2824 lines
122 KiB
Fortran
2824 lines
122 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Christoph Koords, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief Sets up the mesh for the solvers MSC.Marc, Abaqus and the spectral solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
module mesh
|
|
use prec
|
|
use mesh_base
|
|
use geometry_plastic_nonlocal
|
|
use discretization
|
|
use math
|
|
|
|
implicit none
|
|
private
|
|
|
|
integer, public, protected :: &
|
|
mesh_NcpElems, & !< total number of CP elements in local mesh
|
|
mesh_elemType, & !< Element type of the mesh (only support homogeneous meshes)
|
|
mesh_Nnodes, & !< total number of nodes in mesh
|
|
mesh_Ncellnodes, & !< total number of cell nodes in mesh (including duplicates)
|
|
mesh_Ncells, & !< total number of cells in mesh
|
|
mesh_maxNipNeighbors, & !< max number of IP neighbors in any CP element
|
|
mesh_maxNsharedElems !< max number of CP elements sharing a node
|
|
!!!! BEGIN DEPRECATED !!!!!
|
|
integer, public, protected :: &
|
|
mesh_maxNips, & !< max number of IPs in any CP element
|
|
mesh_maxNcellnodes !< max number of cell nodes in any CP element
|
|
!!!! BEGIN DEPRECATED !!!!!
|
|
|
|
integer, dimension(:,:), allocatable, public, protected :: &
|
|
mesh_element, & !DEPRECATED
|
|
mesh_sharedElem, & !< entryCount and list of elements containing node
|
|
mesh_nodeTwins !< node twins are surface nodes that lie exactly on opposite sides of the mesh (surfaces nodes with equal coordinate values in two dimensions)
|
|
|
|
integer, dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipNeighborhood !< 6 or less neighboring IPs as [element_num, IP_index, neighbor_index that points to me]
|
|
|
|
real(pReal), public, protected :: &
|
|
mesh_unitlength !< physical length of one unit in mesh
|
|
|
|
real(pReal), dimension(:,:), allocatable, public :: &
|
|
mesh_node, & !< node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
mesh_cellnode !< cell node x,y,z coordinates (after deformation! ONLY FOR MARC!!!)
|
|
|
|
real(pReal), dimension(:,:), allocatable, public, protected :: &
|
|
mesh_ipVolume, & !< volume associated with IP (initially!)
|
|
mesh_node0 !< node x,y,z coordinates (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
|
|
mesh_ipArea !< area of interface to neighboring IP (initially!)
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
mesh_ipCoordinates !< IP x,y,z coordinates (after deformation!)
|
|
|
|
real(pReal),dimension(:,:,:,:), allocatable, public, protected :: &
|
|
mesh_ipAreaNormal !< area normal of interface to neighboring IP (initially!)
|
|
|
|
logical, dimension(3), public, protected :: mesh_periodicSurface !< flag indicating periodic outer surfaces (used for fluxes)
|
|
|
|
integer, private :: &
|
|
mesh_maxNelemInSet, &
|
|
mesh_Nmaterials
|
|
|
|
integer, dimension(2), private :: &
|
|
mesh_maxValStateVar = 0
|
|
|
|
integer, dimension(:,:), allocatable, private :: &
|
|
mesh_cellnodeParent !< cellnode's parent element ID, cellnode's intra-element ID
|
|
|
|
integer,dimension(:,:,:), allocatable, private :: &
|
|
mesh_cell !< cell connectivity for each element,ip/cell
|
|
|
|
integer, dimension(:,:,:), allocatable, private :: &
|
|
FE_nodesAtIP, & !< map IP index to node indices in a specific type of element
|
|
FE_ipNeighbor, & !< +x,-x,+y,-y,+z,-z list of intra-element IPs and(negative) neighbor faces per own IP in a specific type of element
|
|
FE_cell, & !< list of intra-element cell node IDs that constitute the cells in a specific type of element geometry
|
|
FE_cellface !< list of intra-cell cell node IDs that constitute the cell faces of a specific type of cell
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
FE_cellnodeParentnodeWeights !< list of node weights for the generation of cell nodes
