DAMASK_EICMD/src/phase_mechanical_plastic_ph...

547 lines
24 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
!--------------------------------------------------------------------------------------------------
submodule(phase:plastic) phenopowerlaw
type :: tParameters
real(pReal) :: &
dot_gamma_0_sl = 1.0_pReal, & !< reference shear strain rate for slip
dot_gamma_0_tw = 1.0_pReal, & !< reference shear strain rate for twin
n_sl = 1.0_pReal, & !< stress exponent for slip
n_tw = 1.0_pReal, & !< stress exponent for twin
f_sl_sat_tw = 1.0_pReal, & !< push-up factor for slip saturation due to twinning
c_1 = 1.0_pReal, &
c_2 = 1.0_pReal, &
c_3 = 1.0_pReal, &
c_4 = 1.0_pReal, &
h_0_sl_sl = 1.0_pReal, & !< reference hardening slip - slip
h_0_tw_sl = 1.0_pReal, & !< reference hardening twin - slip
h_0_tw_tw = 1.0_pReal, & !< reference hardening twin - twin
a_sl = 1.0_pReal
real(pReal), allocatable, dimension(:) :: &
xi_inf_sl, & !< maximum critical shear stress for slip
h_int, & !< per family hardening activity (optional)
gamma_tw_char !< characteristic shear for twins
real(pReal), allocatable, dimension(:,:) :: &
h_sl_sl, & !< slip resistance from slip activity
h_sl_tw, & !< slip resistance from twin activity
h_tw_sl, & !< twin resistance from slip activity
h_tw_tw !< twin resistance from twin activity
real(pReal), allocatable, dimension(:,:,:) :: &
P_sl, &
P_tw, &
nonSchmid_pos, &
nonSchmid_neg
integer :: &
sum_N_sl, & !< total number of active slip system
sum_N_tw !< total number of active twin systems
logical :: &
nonSchmidActive = .false.
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type :: tPhenopowerlawState
real(pReal), pointer, dimension(:,:) :: &
xi_slip, &
xi_twin, &
gamma_slip, &
gamma_twin
end type tPhenopowerlawState
!--------------------------------------------------------------------------------------------------
! containers for parameters and state
type(tParameters), allocatable, dimension(:) :: param
type(tPhenopowerlawState), allocatable, dimension(:) :: &
dotState, &
state
contains
!--------------------------------------------------------------------------------------------------
!> @brief Perform module initialization.
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function plastic_phenopowerlaw_init() result(myPlasticity)
logical, dimension(:), allocatable :: myPlasticity
integer :: &
p, i, &
Nconstituents, &
sizeState, sizeDotState, &
startIndex, endIndex
integer, dimension(:), allocatable :: &
N_sl, N_tw
real(pReal), dimension(:), allocatable :: &
xi_0_sl, & !< initial critical shear stress for slip
xi_0_tw, & !< initial critical shear stress for twin
a !< non-Schmid coefficients
character(len=pStringLen) :: &
extmsg = ''
class(tNode), pointer :: &
phases, &
phase, &
mech, &
pl
myPlasticity = plastic_active('phenopowerlaw')
if(count(myPlasticity) == 0) return
print'(/,a)', ' <<<+- phase:mechanical:plastic:phenopowerlaw init -+>>>'
print'(a,i0)', ' # phases: ',count(myPlasticity); flush(IO_STDOUT)
phases => config_material%get('phase')
allocate(param(phases%length))
allocate(state(phases%length))
allocate(dotState(phases%length))
do p = 1, phases%length
if(.not. myPlasticity(p)) cycle
phase => phases%get(p)
mech => phase%get('mechanics')
i = p
associate(prm => param(i), &
dot => dotState(i), &
stt => state(i))
pl => mech%get('plasticity')
!--------------------------------------------------------------------------------------------------
! slip related parameters
N_sl = pl%get_asInts('N_sl',defaultVal=emptyIntArray)
prm%sum_N_sl = sum(abs(N_sl))
slipActive: if (prm%sum_N_sl > 0) then
prm%P_sl = lattice_SchmidMatrix_slip(N_sl,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
if(phase%get_asString('lattice') == 'cI') then
a = pl%get_asFloats('a_nonSchmid',defaultVal=emptyRealArray)
if(size(a) > 0) prm%nonSchmidActive = .true.
