dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p + weight(n)*constitutive_dotState(g,i,e)%p
RK4dotTemperature(g,i,e) = RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)
if (n == 3) then
constitutive_dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p / 6.0_pReal ! use weighted RKdotState for final integration
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
endif
enddo
! --- CHECK CONVERGENCE ---
crystallite_todo = .false. ! done with integration
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
endif
endif
endsubroutine
!********************************************************************
! integrate stress, state and Temperature with
! 5th order Runge-Kutta Cash-Karp method with adaptive step size
! (use 5th order solution to advance = "local extrapolation")
!********************************************************************
subroutine crystallite_integrateStateRKCK45(mode,gg,ii,ee)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use numerics, only: rTol_crystalliteState, &
rTol_crystalliteTemperature, &
subStepSizeCryst, &
stepIncreaseCryst
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_maxSizeDotState, &
constitutive_state, &
constitutive_aTolState, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_RKCK45dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
j, &
n, & ! stage index in integration stage loop
sizeDotState, & ! size of dot State
s ! state index
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
RKCK45dotTemperature ! evolution of Temperature of each grain for Runge Kutta Cash Karp integration
real(pReal), dimension(5,5) :: a ! coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
real(pReal), dimension(6) :: b, db ! coefficients in Butcher tableau (used for final integration and error estimate)
real(pReal), dimension(5) :: c ! coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
stateResiduum, & ! residuum from evolution in micrstructure
relStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
temperatureResiduum, & ! residuum from evolution in temperature
relTemperatureResiduum ! relative residuum from evolution in temperature
logical singleRun ! flag indicating computation for single (g,i,e) triple
! --- FILL BUTCHER TABLEAU ---
a = 0.0_pReal
b = 0.0_pReal
db = 0.0_pReal
c = 0.0_pReal
a(1,1) = 0.2_pReal
a(1,2) = 0.075_pReal
a(2,2) = 0.225_pReal
a(1,3) = 0.3_pReal
a(2,3) = -0.9_pReal
a(3,3) = 1.2_pReal
a(1,4) = -11.0_pReal / 54.0_pReal
a(2,4) = 2.5_pReal
a(3,4) = -70.0_pReal / 27.0_pReal
a(4,4) = 35.0_pReal / 27.0_pReal
a(1,5) = 1631.0_pReal / 55296.0_pReal
a(2,5) = 175.0_pReal / 512.0_pReal
a(3,5) = 575.0_pReal / 13824.0_pReal
a(4,5) = 44275.0_pReal / 110592.0_pReal
a(5,5) = 253.0_pReal / 4096.0_pReal
b(1) = 37.0_pReal / 378.0_pReal
b(3) = 250.0_pReal / 621.0_pReal
b(4) = 125.0_pReal / 594.0_pReal
b(6) = 512.0_pReal / 1771.0_pReal
db(1) = b(1) - 2825.0_pReal / 27648.0_pReal
db(3) = b(3) - 18575.0_pReal / 48384.0_pReal
db(4) = b(4) - 13525.0_pReal / 55296.0_pReal
db(5) = - 277.0_pReal / 14336.0_pReal
db(6) = b(6) - 0.25_pReal
c(1) = 0.2_pReal
c(2) = 0.3_pReal
c(3) = 0.6_pReal
c(4) = 1.0_pReal
c(5) = 0.875_pReal
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(:,ee) = ii
gIter(:,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(:,e) = FEsolving_execIP(1:2,e)
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
enddo
singleRun = .false.
endif
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- FIRST RUNGE KUTTA STEP ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
else ! everything is fine
constitutive_RKCK45dotState(1,g,i,e)%p = constitutive_dotState(g,i,e)%p ! initial contribution to RK slope
RKCK45dotTemperature(1,g,i,e) = crystallite_dotTemperature(g,i,e)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
do n = 1,5
! --- state update ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
sizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_dotState(g,i,e)%p = 0.0_pReal
crystallite_dotTemperature(g,i,e) = 0.0_pReal
do j = 1,n
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p + a(j,n) * constitutive_RKCK45dotState(j,g,i,e)%p
crystallite_dotTemperature(g,i,e) = crystallite_dotTemperature(g,i,e) + a(j,n) * RKCK45dotTemperature(j,g,i,e)
enddo
constitutive_state(g,i,e)%p(1:sizeDotState) = constitutive_subState0(g,i,e)%p(1:sizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:sizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- update dependent states ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- stress integration ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then
if (.not. crystallite_integrateStress(mode,g,i,e,c(n))) then ! fraction of original time step
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- dot state and RK dot state---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
c(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
else ! everything is fine