|
|
|
|
integer, dimension(:,:,:,:), allocatable, private :: &
|
|
FE_subNodeOnIPFace
|
|
|
|
! These definitions should actually reside in the FE-solver specific part (different for MARC/ABAQUS)
|
|
! Hence, I suggest to prefix with "FE_"
|
|
|
|
integer, parameter, public :: &
|
|
FE_Nelemtypes = 13, &
|
|
FE_Ngeomtypes = 10, &
|
|
FE_Ncelltypes = 4, &
|
|
FE_maxNnodes = 20, &
|
|
FE_maxNips = 27, &
|
|
FE_maxNipNeighbors = 6, &
|
|
FE_maxmaxNnodesAtIP = 8, & !< max number of (equivalent) nodes attached to an IP
|
|
FE_maxNmatchingNodesPerFace = 4, &
|
|
FE_maxNfaces = 6, &
|
|
FE_maxNcellnodes = 64, &
|
|
FE_maxNcellnodesPerCell = 8, &
|
|
FE_maxNcellfaces = 6, &
|
|
FE_maxNcellnodesPerCellface = 4
|
|
|
|
integer, dimension(FE_Nelemtypes), parameter, public :: FE_geomtype = & !< geometry type of particular element type
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
3, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 54 (2D 8node 4ip)
|
|
5, & ! element 134 (3D 4node 1ip)
|
|
6, & ! element 157 (3D 5node 4ip)
|
|
6, & ! element 127 (3D 10node 4ip)
|
|
7, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
9, & ! element 7 (3D 8node 8ip)
|
|
9, & ! element 57 (3D 20node 8ip)
|
|
10 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, public :: FE_celltype = & !< cell type that is used by each geometry type
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
2, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
4, & ! element 136 (3D 6node 6ip)
|
|
4, & ! element 117 (3D 8node 1ip)
|
|
4, & ! element 7 (3D 8node 8ip)
|
|
4 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, public :: FE_dimension = & !< dimension of geometry type
|
|
int([ &
|
|
2, & ! element 6 (2D 3node 1ip)
|
|
2, & ! element 125 (2D 6node 3ip)
|
|
2, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
3, & ! element 134 (3D 4node 1ip)
|
|
3, & ! element 127 (3D 10node 4ip)
|
|
3, & ! element 136 (3D 6node 6ip)
|
|
3, & ! element 117 (3D 8node 1ip)
|
|
3, & ! element 7 (3D 8node 8ip)
|
|
3 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Nelemtypes), parameter, public :: FE_Nnodes = & !< number of nodes that constitute a specific type of element
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
6, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
8, & ! element 27 (2D 8node 9ip)
|
|
8, & ! element 54 (2D 8node 4ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
5, & ! element 157 (3D 5node 4ip)
|
|
10, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
20, & ! element 57 (3D 20node 8ip)
|
|
20 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, public :: FE_Nfaces = & !< number of faces of a specific type of element geometry
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
5, & ! element 136 (3D 6node 6ip)
|
|
6, & ! element 117 (3D 8node 1ip)
|
|
6, & ! element 7 (3D 8node 8ip)
|
|
6 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, private :: FE_NmatchingNodes = & !< number of nodes that are needed for face matching in a specific type of element geometry
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
4, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
8 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_maxNfaces,FE_Ngeomtypes), parameter, private :: FE_NmatchingNodesPerFace = & !< number of matching nodes per face in a specific type of element geometry
|
|
reshape(int([ &
|
|
2,2,2,0,0,0, & ! element 6 (2D 3node 1ip)
|
|
2,2,2,0,0,0, & ! element 125 (2D 6node 3ip)
|
|
2,2,2,2,0,0, & ! element 11 (2D 4node 4ip)
|
|
2,2,2,2,0,0, & ! element 27 (2D 8node 9ip)
|
|
3,3,3,3,0,0, & ! element 134 (3D 4node 1ip)
|
|
3,3,3,3,0,0, & ! element 127 (3D 10node 4ip)
|
|
3,4,4,4,3,0, & ! element 136 (3D 6node 6ip)
|
|
4,4,4,4,4,4, & ! element 117 (3D 8node 1ip)
|
|
4,4,4,4,4,4, & ! element 7 (3D 8node 8ip)