prm%nonSchmid_pos = lattice_nonSchmidMatrix(N_sl,a,+1)
prm%nonSchmid_neg = lattice_nonSchmidMatrix(N_sl,a,-1)
else
prm%nonSchmid_pos = prm%P_sl
prm%nonSchmid_neg = prm%P_sl
endif
prm%h_sl_sl = lattice_interaction_SlipBySlip(N_sl, &
pl%get_asFloats('h_sl_sl'), &
phase%get_asString('lattice'))
xi_0_sl = pl%get_asFloats('xi_0_sl', requiredSize=size(N_sl))
prm%xi_inf_sl = pl%get_asFloats('xi_inf_sl', requiredSize=size(N_sl))
prm%h_int = pl%get_asFloats('h_int', requiredSize=size(N_sl), &
defaultVal=[(0.0_pReal,i=1,size(N_sl))])
prm%dot_gamma_0_sl = pl%get_asFloat('dot_gamma_0_sl')
prm%n_sl = pl%get_asFloat('n_sl')
prm%a_sl = pl%get_asFloat('a_sl')
prm%h_0_sl_sl = pl%get_asFloat('h_0_sl_sl')
! expand: family => system
xi_0_sl = math_expand(xi_0_sl, N_sl)
prm%xi_inf_sl = math_expand(prm%xi_inf_sl,N_sl)
prm%h_int = math_expand(prm%h_int, N_sl)
! sanity checks
if ( prm%dot_gamma_0_sl <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_sl'
if ( prm%a_sl <= 0.0_pReal) extmsg = trim(extmsg)//' a_sl'
if ( prm%n_sl <= 0.0_pReal) extmsg = trim(extmsg)//' n_sl'
if (any(xi_0_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_0_sl'
if (any(prm%xi_inf_sl <= 0.0_pReal)) extmsg = trim(extmsg)//' xi_inf_sl'
else slipActive
xi_0_sl = emptyRealArray
allocate(prm%xi_inf_sl,prm%h_int,source=emptyRealArray)
allocate(prm%h_sl_sl(0,0))
endif slipActive
!--------------------------------------------------------------------------------------------------
! twin related parameters
N_tw = pl%get_asInts('N_tw', defaultVal=emptyIntArray)
prm%sum_N_tw = sum(abs(N_tw))
twinActive: if (prm%sum_N_tw > 0) then
prm%P_tw = lattice_SchmidMatrix_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
prm%h_tw_tw = lattice_interaction_TwinByTwin(N_tw,&
pl%get_asFloats('h_tw_tw'), &
phase%get_asString('lattice'))
prm%gamma_tw_char = lattice_characteristicShear_twin(N_tw,phase%get_asString('lattice'),&
phase%get_asFloat('c/a',defaultVal=0.0_pReal))
xi_0_tw = pl%get_asFloats('xi_0_tw',requiredSize=size(N_tw))
prm%c_1 = pl%get_asFloat('c_1',defaultVal=0.0_pReal)
prm%c_2 = pl%get_asFloat('c_2',defaultVal=1.0_pReal)
prm%c_3 = pl%get_asFloat('c_3',defaultVal=0.0_pReal)
prm%c_4 = pl%get_asFloat('c_4',defaultVal=0.0_pReal)
prm%dot_gamma_0_tw = pl%get_asFloat('dot_gamma_0_tw')
prm%n_tw = pl%get_asFloat('n_tw')
prm%f_sl_sat_tw = pl%get_asFloat('f_sl_sat_tw')
prm%h_0_tw_tw = pl%get_asFloat('h_0_tw_tw')
! expand: family => system
xi_0_tw = math_expand(xi_0_tw,N_tw)
! sanity checks
if (prm%dot_gamma_0_tw <= 0.0_pReal) extmsg = trim(extmsg)//' dot_gamma_0_tw'
if (prm%n_tw <= 0.0_pReal) extmsg = trim(extmsg)//' n_tw'
else twinActive
xi_0_tw = emptyRealArray
allocate(prm%gamma_tw_char,source=emptyRealArray)
allocate(prm%h_tw_tw(0,0))
endif twinActive
!--------------------------------------------------------------------------------------------------
! slip-twin related parameters
slipAndTwinActive: if (prm%sum_N_sl > 0 .and. prm%sum_N_tw > 0) then
prm%h_0_tw_sl = pl%get_asFloat('h_0_tw_sl')
prm%h_sl_tw = lattice_interaction_SlipByTwin(N_sl,N_tw,&
pl%get_asFloats('h_sl_tw'), &
phase%get_asString('lattice'))
prm%h_tw_sl = lattice_interaction_TwinBySlip(N_tw,N_sl,&
pl%get_asFloats('h_tw_sl'), &
phase%get_asString('lattice'))
else slipAndTwinActive
allocate(prm%h_sl_tw(prm%sum_N_sl,prm%sum_N_tw)) ! at least one dimension is 0
allocate(prm%h_tw_sl(prm%sum_N_tw,prm%sum_N_sl)) ! at least one dimension is 0
prm%h_0_tw_sl = 0.0_pReal
endif slipAndTwinActive
!--------------------------------------------------------------------------------------------------
! output pararameters
#if defined (__GFORTRAN__)
prm%output = output_asStrings(pl)
#else
prm%output = pl%get_asStrings('output',defaultVal=emptyStringArray)