constitutive_RKCK45dotState(n+1,g,i,e)%p = constitutive_dotState(g,i,e)%p
RKCK45dotTemperature(n+1,g,i,e) = crystallite_dotTemperature(g,i,e)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
enddo
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE AND TEMPERATURE ---
stateResiduum = 0.0_pReal
temperatureResiduum = 0.0_pReal
relStateResiduum = 0.0_pReal
relTemperatureResiduum = 0.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
sizeDotState = constitutive_sizeDotState(g,i,e)
! --- absolute residuum in state and temperature ---
do j = 1,6
stateResiduum(1:sizeDotState,g,i,e) = stateResiduum(1:sizeDotState,g,i,e) &
+ db(j) * constitutive_RKCK45dotState(j,g,i,e)%p(1:sizeDotState) * crystallite_subdt(g,i,e)
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) + db(j) * RKCK45dotTemperature(j,g,i,e) * crystallite_subdt(g,i,e)
enddo
! --- dot state and dot temperature ---
constitutive_dotState(g,i,e)%p = 0.0_pReal
crystallite_dotTemperature(g,i,e) = 0.0_pReal
do j = 1,6
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p + b(j) * constitutive_RKCK45dotState(j,g,i,e)%p
crystallite_dotTemperature(g,i,e) = crystallite_dotTemperature(g,i,e) + b(j) * RKCK45dotTemperature(j,g,i,e)
enddo
! --- state and temperature update and relative residui ---
constitutive_state(g,i,e)%p(1:sizeDotState) = constitutive_subState0(g,i,e)%p(1:sizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:sizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
forall (s = 1:sizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
relStateResiduum(s,g,i,e) = abs(stateResiduum(s,g,i,e)) / constitutive_state(g,i,e)%p(s)
if (crystallite_Temperature(g,i,e) > 0) &
relTemperatureResiduum(g,i,e) = abs(temperatureResiduum(g,i,e)) / crystallite_Temperature(g,i,e)
! --- state convergence ---
crystallite_todo(g,i,e) = (all( relStateResiduum(:,g,i,e) < rTol_crystalliteState &
.or. abs(stateResiduum(1:sizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:sizeDotState))&
.and. relTemperatureResiduum(g,i,e) < rTol_crystalliteTemperature )
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState',g,i,e
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'updateState: absolute residuum', stateResiduum(1:sizeDotState,g,i,e)
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'updateState: resid tolerance',relStateResiduum(1:sizeDotState,g,i,e) / rTol_crystalliteState
write(6,*)
! write(6,'(a)') 'updateState: RKCK45dotState'
! do j = 1,6
! write(6,'(12(e14.8,x))') constitutive_RKCK45dotState(j,g,i,e)%p(1:sizeDotState)
! write(6,*)
! enddo
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:sizeDotState)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:sizeDotState)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_integrateStress(mode,g,i,e)) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
crystallite_todo(g,i,e) = .false. ! ... integration done
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(6,mode) = debug_StateLoopDistribution(6,mode) + 1
!$OMPEND CRITICAL (distributionState)
else
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- nonlocal convergence check ---
if (verboseDebugger .and. mode==1) write(6,*) 'crystallite_converged',crystallite_converged
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
if ( any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
endif
endif
endsubroutine
!********************************************************************
! integrate stress, state and Temperature with
! 1nd order Euler method with adaptive step size
!********************************************************************
subroutine crystallite_integrateStateAdaptiveEuler(mode,gg,ii,ee)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use numerics, only: rTol_crystalliteState, &
rTol_crystalliteTemperature, &
subStepSizeCryst, &
stepIncreaseCryst
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_Ngrains, &
homogenization_maxNgrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_maxSizeDotState, &
constitutive_state, &
constitutive_aTolState, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
j, &
n, & ! stage index in integration stage loop
sizeDotState, & ! size of dot State
s ! state index
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
stateResiduum, & ! residuum from evolution in micrstructure
relStateResiduum ! relative residuum from evolution in microstructure
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
temperatureResiduum, & ! residuum from evolution in temperature
relTemperatureResiduum ! relative residuum from evolution in temperature
logical singleRun ! flag indicating computation for single (g,i,e) triple
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(:,ee) = ii
gIter(:,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(:,e) = FEsolving_execIP(1:2,e)
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
enddo
singleRun = .false.