|
|
4,4,4,4,4,4 & ! element 21 (3D 20node 27ip)
|
|
],pInt),[FE_maxNipNeighbors,FE_Ngeomtypes])
|
|
|
|
integer, dimension(FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes), &
|
|
parameter, private :: FE_face = & !< List of node indices on each face of a specific type of element geometry
|
|
reshape(int([&
|
|
1,2,0,0 , & ! element 6 (2D 3node 1ip)
|
|
2,3,0,0 , &
|
|
3,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 125 (2D 6node 3ip)
|
|
2,3,0,0 , &
|
|
3,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 11 (2D 4node 4ip)
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,0,0 , & ! element 27 (2D 8node 9ip)
|
|
2,3,0,0 , &
|
|
3,4,0,0 , &
|
|
4,1,0,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 134 (3D 4node 1ip)
|
|
1,4,2,0 , &
|
|
2,3,4,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 127 (3D 10node 4ip)
|
|
1,4,2,0 , &
|
|
2,4,3,0 , &
|
|
1,3,4,0 , &
|
|
0,0,0,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,0 , & ! element 136 (3D 6node 6ip)
|
|
1,4,5,2 , &
|
|
2,5,6,3 , &
|
|
1,3,6,4 , &
|
|
4,6,5,0 , &
|
|
0,0,0,0 , &
|
|
1,2,3,4 , & ! element 117 (3D 8node 1ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 7 (3D 8node 8ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 , &
|
|
1,2,3,4 , & ! element 21 (3D 20node 27ip)
|
|
2,1,5,6 , &
|
|
3,2,6,7 , &
|
|
4,3,7,8 , &
|
|
4,1,5,8 , &
|
|
8,7,6,5 &
|
|
],pInt),[FE_maxNmatchingNodesPerFace,FE_maxNfaces,FE_Ngeomtypes])
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, private :: FE_Ncellnodes = & !< number of cell nodes in a specific geometry type
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
7, & ! element 125 (2D 6node 3ip)
|
|
9, & ! element 11 (2D 4node 4ip)
|
|
16, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
15, & ! element 127 (3D 10node 4ip)
|
|
21, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
27, & ! element 7 (3D 8node 8ip)
|
|
64 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCell = & !< number of cell nodes in a specific cell type
|
|
int([ &
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
8 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ncelltypes), parameter, private :: FE_NcellnodesPerCellface = & !< number of cell nodes per cell face in a specific cell type
|
|
int([&
|
|
2, & ! (2D 3node)
|
|
2, & ! (2D 4node)
|
|
3, & ! (3D 4node)
|
|
4 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, public :: FE_Nips = & !< number of IPs in a specific type of element
|
|
int([ &
|
|
1, & ! element 6 (2D 3node 1ip)
|
|
3, & ! element 125 (2D 6node 3ip)
|
|
4, & ! element 11 (2D 4node 4ip)
|
|
9, & ! element 27 (2D 8node 9ip)
|
|
1, & ! element 134 (3D 4node 1ip)
|
|
4, & ! element 127 (3D 10node 4ip)
|
|
6, & ! element 136 (3D 6node 6ip)
|
|
1, & ! element 117 (3D 8node 1ip)
|
|
8, & ! element 7 (3D 8node 8ip)
|
|
27 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ncelltypes), parameter, public :: FE_NipNeighbors = & !< number of ip neighbors / cell faces in a specific cell type
|
|
int([&
|
|
3, & ! (2D 3node)
|
|
4, & ! (2D 4node)
|
|
4, & ! (3D 4node)
|
|
6 & ! (3D 8node)
|
|
],pInt)
|
|
|
|
integer, dimension(FE_Ngeomtypes), parameter, private :: FE_maxNnodesAtIP = & !< maximum number of parent nodes that belong to an IP for a specific type of element
|
|
int([ &
|
|
3, & ! element 6 (2D 3node 1ip)
|
|
1, & ! element 125 (2D 6node 3ip)
|
|
1, & ! element 11 (2D 4node 4ip)
|
|
2, & ! element 27 (2D 8node 9ip)
|
|
4, & ! element 134 (3D 4node 1ip)
|
|
1, & ! element 127 (3D 10node 4ip)
|
|
1, & ! element 136 (3D 6node 6ip)
|
|
8, & ! element 117 (3D 8node 1ip)
|
|
1, & ! element 7 (3D 8node 8ip)
|
|
4 & ! element 21 (3D 20node 27ip)
|
|
],pInt)
|
|
|
|
integer, private :: &
|
|
mesh_Nelems, & !< total number of elements in mesh (including non-DAMASK elements)
|
|