#endif
!--------------------------------------------------------------------------------------------------
! allocate state arrays
Nconstituents = count(material_phaseAt2 == p)
sizeDotState = size(['xi_sl ','gamma_sl']) * prm%sum_N_sl &
+ size(['xi_tw ','gamma_tw']) * prm%sum_N_tw
sizeState = sizeDotState
call phase_allocateState(plasticState(p),Nconstituents,sizeState,sizeDotState,0)
!--------------------------------------------------------------------------------------------------
! state aliases and initialization
startIndex = 1
endIndex = prm%sum_N_sl
stt%xi_slip => plasticState(p)%state (startIndex:endIndex,:)
stt%xi_slip = spread(xi_0_sl, 2, Nconstituents)
dot%xi_slip => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tw
stt%xi_twin => plasticState(p)%state (startIndex:endIndex,:)
stt%xi_twin = spread(xi_0_tw, 2, Nconstituents)
dot%xi_twin => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_xi',defaultVal=1.0_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_xi'
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_sl
stt%gamma_slip => plasticState(p)%state (startIndex:endIndex,:)
dot%gamma_slip => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma'
! global alias
plasticState(p)%slipRate => plasticState(p)%dotState(startIndex:endIndex,:)
startIndex = endIndex + 1
endIndex = endIndex + prm%sum_N_tw
stt%gamma_twin => plasticState(p)%state (startIndex:endIndex,:)
dot%gamma_twin => plasticState(p)%dotState(startIndex:endIndex,:)
plasticState(p)%atol(startIndex:endIndex) = pl%get_asFloat('atol_gamma',defaultVal=1.0e-6_pReal)
if(any(plasticState(p)%atol(startIndex:endIndex) < 0.0_pReal)) extmsg = trim(extmsg)//' atol_gamma'
plasticState(p)%state0 = plasticState(p)%state ! ToDo: this could be done centrally
end associate
!--------------------------------------------------------------------------------------------------
! exit if any parameter is out of range
if (extmsg /= '') call IO_error(211,ext_msg=trim(extmsg)//'(phenopowerlaw)')
enddo
end function plastic_phenopowerlaw_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculate plastic velocity gradient and its tangent.
!> @details asummes that deformation by dislocation glide affects twinned and untwinned volume
! equally (Taylor assumption). Twinning happens only in untwinned volume
!--------------------------------------------------------------------------------------------------
pure module subroutine phenopowerlaw_LpAndItsTangent(Lp,dLp_dMp,Mp,ph,me)
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLp_dMp !< derivative of Lp with respect to the Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
me
integer :: &
i,k,l,m,n
real(pReal), dimension(param(ph)%sum_N_sl) :: &
gdot_slip_pos,gdot_slip_neg, &
dgdot_dtauslip_pos,dgdot_dtauslip_neg
real(pReal), dimension(param(ph)%sum_N_tw) :: &
gdot_twin,dgdot_dtautwin
Lp = 0.0_pReal
dLp_dMp = 0.0_pReal
associate(prm => param(ph))
call kinetics_slip(Mp,ph,me,gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg)
slipSystems: do i = 1, prm%sum_N_sl
Lp = Lp + (gdot_slip_pos(i)+gdot_slip_neg(i))*prm%P_sl(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ dgdot_dtauslip_pos(i) * prm%P_sl(k,l,i) * prm%nonSchmid_pos(m,n,i) &
+ dgdot_dtauslip_neg(i) * prm%P_sl(k,l,i) * prm%nonSchmid_neg(m,n,i)
enddo slipSystems
call kinetics_twin(Mp,ph,me,gdot_twin,dgdot_dtautwin)
twinSystems: do i = 1, prm%sum_N_tw
Lp = Lp + gdot_twin(i)*prm%P_tw(1:3,1:3,i)
forall (k=1:3,l=1:3,m=1:3,n=1:3) &
dLp_dMp(k,l,m,n) = dLp_dMp(k,l,m,n) &
+ dgdot_dtautwin(i)*prm%P_tw(k,l,i)*prm%P_tw(m,n,i)
enddo twinSystems
end associate
end subroutine phenopowerlaw_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief Calculate the rate of change of microstructure.