endif
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
stateResiduum = 0.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
sizeDotState = constitutive_sizeDotState(g,i,e)
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
else
stateResiduum(1:sizeDotState,g,i,e) = - 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
temperatureResiduum(g,i,e) = - 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- STATE UPDATE (EULER INTEGRATION) ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
sizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:sizeDotState) = constitutive_subState0(g,i,e)%p(1:sizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:sizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
if (.not. crystallite_integrateStress(mode,g,i,e)) then
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- DOT STATE AND TEMPERATURE (HEUN METHOD) ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
if (crystallite_todo(g,i,e)) then
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- ERROR ESTIMATE FOR STATE AND TEMPERATURE (HEUN METHOD) ---
relStateResiduum = 0.0_pReal
relTemperatureResiduum = 0.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode==1)
sizeDotState = constitutive_sizeDotState(g,i,e)
! --- contribution of heun step to absolute residui ---
stateResiduum(1:sizeDotState,g,i,e) = stateResiduum(1:sizeDotState,g,i,e) &
+ 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) &
+ 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
! --- relative residui ---
forall (s = 1:sizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
relStateResiduum(s,g,i,e) = abs(stateResiduum(s,g,i,e)) / constitutive_state(g,i,e)%p(s)
if (crystallite_Temperature(g,i,e) > 0) &
relTemperatureResiduum(g,i,e) = abs(temperatureResiduum(g,i,e)) / crystallite_Temperature(g,i,e)
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState',g,i,e
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'updateState: absolute residuum', stateResiduum(1:sizeDotState,g,i,e)
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'updateState: resid tolerance',relStateResiduum(1:sizeDotState,g,i,e) / rTol_crystalliteState
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:sizeDotState) &
- 2.0_pReal * stateResiduum(1:sizeDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:sizeDotState)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
! --- converged ? ---
if ( all( relStateResiduum(:,g,i,e) < rTol_crystalliteState &
.or. abs(stateResiduum(1:sizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:sizeDotState)) &
.and. relTemperatureResiduum(g,i,e) < rTol_crystalliteTemperature ) then
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
crystallite_todo(g,i,e) = .false. ! ... integration done
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(6,mode) = debug_StateLoopDistribution(6,mode) + 1
!$OMPEND CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- NONLOCAL CONVERGENCE CHECK ---
if (verboseDebugger .and. mode==1) write(6,*) 'crystallite_converged',crystallite_converged
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
if ( any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
endif
endif
endsubroutine
!********************************************************************
! integrate stress, state and Temperature with
! 1st order explicit Euler method
!********************************************************************
subroutine crystallite_integrateStateEuler(mode,gg,ii,ee)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_subState0, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index in element loop
i, & ! integration point index in ip loop
g, & ! grain index in grain loop
n, &
mySizeDotState
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
logical singleRun ! flag indicating computation for single (g,i,e) triple
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(:,ee) = ii
gIter(:,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(:,e) = FEsolving_execIP(1:2,e)
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
enddo
singleRun = .false.
endif
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- DOT STATE AND TEMPERATURE ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g,i,e)
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
crystallite_Temperature(g,i,e),g,i,e)
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
else ! if broken local...
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- UPDATE STATE AND TEMPERATURE ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
mySizeDotState = constitutive_sizeDotState(g,i,e)
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState',g,i,e
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- STRESS INTEGRATION ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g)
if (crystallite_todo(g,i,e)) then
if (crystallite_integrateStress(mode,g,i,e)) then
crystallite_converged(g,i,e) = .true.
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(1,mode) = debug_StateLoopDistribution(1,mode) + 1
!$OMPEND CRITICAL (distributionState)
else ! broken stress integration
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
endif
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- CHECK NON-LOCAL CONVERGENCE ---
crystallite_todo = .false. ! done with integration
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
endif
endif
endsubroutine
!********************************************************************
! integrate stress, state and Temperature with
! adaptive 1st order explicit Euler method
! using Fixed Point Iteration to adapt the stepsize
!********************************************************************
subroutine crystallite_integrateStateFPI(mode,gg,ii,ee)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_e, &
debug_i, &
debug_g, &
debug_StateLoopDistribution
use numerics, only: nState
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use mesh, only: mesh_element, &
mesh_NcpElems
use material, only: homogenization_Ngrains
use constitutive, only: constitutive_sizeDotState, &
constitutive_state, &
constitutive_dotState, &
constitutive_collectDotState, &
constitutive_dotTemperature, &
constitutive_microstructure, &
constitutive_previousDotState, &
constitutive_previousDotState2
implicit none
!*** input variables ***!
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
integer(pInt), optional, intent(in):: ee, & ! element index
ii, & ! integration point index
gg ! grain index
!*** output variables ***!
!*** local variables ***!
integer(pInt) NiterationState, & ! number of iterations in state loop
e, & ! element index in element loop
i, & ! integration point index in ip loop
g ! grain index in grain loop
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
gIter ! bounds for grain iteration
real(pReal) dot_prod12, &
dot_prod22
logical singleRun ! flag indicating computation for single (g,i,e) triple
if (present(ee) .and. present(ii) .and. present(gg)) then
eIter = ee
iIter(:,ee) = ii
gIter(:,ee) = gg
singleRun = .true.
else
eIter = FEsolving_execElem(1:2)
do e = eIter(1),eIter(2)
iIter(:,e) = FEsolving_execIP(1:2,e)
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
enddo
singleRun = .false.