mesh_maxNnodes, & !< max number of nodes in any CP element
|
|
mesh_NelemSets
|
|
character(len=64), dimension(:), allocatable, private :: &
|
|
mesh_nameElemSet, & !< names of elementSet
|
|
mesh_nameMaterial, & !< names of material in solid section
|
|
mesh_mapMaterial !< name of elementSet for material
|
|
integer, dimension(:,:), allocatable, private :: &
|
|
mesh_mapElemSet !< list of elements in elementSet
|
|
integer, dimension(:,:), allocatable, target, private :: &
|
|
mesh_mapFEtoCPelem, & !< [sorted FEid, corresponding CPid]
|
|
mesh_mapFEtoCPnode !< [sorted FEid, corresponding CPid]
|
|
logical, private :: noPart !< for cases where the ABAQUS input file does not use part/assembly information
|
|
|
|
public :: &
|
|
mesh_init, &
|
|
mesh_build_cellnodes, &
|
|
mesh_build_ipVolumes, &
|
|
mesh_build_ipCoordinates, &
|
|
mesh_cellCenterCoordinates, &
|
|
mesh_FEasCP
|
|
|
|
private :: &
|
|
mesh_get_damaskOptions, &
|
|
mesh_build_cellconnectivity, &
|
|
mesh_build_ipAreas, &
|
|
FE_mapElemtype, &
|
|
mesh_build_FEdata, &
|
|
mesh_build_nodeTwins, &
|
|
mesh_build_sharedElems, &
|
|
mesh_build_ipNeighborhood, &
|
|
mesh_abaqus_count_nodesAndElements, &
|
|
mesh_abaqus_count_elementSets, &
|
|
mesh_abaqus_count_materials, &
|
|
mesh_abaqus_map_elementSets, &
|
|
mesh_abaqus_map_materials, &
|
|
mesh_abaqus_count_cpElements, &
|
|
mesh_abaqus_map_elements, &
|
|
mesh_abaqus_map_nodes, &
|
|
mesh_abaqus_build_nodes, &
|
|
mesh_abaqus_count_cpSizes, &
|
|
mesh_abaqus_build_elements
|
|
|
|
|
|
type, public, extends(tMesh) :: tMesh_abaqus
|
|
|
|
integer:: &
|
|
mesh_Nelems, & !< total number of elements in mesh (including non-DAMASK elements)
|
|
mesh_maxNnodes, & !< max number of nodes in any CP element
|
|
mesh_NelemSets, &
|
|
mesh_maxNelemInSet, &
|
|
mesh_Nmaterials
|
|
character(len=64), dimension(:), allocatable :: &
|
|
mesh_nameElemSet, & !< names of elementSet
|
|
mesh_nameMaterial, & !< names of material in solid section
|
|
mesh_mapMaterial !< name of elementSet for material
|
|
integer, dimension(:,:), allocatable :: &
|
|
mesh_mapElemSet !< list of elements in elementSet
|
|
logical:: noPart !< for cases where the ABAQUS input file does not use part/assembly information
|
|
|
|
contains
|
|
procedure, pass(self) :: tMesh_abaqus_init
|
|
generic, public :: init => tMesh_abaqus_init
|
|
end type tMesh_abaqus
|
|
|
|
type(tMesh_abaqus), public, protected :: theMesh
|
|
|
|
contains
|
|
|
|
subroutine tMesh_abaqus_init(self,elemType,nodes)
|
|
|
|
|
|
class(tMesh_abaqus) :: self
|
|
real(pReal), dimension(:,:), intent(in) :: nodes
|
|
integer, intent(in) :: elemType
|
|
|
|
call self%tMesh%init('mesh',elemType,nodes)
|
|
|
|
end subroutine tMesh_abaqus_init
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief initializes the mesh by calling all necessary private routines the mesh module
|
|
!! Order and routines strongly depend on type of solver
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_init(ip,el)
|
|
use DAMASK_interface
|
|
use IO, only: &
|
|
IO_open_InputFile, &
|
|
IO_error
|
|
use debug, only: &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_level, &
|
|
debug_mesh, &
|
|
debug_levelBasic
|
|
use numerics, only: &
|
|
usePingPong, &
|
|
numerics_unitlength, &
|
|
worldrank
|
|
use FEsolving, only: &
|
|
modelName, &
|
|
calcMode, & FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
|
|
|
|
integer, parameter :: FILEUNIT = 222
|
|
integer, intent(in), optional :: el, ip
|
|
integer :: j
|
|
logical :: myDebug
|
|
|
|
write(6,'(/,a)') ' <<<+- mesh init -+>>>'
|
|
|
|
mesh_unitlength = numerics_unitlength ! set physical extent of a length unit in mesh
|
|
|
|
myDebug = (iand(debug_level(debug_mesh),debug_levelBasic) /= 0)
|
|
|
|
call IO_open_inputFile(FILEUNIT) ! parse info from input file...