!--------------------------------------------------------------------------------------------------
module subroutine phenopowerlaw_dotState(Mp,ph,me)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
me
real(pReal) :: &
c_SlipSlip,c_TwinSlip,c_TwinTwin, &
xi_slip_sat_offset,&
sumGamma,sumF
real(pReal), dimension(param(ph)%sum_N_sl) :: &
left_SlipSlip,right_SlipSlip, &
gdot_slip_pos,gdot_slip_neg
associate(prm => param(ph), stt => state(ph), &
dot => dotState(ph))
sumGamma = sum(stt%gamma_slip(:,me))
sumF = sum(stt%gamma_twin(:,me)/prm%gamma_tw_char)
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
c_SlipSlip = prm%h_0_sl_sl * (1.0_pReal + prm%c_1*sumF** prm%c_2)
c_TwinSlip = prm%h_0_tw_sl * sumGamma**prm%c_3
c_TwinTwin = prm%h_0_tw_tw * sumF**prm%c_4
!--------------------------------------------------------------------------------------------------
! calculate left and right vectors
left_SlipSlip = 1.0_pReal + prm%h_int
xi_slip_sat_offset = prm%f_sl_sat_tw*sqrt(sumF)
right_SlipSlip = abs(1.0_pReal-stt%xi_slip(:,me) / (prm%xi_inf_sl+xi_slip_sat_offset)) **prm%a_sl &
* sign(1.0_pReal,1.0_pReal-stt%xi_slip(:,me) / (prm%xi_inf_sl+xi_slip_sat_offset))
!--------------------------------------------------------------------------------------------------
! shear rates
call kinetics_slip(Mp,ph,me,gdot_slip_pos,gdot_slip_neg)
dot%gamma_slip(:,me) = abs(gdot_slip_pos+gdot_slip_neg)
call kinetics_twin(Mp,ph,me,dot%gamma_twin(:,me))
!--------------------------------------------------------------------------------------------------
! hardening
dot%xi_slip(:,me) = c_SlipSlip * left_SlipSlip * &
matmul(prm%h_sl_sl,dot%gamma_slip(:,me)*right_SlipSlip) &
+ matmul(prm%h_sl_tw,dot%gamma_twin(:,me))
dot%xi_twin(:,me) = c_TwinSlip * matmul(prm%h_tw_sl,dot%gamma_slip(:,me)) &
+ c_TwinTwin * matmul(prm%h_tw_tw,dot%gamma_twin(:,me))
end associate
end subroutine phenopowerlaw_dotState
!--------------------------------------------------------------------------------------------------
!> @brief Write results to HDF5 output file.
!--------------------------------------------------------------------------------------------------
module subroutine plastic_phenopowerlaw_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(ph), stt => state(ph))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('xi_sl')
if(prm%sum_N_sl>0) call results_writeDataset(group,stt%xi_slip, trim(prm%output(o)), &
'resistance against plastic slip','Pa')
case('gamma_sl')
if(prm%sum_N_sl>0) call results_writeDataset(group,stt%gamma_slip,trim(prm%output(o)), &
'plastic shear','1')
case('xi_tw')
if(prm%sum_N_tw>0) call results_writeDataset(group,stt%xi_twin, trim(prm%output(o)), &
'resistance against twinning','Pa')
case('gamma_tw')
if(prm%sum_N_tw>0) call results_writeDataset(group,stt%gamma_twin,trim(prm%output(o)), &
'twinning shear','1')
end select
enddo outputsLoop
end associate
end subroutine plastic_phenopowerlaw_results
!--------------------------------------------------------------------------------------------------
!> @brief Calculate shear rates on slip systems and their derivatives with respect to resolved
! stress.