endif
! --+>> PREGUESS FOR STATE <<+--
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- DOT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g, i, e)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- STATE & TEMPERATURE UPDATE ---
crystallite_statedamper = 1.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e) ) then ! if updateState or updateTemperature signals broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --+>> STATE LOOP <<+--
NiterationState = 0_pInt
do while (any(crystallite_todo) .and. NiterationState < nState ) ! convergence loop for crystallite
NiterationState = NiterationState + 1_pInt
! --- STRESS INTEGRATION ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
crystallite_todo(g,i,e) = crystallite_integrateStress(mode,g,i,e)
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e)) then ! if broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
if (verboseDebugger .and. mode == 1) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after stress integration'
!$OMPEND CRITICAL (write2out)
endif
! --- DOT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p ! wind forward dotStates
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
crystallite_orientation, g, i, e)
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- STATE & TEMPERATURE UPDATE ---
crystallite_statedamper = 1.0_pReal
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
selectiveDebugger = (e == debug_e .and. i == debug_i .and. g == debug_g .and. mode == 1)
if (crystallite_todo(g,i,e)) then
! --- state damper ---
dot_prod12 = dot_product( constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p, &
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
dot_prod22 = dot_product( constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p, &
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
if ( dot_prod22 > 0.0_pReal &
.and. ( dot_prod12 < 0.0_pReal &
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) &
crystallite_statedamper(g,i,e) = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
! --- updates ---
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
crystallite_converged(g,i,e) = crystallite_stateConverged(g,i,e) .and. crystallite_temperatureConverged(g,i,e)
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e)) then ! if updateState or updateTemperature signals broken non-local...
!$OMP CRITICAL
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
!$OMPEND CRITICAL
elseif (crystallite_converged(g,i,e)) then
!$OMP CRITICAL (distributionState)
debug_StateLoopDistribution(NiterationState,mode) = debug_StateLoopDistribution(NiterationState,mode) + 1
!$OMPEND CRITICAL (distributionState)
endif
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
! --- UPDATE DEPENDENT STATES ---
!$OMP PARALLEL DO
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
if (crystallite_todo(g,i,e)) then
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
endif
enddo; enddo; enddo
!$OMPEND PARALLEL DO
if (verboseDebugger .and. mode == 1) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after state integration no.', NiterationState
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
! --- CONVERGENCE CHECK ---
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
endif
endif
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
if (verboseDebugger .and. mode == 1) then
!$OMP CRITICAL (write2out)
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after non-local check'
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after state integration no.', NiterationState
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
enddo ! crystallite convergence loop
endsubroutine
!********************************************************************
! update the internal state of the constitutive law
! and tell whether state has converged
!********************************************************************
function crystallite_updateState(g,i,e)
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: rTol_crystalliteState
use constitutive, only: constitutive_dotState, &
constitutive_previousDotState, &
constitutive_sizeDotState, &
constitutive_subState0, &
constitutive_state, &
constitutive_aTolState, &
constitutive_microstructure
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_updateState ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal), dimension(constitutive_sizeDotState(g,i,e)) :: residuum ! residuum from evolution of microstructure
integer(pInt) mySize
mySize = constitutive_sizeDotState(g,i,e)
! correct my dotState
constitutive_dotState(g,i,e)%p(1:mySize) = constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_statedamper(g,i,e) &
+ constitutive_previousDotState(g,i,e)%p(1:mySize) * (1.0_pReal-crystallite_statedamper(g,i,e))
residuum = constitutive_state(g,i,e)%p(1:mySize) - constitutive_subState0(g,i,e)%p(1:mySize) &
- constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_subdt(g,i,e)
if (any(residuum/=residuum)) then ! if NaN occured then return without changing the state...
crystallite_updateState = .false. ! ...indicate state update failed
crystallite_todo(g,i,e) = .false. ! ...no need to calculate any further
if (verboseDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: updateState encountered NaN',g,i,e
!$OMPEND CRITICAL (write2out)
endif
return
endif
constitutive_state(g,i,e)%p(1:mySize) = constitutive_state(g,i,e)%p(1:mySize) - residuum
! setting flag to true if residuum is below relative/absolute tolerance, otherwise set it to false
crystallite_updateState = all( abs(residuum) < constitutive_aTolState(g,i,e)%p(1:mySize) &
.or. abs(residuum) < rTol_crystalliteState*abs(constitutive_state(g,i,e)%p(1:mySize)) )
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
if (crystallite_updateState) then
write(6,*) '::: updateState converged',g,i,e
else
write(6,*) '::: updateState did not converge',g,i,e
endif
write(6,*)
write(6,'(a,f6.1)') 'updateState: crystallite_statedamper',crystallite_statedamper(g,i,e)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState',constitutive_dotState(g,i,e)%p(1:mySize)
write(6,*)
write(6,'(a,/,12(e12.5,x))') 'updateState: new state',constitutive_state(g,i,e)%p(1:mySize)
write(6,*)
write(6,'(a,/,12(f12.1,x))') 'updateState: resid tolerance',abs(residuum / rTol_crystalliteState &
/ constitutive_state(g,i,e)%p(1:mySize))
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
endfunction
!********************************************************************
! update the temperature of the grain
! and tell whether it has converged
!********************************************************************
function crystallite_updateTemperature(&
g,& ! grain number
i,& ! integration point number
e & ! element number
)
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: rTol_crystalliteTemperature
use constitutive, only: constitutive_dotTemperature
use debug, only: debugger
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
!*** output variables ***!