|
|
if (myDebug) write(6,'(a)') ' Opened input file'; flush(6)
|
|
noPart = hasNoPart(FILEUNIT)
|
|
call mesh_abaqus_count_nodesAndElements(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Counted nodes/elements'; flush(6)
|
|
call mesh_abaqus_count_elementSets(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Counted element sets'; flush(6)
|
|
call mesh_abaqus_count_materials(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Counted materials'; flush(6)
|
|
call mesh_abaqus_map_elementSets(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Mapped element sets'; flush(6)
|
|
call mesh_abaqus_map_materials(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Mapped materials'; flush(6)
|
|
call mesh_abaqus_count_cpElements(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Counted CP elements'; flush(6)
|
|
call mesh_abaqus_map_elements(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Mapped elements'; flush(6)
|
|
call mesh_abaqus_map_nodes(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Mapped nodes'; flush(6)
|
|
call mesh_abaqus_build_nodes(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Built nodes'; flush(6)
|
|
call mesh_abaqus_count_cpSizes(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Counted CP sizes'; flush(6)
|
|
call mesh_abaqus_build_elements(FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Built elements'; flush(6)
|
|
call mesh_get_damaskOptions(mesh_periodicSurface,FILEUNIT)
|
|
if (myDebug) write(6,'(a)') ' Got DAMASK options'; flush(6)
|
|
close (FILEUNIT)
|
|
|
|
call theMesh%init(mesh_element(2,1),mesh_node0)
|
|
call theMesh%setNelems(mesh_NcpElems)
|
|
call mesh_build_FEdata ! get properties of the different types of elements
|
|
|
|
call mesh_build_cellconnectivity
|
|
if (myDebug) write(6,'(a)') ' Built cell connectivity'; flush(6)
|
|
mesh_cellnode = mesh_build_cellnodes(mesh_node,mesh_Ncellnodes)
|
|
if (myDebug) write(6,'(a)') ' Built cell nodes'; flush(6)
|
|
call mesh_build_ipCoordinates
|
|
if (myDebug) write(6,'(a)') ' Built IP coordinates'; flush(6)
|
|
call mesh_build_ipVolumes
|
|
if (myDebug) write(6,'(a)') ' Built IP volumes'; flush(6)
|
|
call mesh_build_ipAreas
|
|
if (myDebug) write(6,'(a)') ' Built IP areas'; flush(6)
|
|
call mesh_build_nodeTwins
|
|
if (myDebug) write(6,'(a)') ' Built node twins'; flush(6)
|
|
call mesh_build_sharedElems
|
|
if (myDebug) write(6,'(a)') ' Built shared elements'; flush(6)
|
|
call mesh_build_ipNeighborhood
|
|
if (myDebug) write(6,'(a)') ' Built IP neighborhood'; flush(6)
|
|
|
|
if (usePingPong .and. (mesh_Nelems /= mesh_NcpElems)) &
|
|
call IO_error(600) ! ping-pong must be disabled when having non-DAMASK elements
|
|
if (debug_e < 1 .or. debug_e > mesh_NcpElems) &
|
|
call IO_error(602,ext_msg='element') ! selected element does not exist
|
|
if (debug_i < 1 .or. debug_i > FE_Nips(FE_geomtype(mesh_element(2,debug_e)))) &
|
|
call IO_error(602,ext_msg='IP') ! selected element does not have requested IP
|
|
FEsolving_execElem = [ 1,mesh_NcpElems ] ! parallel loop bounds set to comprise all DAMASK elements
|
|
allocate(FEsolving_execIP(2,mesh_NcpElems), source=1) ! parallel loop bounds set to comprise from first IP...