!> @details Derivatives are calculated only optionally.
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
! have the optional arguments at the end.
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics_slip(Mp,ph,me, &
gdot_slip_pos,gdot_slip_neg,dgdot_dtau_slip_pos,dgdot_dtau_slip_neg)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
me
real(pReal), intent(out), dimension(param(ph)%sum_N_sl) :: &
gdot_slip_pos, &
gdot_slip_neg
real(pReal), intent(out), optional, dimension(param(ph)%sum_N_sl) :: &
dgdot_dtau_slip_pos, &
dgdot_dtau_slip_neg
real(pReal), dimension(param(ph)%sum_N_sl) :: &
tau_slip_pos, &
tau_slip_neg
integer :: i
associate(prm => param(ph), stt => state(ph))
do i = 1, prm%sum_N_sl
tau_slip_pos(i) = math_tensordot(Mp,prm%nonSchmid_pos(1:3,1:3,i))
tau_slip_neg(i) = merge(math_tensordot(Mp,prm%nonSchmid_neg(1:3,1:3,i)), &
0.0_pReal, prm%nonSchmidActive)
enddo
where(dNeq0(tau_slip_pos))
gdot_slip_pos = prm%dot_gamma_0_sl * merge(0.5_pReal,1.0_pReal, prm%nonSchmidActive) & ! 1/2 if non-Schmid active
* sign(abs(tau_slip_pos/stt%xi_slip(:,me))**prm%n_sl, tau_slip_pos)
else where
gdot_slip_pos = 0.0_pReal
end where
where(dNeq0(tau_slip_neg))
gdot_slip_neg = prm%dot_gamma_0_sl * 0.5_pReal & ! only used if non-Schmid active, always 1/2
* sign(abs(tau_slip_neg/stt%xi_slip(:,me))**prm%n_sl, tau_slip_neg)
else where
gdot_slip_neg = 0.0_pReal
end where
if (present(dgdot_dtau_slip_pos)) then
where(dNeq0(gdot_slip_pos))
dgdot_dtau_slip_pos = gdot_slip_pos*prm%n_sl/tau_slip_pos
else where
dgdot_dtau_slip_pos = 0.0_pReal
end where
endif
if (present(dgdot_dtau_slip_neg)) then
where(dNeq0(gdot_slip_neg))
dgdot_dtau_slip_neg = gdot_slip_neg*prm%n_sl/tau_slip_neg
else where
dgdot_dtau_slip_neg = 0.0_pReal
end where
endif
end associate
end subroutine kinetics_slip
!--------------------------------------------------------------------------------------------------
!> @brief Calculate shear rates on twin systems and their derivatives with respect to resolved
! stress. Twinning is assumed to take place only in untwinned volume.
!> @details Derivatives are calculated only optionally.
! NOTE: Against the common convention, the result (i.e. intent(out)) variables are the last to
! have the optional arguments at the end.
!--------------------------------------------------------------------------------------------------
pure subroutine kinetics_twin(Mp,ph,me,&
gdot_twin,dgdot_dtau_twin)
real(pReal), dimension(3,3), intent(in) :: &
Mp !< Mandel stress
integer, intent(in) :: &
ph, &
me
real(pReal), dimension(param(ph)%sum_N_tw), intent(out) :: &
gdot_twin
real(pReal), dimension(param(ph)%sum_N_tw), intent(out), optional :: &
dgdot_dtau_twin
real(pReal), dimension(param(ph)%sum_N_tw) :: &
tau_twin
integer :: i
associate(prm => param(ph), stt => state(ph))
do i = 1, prm%sum_N_tw
tau_twin(i) = math_tensordot(Mp,prm%P_tw(1:3,1:3,i))
enddo
where(tau_twin > 0.0_pReal)
gdot_twin = (1.0_pReal-sum(stt%gamma_twin(:,me)/prm%gamma_tw_char)) & ! only twin in untwinned volume fraction
* prm%dot_gamma_0_tw*(abs(tau_twin)/stt%xi_twin(:,me))**prm%n_tw
else where
gdot_twin = 0.0_pReal
end where
if (present(dgdot_dtau_twin)) then
where(dNeq0(gdot_twin))
dgdot_dtau_twin = gdot_twin*prm%n_tw/tau_twin
else where
dgdot_dtau_twin = 0.0_pReal
end where
endif
end associate
end subroutine kinetics_twin
end submodule phenopowerlaw