logical crystallite_updateTemperature ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal) residuum ! residuum from evolution of temperature
! calculate the residuum
residuum = crystallite_Temperature(g,i,e) - crystallite_subTemperature0(g,i,e) - &
crystallite_subdt(g,i,e) * &
constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),g,i,e)
! if NaN occured then return without changing the state
if (residuum/=residuum) then
crystallite_updateTemperature = .false. ! indicate update failed
crystallite_todo(g,i,e) = .false. ! ...no need to calculate any further
!$OMP CRITICAL (write2out)
write(6,*) '::: updateTemperature encountered NaN',g,i,e
!$OMPEND CRITICAL (write2out)
return
endif
! update the microstructure
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - residuum
! setting flag to true if residuum is below relative tolerance (or zero Kelvin), otherwise set it to false
crystallite_updateTemperature = crystallite_Temperature(g,i,e) == 0.0_pReal .or. &
abs(residuum) < rTol_crystalliteTemperature*crystallite_Temperature(g,i,e)
return
endfunction
!***********************************************************************
!*** calculation of stress (P) with time integration ***
!*** based on a residuum in Lp and intermediate ***
!*** acceleration of the Newton-Raphson correction ***
!***********************************************************************
function crystallite_integrateStress(&
mode, & ! 1: central solution, 2: stiffness (by perturbation)
g,& ! grain number
i,& ! integration point number
e,& ! element number
fraction &
)
!*** variables and functions from other modules ***!
use prec, only: pReal, &
pInt, &
pLongInt
use numerics, only: nStress, &
aTol_crystalliteStress, &
rTol_crystalliteStress, &
iJacoLpresiduum, &
relevantStrain
use debug, only: debugger, &
selectiveDebugger, &
verboseDebugger, &
debug_cumLpCalls, &
debug_cumLpTicks, &
debug_StressLoopDistribution, &
debug_LeapfrogBreakDistribution
use constitutive, only: constitutive_homogenizedC, &
constitutive_LpAndItsTangent
use math, only: math_mul33x33, &
math_mul66x6, &
math_mul99x99, &
math_inv3x3, &
math_invert3x3, &
math_invert, &
math_det3x3, &
math_I3, &
math_identity2nd, &
math_Mandel66to3333, &
math_Mandel6to33, &
math_mandel33to6
implicit none
!*** input variables ***!
integer(pInt), intent(in):: mode, & ! 1 or 2
e, & ! element index
i, & ! integration point index
g ! grain index
real(pReal), optional, intent(in) :: fraction ! fraction of timestep
!*** output variables ***!
logical crystallite_integrateStress ! flag indicating if integration suceeded
!*** local variables ***!
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
Fp_current, & ! plastic deformation gradient at start of timestep
Fp_new, & ! plastic deformation gradient at end of timestep
Fe_new, & ! elastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuum, & ! current residuum of plastic velocity gradient
residuum_old, & ! last residuum of plastic velocity gradient
A, &
B, &
BT, &
AB, &
BTA
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
real(pReal), dimension(9,9):: dLpdT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
dTdLp, & ! partial derivative of 2nd Piola-Kirchhoff stress
dRdLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
invdRdLp ! inverse of dRdLp
real(pReal), dimension(3,3,3,3):: C ! 4th rank elasticity tensor
real(pReal), dimension(6,6):: C_66 ! simplified 2nd rank elasticity tensor
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
det, & ! determinant
leapfrog, & ! acceleration factor for Newton-Raphson scheme
maxleap, & ! maximum acceleration factor
dt ! time increment
logical error ! flag indicating an error
integer(pInt) NiterationStress, & ! number of stress integrations
dummy, &
h, &
j, &
k, &
l, &
m, &
n, &
jacoCounter ! counter to check for Jacobian update
integer(pLongInt) tick, &
tock, &
tickrate, &
maxticks
! be pessimistic
crystallite_integrateStress = .false.
! only integrate over fraction of timestep?
if (present(fraction)) then
dt = crystallite_subdt(g,i,e) * fraction
Fg_new = crystallite_subF0(:,:,g,i,e) + (crystallite_subF(:,:,g,i,e) - crystallite_subF0(:,:,g,i,e)) * fraction
else
dt = crystallite_subdt(g,i,e)
Fg_new = crystallite_subF(:,:,g,i,e)
endif
! feed local variables
Fp_current = crystallite_subFp0(:,:,g,i,e)
Tstar_v = crystallite_Tstar_v(:,g,i,e)
Lpguess_old = crystallite_Lp(:,:,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
Lpguess = crystallite_Lp(:,:,g,i,e) ! ... and take it as first guess
! inversion of Fp_current...
invFp_current = math_inv3x3(Fp_current)
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress failed on invFp_current inversion',g,i,e
write(6,*)
write(6,'(a11,i3,x,i2,x,i5,/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
!$OMPEND CRITICAL (write2out)
endif
return
endif
A = math_mul33x33(transpose(invFp_current), math_mul33x33(transpose(Fg_new),math_mul33x33(Fg_new,invFp_current)))
! get elasticity tensor
C_66 = constitutive_homogenizedC(g,i,e)
! if (debugger) write(6,'(a,/,6(6(f10.4,x)/))') 'elasticity',C_66(1:6,:)/1e9
C = math_Mandel66to3333(C_66)
! start LpLoop with no acceleration
NiterationStress = 0_pInt
leapfrog = 1.0_pReal
maxleap = 1024.0_pReal
jacoCounter = 0_pInt
LpLoop: do
! increase loop counter
NiterationStress = NiterationStress + 1
! too many loops required ?