|
|
forall (j = 1:mesh_NcpElems) FEsolving_execIP(2,j) = FE_Nips(FE_geomtype(mesh_element(2,j))) ! ...up to own IP count for each element
|
|
allocate(calcMode(mesh_maxNips,mesh_NcpElems))
|
|
calcMode = .false. ! pretend to have collected what first call is asking (F = I)
|
|
calcMode(ip,mesh_FEasCP('elem',el)) = .true. ! first ip,el needs to be already pingponged to "calc"
|
|
|
|
|
|
! better name
|
|
theMesh%homogenizationAt = mesh_element(3,:)
|
|
theMesh%microstructureAt = mesh_element(4,:)
|
|
|
|
call discretization_init(mesh_element(3,:),mesh_element(4,:),&
|
|
reshape(mesh_ipCoordinates,[3,theMesh%elem%nIPs*theMesh%nElems]),&
|
|
mesh_node0)
|
|
call geometry_plastic_nonlocal_setIPvolume(mesh_ipVolume)
|
|
call geometry_plastic_nonlocal_setIPneighborhood(mesh_ipNeighborhood)
|
|
call geometry_plastic_nonlocal_setIParea(mesh_IParea)
|
|
call geometry_plastic_nonlocal_setIPareaNormal(mesh_IPareaNormal)
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief check if the input file for Abaqus contains part info
|
|
!--------------------------------------------------------------------------------------------------
|
|
logical function hasNoPart(fileUnit)
|
|
use IO, only: &
|
|
IO_stringPos, &
|
|
IO_stringValue, &
|
|
IO_lc
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=65536) :: line
|
|
|
|
hasNoPart = .true.
|
|
|
|
rewind(fileUnit)
|
|
do
|
|
read(fileUnit,'(a65536)',END=620) line
|
|
chunkPos = IO_stringPos(line)
|
|
if (IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) then
|
|
hasNoPart = .false.
|
|
exit
|
|
endif
|
|
enddo
|
|
|
|
620 end function hasNoPart
|
|
|
|
end subroutine mesh_init
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of nodes and elements in mesh and stores them in
|
|
!! 'mesh_Nelems' and 'mesh_Nnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_nodesAndElements(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
|
|
mesh_Nnodes = 0
|
|
mesh_Nelems = 0
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if (inPart .or. noPart) then
|
|
select case ( IO_lc(IO_stringValue(line,chunkPos,1)))
|
|
case('*node')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' &
|
|
) &
|
|
mesh_Nnodes = mesh_Nnodes + IO_countDataLines(fileUnit)
|
|
case('*element')
|
|
if( &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' &
|
|
) then
|
|
mesh_Nelems = mesh_Nelems + IO_countDataLines(fileUnit)
|
|
endif
|
|
endselect
|
|
endif
|
|
enddo
|
|
|
|
if (mesh_Nnodes < 2) call IO_error(error_ID=900)
|
|
if (mesh_Nelems == 0) call IO_error(error_ID=901)
|
|
|
|
end subroutine mesh_abaqus_count_nodesAndElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief count overall number of element sets in mesh and write 'mesh_NelemSets' and
|
|
!! 'mesh_maxNelemInSet'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_elementSets(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
|
|
mesh_NelemSets = 0
|
|
mesh_maxNelemInSet = mesh_Nelems ! have to be conservative, since Abaqus allows for recursive definitons
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,chunkPos,1)) == '*elset' ) &
|
|
mesh_NelemSets = mesh_NelemSets + 1
|
|
enddo
|
|
|
|
if (mesh_NelemSets == 0) call IO_error(error_ID=902)
|
|
|
|
end subroutine mesh_abaqus_count_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! count overall number of solid sections sets in mesh (Abaqus only)
|
|
!
|
|
! mesh_Nmaterials
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_materials(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
|
|
mesh_Nmaterials = 0
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,chunkPos,1)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,chunkPos,2)) == 'section' ) &
|
|
mesh_Nmaterials = mesh_Nmaterials + 1
|
|
enddo
|
|
|
|
if (mesh_Nmaterials == 0) call IO_error(error_ID=903)
|
|
|
|
end subroutine mesh_abaqus_count_materials
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Build element set mapping
|
|
!