if (NiterationStress > nStress) then
if (verboseDebugger) then
!$OMP CRITICAL (write2out)
write(6,*) '::: integrateStress reached loop limit at ',g,i,e
write(6,*)
!$OMPEND CRITICAL (write2out)
endif
return
endif
B = math_I3 - dt*Lpguess
BT = transpose(B)
AB = math_mul33x33(A,B)
BTA = math_mul33x33(BT,A)
! calculate 2nd Piola-Kirchhoff stress tensor
Tstar_v = 0.5_pReal*math_mul66x6(C_66,math_mandel33to6(math_mul33x33(BT,AB)-math_I3))
p_hydro = sum(Tstar_v(1:3))/3.0_pReal
forall(n=1:3) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
! calculate plastic velocity gradient and its tangent according to constitutive law
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
call constitutive_LpAndItsTangent(Lp_constitutive, dLpdT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
debug_cumLpTicks = debug_cumLpTicks + tock-tick
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress at ' ,g,i,e, ' ; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive', Lp_constitutive
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess', Lpguess
!$OMPEND CRITICAL (write2out)
endif
! update current residuum
residuum = Lpguess - Lp_constitutive
! Check for convergence of loop
if (.not.(any(residuum/=residuum)) .and. & ! exclude any NaN in residuum
( maxval(abs(residuum)) < aTol_crystalliteStress .or. & ! below absolute tolerance .or.
( any(abs(dt*Lpguess) > relevantStrain) .and. & ! worth checking? .and.
maxval(abs(residuum/Lpguess), abs(dt*Lpguess) > relevantStrain) < rTol_crystalliteStress & ! below relative tolerance
) &
) &
) &
exit LpLoop
! NaN occured at regular speed?
if (any(residuum/=residuum) .and. leapfrog == 1.0) then
if (debugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,i3,x,a)') '::: integrateStress encountered NaN at ',g,i,e,&
'; iteration ', NiterationStress, &
'>> returning..!'
!$OMPEND CRITICAL (write2out)
endif
return
! something went wrong at accelerated speed?
elseif (leapfrog > 1.0_pReal .and. & ! at fast pace .and.
( sum(residuum*residuum) > sum(residuum_old*residuum_old) .or. & ! worse residuum .or.
sum(residuum*residuum_old) < 0.0_pReal .or. & ! residuum changed sign (overshoot) .or.
any(residuum/=residuum) & ! NaN occured
) &
) then
if (verboseDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress encountered high-speed crash at ',g,i,e,&
'; iteration ', NiterationStress
!$OMPEND CRITICAL (write2out)
endif
maxleap = 0.5_pReal * leapfrog ! limit next acceleration
leapfrog = 1.0_pReal ! grinding halt
jacoCounter = 0_pInt ! reset counter for Jacobian update (we want to do an update next time!)
! restore old residuum and Lp
Lpguess = Lpguess_old
residuum = residuum_old
debug_LeapfrogBreakDistribution(NiterationStress,mode) = debug_LeapfrogBreakDistribution(NiterationStress,mode) + 1
! residuum got better
else
! calculate Jacobian for correction term
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
dTdLp = 0.0_pReal
do h=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3
! forall (h=1:3,j=1:3,k=1:3,l=1:3,m=1:3) &
dTdLp(3*(h-1)+j,3*(k-1)+l) = dTdLp(3*(h-1)+j,3*(k-1)+l) + C(h,j,l,m)*AB(k,m)+C(h,j,m,l)*BTA(m,k)
enddo; enddo; enddo; enddo; enddo
dTdLp = -0.5_pReal*dt*dTdLp
dRdLp = math_identity2nd(9) - math_mul99x99(dLpdT_constitutive,dTdLp)
invdRdLp = 0.0_pReal
call math_invert(9,dRdLp,invdRdLp,dummy,error) ! invert dR/dLp --> dLp/dR
if (error) then
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress failed on dR/dLp inversion at ',g,i,e, &
'; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,9(9(e15.3,x)/))') 'dRdLp',dRdLp
write(6,'(a,/,9(9(e15.3,x)/))') 'dLpdT_constitutive',dLpdT_constitutive
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive',Lp_constitutive
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess',Lpguess
!$OMPEND CRITICAL (write2out)
endif
return
else
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress did dR/dLp inversion at ',g,i,e, &
'; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,9(9(e15.3,x)/))') 'dRdLp',dRdLp
write(6,'(a,/,9(9(e15.3,x)/))') 'dLpdT_constitutive',dLpdT_constitutive
!$OMPEND CRITICAL (write2out)
endif
endif
endif
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
! remember current residuum and Lpguess
residuum_old = residuum
Lpguess_old = Lpguess
! accelerate?
if (NiterationStress > 1 .and. leapfrog < maxleap) leapfrog = 2.0_pReal * leapfrog
endif
! leapfrog to updated Lp
do k=1,3; do l=1,3; do m=1,3; do n=1,3
Lpguess(k,l) = Lpguess(k,l) - leapfrog*invdRdLp(3*(k-1)+l,3*(m-1)+n)*residuum(m,n)
enddo; enddo; enddo; enddo
enddo LpLoop
! calculate new plastic and elastic deformation gradient
invFp_new = math_mul33x33(invFp_current,B)
invFp_new = invFp_new/math_det3x3(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
call math_invert3x3(invFp_new,Fp_new,det,error)
if (error) then
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress failed on invFp_new inversion at ',g,i,e, &
' ; iteration ', NiterationStress
write(6,*)
write(6,'(a11,3(i3,x),/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new
!$OMPEND CRITICAL (write2out)
endif
return
endif
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
! add volumetric component to 2nd Piola-Kirchhoff stress
forall (n=1:3) Tstar_v(n) = Tstar_v(n) + p_hydro
! calculate 1st Piola-Kirchhoff stress
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_new,math_mul33x33(math_Mandel6to33(Tstar_v),transpose(invFp_new)))
! store local values in global variables
crystallite_Lp(:,:,g,i,e) = Lpguess
crystallite_Tstar_v(:,g,i,e) = Tstar_v
crystallite_Fp(:,:,g,i,e) = Fp_new
crystallite_Fe(:,:,g,i,e) = Fe_new
crystallite_invFp(:,:,g,i,e) = invFp_new
! set return flag to true
crystallite_integrateStress = .true.
if (verboseDebugger .and. selectiveDebugger) then
!$OMP CRITICAL (write2out)
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress converged at ',g,i,e,' ; iteration ', NiterationStress
write(6,*)
write(6,'(a,/,3(3(f12.7,x)/))') 'P / MPa',crystallite_P(:,:,g,i,e)/1e6
write(6,'(a,/,3(3(f12.7,x)/))') 'Cauchy / MPa',math_mul33x33(crystallite_P(:,:,g,i,e),transpose(Fg_new))/1e6/math_det3x3(Fg_new)
write(6,'(a,/,3(3(f12.7,x)/))') 'Fe Lp Fe^-1',math_mul33x33(Fe_new,math_mul33x33(crystallite_Lp(:,:,g,i,e),math_inv3x3(Fe_new)))
write(6,'(a,/,3(3(f12.7,x)/))') 'Fp',crystallite_Fp(:,:,g,i,e)
!$OMP END CRITICAL (write2out)
endif
!$OMP CRITICAL (distributionStress)
debug_StressLoopDistribution(NiterationStress,mode) = debug_StressLoopDistribution(NiterationStress,mode) + 1
!$OMPEND CRITICAL (distributionStress)
return
endfunction
!********************************************************************
! calculates orientations and disorientations (in case of single grain ips)
!********************************************************************
subroutine crystallite_orientations()
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use math, only: math_pDecomposition, &
math_RtoQuaternion, &
math_QuaternionDisorientation, &
inDeg, &
math_qConj
use FEsolving, only: FEsolving_execElem, &
FEsolving_execIP
use IO, only: IO_warning
use material, only: material_phase, &
homogenization_Ngrains, &
phase_constitution, &
phase_localConstitution, &
phase_constitutionInstance
use mesh, only: mesh_element, &
mesh_ipNeighborhood, &
FE_NipNeighbors
use debug, only: debugger, &
debug_e, debug_i, debug_g, &
verboseDebugger, &
selectiveDebugger
use constitutive_nonlocal, only: constitutive_nonlocal_structure, &
constitutive_nonlocal_updateCompatibility
implicit none
!*** input variables ***!
!*** output variables ***!
!*** local variables ***!
integer(pInt) e, & ! element index
i, & ! integration point index
g, & ! grain index
n, & ! neighbor index
neighboring_e, & ! element index of my neighbor
neighboring_i, & ! integration point index of my neighbor
myPhase, & ! phase
neighboringPhase, &
myInstance, & ! instance of constitution
neighboringInstance, &
myStructure, & ! lattice structure
neighboringStructure
real(pReal), dimension(3,3) :: U, R
logical error
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
do g = 1,homogenization_Ngrains(mesh_element(3,e))
call math_pDecomposition(crystallite_Fe(:,:,g,i,e), U, R, error) ! polar decomposition of Fe
if (error) then
call IO_warning(650, e, i, g)
crystallite_orientation(:,g,i,e) = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! fake orientation
else
crystallite_orientation(:,g,i,e) = math_RtoQuaternion(transpose(R))
endif
crystallite_rotation(:,g,i,e) = &
math_QuaternionDisorientation( math_qConj(crystallite_orientation(:,g,i,e)), & ! calculate grainrotation
math_qConj(crystallite_orientation0(:,g,i,e)), &
0_pInt ) ! we don't want symmetry here
enddo
enddo
enddo
!$OMPEND PARALLEL DO
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
! --- we use crystallite_orientation from above, so need a seperate loop
!$OMP PARALLEL DO
do e = FEsolving_execElem(1),FEsolving_execElem(2)
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
selectiveDebugger = (e == debug_e .and. i == debug_i)
myPhase = material_phase(1,i,e) ! get my phase
if (.not. phase_localConstitution(myPhase)) then ! if nonlocal model
myInstance = phase_constitutionInstance(myPhase)
myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure
! --- calculate disorientation between me and my neighbor ---
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
if (.not. phase_localConstitution(neighboringPhase)) then ! neighbor got also nonlocal constitution
neighboringInstance = phase_constitutionInstance(neighboringPhase)
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
crystallite_disorientation(:,n,1,i,e) = &
math_QuaternionDisorientation( crystallite_orientation(:,1,i,e), &
crystallite_orientation(:,1,neighboring_i,neighboring_e), &
crystallite_symmetryID(1,i,e)) ! calculate disorientation
else ! for neighbor with different phase
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
endif
else ! for neighbor with local constitution
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
endif
else ! no existing neighbor
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
endif
enddo
! --- calculate compatibility and transmissivity between me and my neighbor ---
call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e)
endif
enddo
enddo
!$OMPEND PARALLEL DO
endsubroutine
!********************************************************************
! return results of particular grain
!********************************************************************
function crystallite_postResults(&
dt,& ! time increment
g,& ! grain number
i,& ! integration point number
e & ! element number
)
!*** variables and functions from other modules ***!
use prec, only: pInt, &
pReal
use math, only: math_QuaternionToEuler, &
math_QuaternionToAxisAngle, &
math_mul33x33, &
math_I3, &
inDeg, &
math_Mandel6to33
use mesh, only: mesh_element
use material, only: microstructure_crystallite, &
crystallite_Noutput, &
material_phase, &
material_volume
use constitutive, only: constitutive_sizePostResults, &
constitutive_postResults
implicit none
!*** input variables ***!
integer(pInt), intent(in):: e, & ! element index
i, & ! integration point index
g ! grain index
real(pReal), intent(in):: dt ! time increment
!*** output variables ***!
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
!*** local variables ***!
real(pReal), dimension(3,3) :: Ee
integer(pInt) k,l,o,c,crystID,mySize
logical error
crystID = microstructure_crystallite(mesh_element(4,e))
crystallite_postResults = 0.0_pReal
c = 0_pInt
crystallite_postResults(c+1) = crystallite_sizePostResults(crystID); c = c+1_pInt ! size of results from cryst
do o = 1,crystallite_Noutput(crystID)
select case(crystallite_output(o,crystID))
case ('phase')
crystallite_postResults(c+1) = material_phase(g,i,e) ! phaseID of grain
c = c + 1_pInt
case ('volume')
crystallite_postResults(c+1) = material_volume(g,i,e) ! grain volume (not fraction but absolute, right?)
c = c + 1_pInt
case ('orientation')
crystallite_postResults(c+1:c+4) = &
crystallite_orientation(:,g,i,e) ! grain orientation as quaternion
c = c + 4_pInt
case ('eulerangles')
crystallite_postResults(c+1:c+3) = inDeg * &
math_QuaternionToEuler(crystallite_orientation(:,g,i,e)) ! grain orientation as Euler angles in degree
c = c + 3_pInt
case ('grainrotation')
crystallite_postResults(c+1:c+4) = &
math_QuaternionToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
c = c + 4_pInt
case ('defgrad','f')
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_partionedF(:,:,g,i,e),(/mySize/))
c = c + mySize
case ('fe')
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fe(:,:,g,i,e),(/mySize/))
c = c + mySize
case ('ee')
Ee = 0.5_pReal * (math_mul33x33(transpose(crystallite_Fe(:,:,g,i,e)), crystallite_Fe(:,:,g,i,e)) - math_I3)
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(Ee(:,:),(/mySize/))
c = c + mySize
case ('fp')
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fp(:,:,g,i,e),(/mySize/))
c = c + mySize
case ('p','firstpiola','1stpiola')
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_P(:,:,g,i,e),(/mySize/))
c = c + mySize
case ('s','tstar','secondpiola','2ndpiola')
mySize = 9_pInt
crystallite_postResults(c+1:c+1+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(:,g,i,e)),(/mySize/))
c = c + mySize
end select
enddo
crystallite_postResults(c+1) = constitutive_sizePostResults(g,i,e); c = c+1_pInt ! size of constitutive results
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = &
constitutive_postResults(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
crystallite_Temperature(g,i,e), crystallite_disorientation(:,:,g,i,e), dt, &
crystallite_subdt(g,i,e), g, i, e)
c = c + constitutive_sizePostResults(g,i,e)
return
endfunction
END MODULE
!##############################################################