|
|
! allocate globals: mesh_nameElemSet, mesh_mapElemSet
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_elementSets(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_continuousIntValues, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
integer :: elemSet,i
|
|
|
|
allocate (mesh_nameElemSet(mesh_NelemSets)); mesh_nameElemSet = ''
|
|
allocate (mesh_mapElemSet(1+mesh_maxNelemInSet,mesh_NelemSets),source=0)
|
|
|
|
|
|
elemSet = 0
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. IO_lc(IO_stringValue(line,chunkPos,1)) == '*elset' ) then
|
|
elemSet = elemSet + 1
|
|
mesh_nameElemSet(elemSet) = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2)),'elset'))
|
|
mesh_mapElemSet(:,elemSet) = IO_continuousIntValues(fileUnit,mesh_Nelems,mesh_nameElemSet,&
|
|
mesh_mapElemSet,elemSet-1)
|
|
endif
|
|
enddo
|
|
|
|
do i = 1,elemSet
|
|
if (mesh_mapElemSet(1,i) == 0) call IO_error(error_ID=904,ext_msg=mesh_nameElemSet(i))
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_elementSets
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! map solid section (Abaqus only)
|
|
!
|
|
! allocate globals: mesh_nameMaterial, mesh_mapMaterial
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_materials(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
integer :: i,c
|
|
character(len=64) :: elemSetName,materialName
|
|
|
|
allocate (mesh_nameMaterial(mesh_Nmaterials)); mesh_nameMaterial = ''
|
|
allocate (mesh_mapMaterial(mesh_Nmaterials)); mesh_mapMaterial = ''
|
|
|
|
c = 0
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if ( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_StringValue(line,chunkPos,1)) == '*solid' .and. &
|
|
IO_lc(IO_StringValue(line,chunkPos,2)) == 'section' ) then
|
|
|
|
elemSetName = ''
|
|
materialName = ''
|
|
|
|
do i = 3,chunkPos(1)
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'elset') /= '') &
|
|
elemSetName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'elset'))
|
|
if (IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'material') /= '') &
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,i)),'material'))
|
|
enddo
|
|
|
|
if (elemSetName /= '' .and. materialName /= '') then
|
|
c = c + 1
|
|
mesh_nameMaterial(c) = materialName ! name of material used for this section
|
|
mesh_mapMaterial(c) = elemSetName ! mapped to respective element set
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
if (c==0) call IO_error(error_ID=905)
|
|
do i=1,c
|
|
if (mesh_nameMaterial(i)=='' .or. mesh_mapMaterial(i)=='') call IO_error(error_ID=905)
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_map_materials
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Count overall number of CP elements in mesh and stores them in 'mesh_NcpElems'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpElements(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_extractValue
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: materialFound
|
|
integer :: i,k
|
|
character(len=64) ::materialName,elemSetName
|
|
|
|
mesh_NcpElems = 0
|
|
materialFound = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
select case ( IO_lc(IO_stringValue(line,chunkPos,1)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_StringValue(line,chunkPos,2)) == 'material' .and. materialFound) then
|
|
do i = 1,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) & ! matched?
|
|
mesh_NcpElems = mesh_NcpElems + mesh_mapElemSet(1,k) ! add those elem count
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
if (mesh_NcpElems == 0) call IO_error(error_ID=906)
|
|
|
|
end subroutine mesh_abaqus_count_cpElements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps elements from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPelem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_elements(fileUnit)
|
|
|
|
use math, only: math_sort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: materialFound
|
|
integer ::i,j,k,cpElem
|
|
character (len=64) materialName,elemSetName ! why limited to 64? ABAQUS?
|
|
|
|
allocate (mesh_mapFEtoCPelem(2,mesh_NcpElems), source = 0)
|
|
|
|
cpElem = 0
|
|
materialFound = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
select case ( IO_lc(IO_stringValue(line,chunkPos,1)) )
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if (IO_lc(IO_stringValue(line,chunkPos,2)) == 'material' .and. materialFound) then
|
|
do i = 1,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1,mesh_mapElemSet(1,k)
|
|
cpElem = cpElem + 1
|
|
mesh_mapFEtoCPelem(1,cpElem) = mesh_mapElemSet(1+j,k) ! store FE id
|
|
mesh_mapFEtoCPelem(2,cpElem) = cpElem ! store our id
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
call math_sort(mesh_mapFEtoCPelem,1,int(size(mesh_mapFEtoCPelem,2),pInt)) ! should be mesh_NcpElems
|
|
|
|
if (int(size(mesh_mapFEtoCPelem),pInt) < 2) call IO_error(error_ID=907)
|
|
|
|
end subroutine mesh_abaqus_map_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Maps node from FE ID to internal (consecutive) representation.
|
|
!! Allocates global array 'mesh_mapFEtoCPnode'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_map_nodes(fileUnit)
|
|
|
|
use math, only: math_sort
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_countDataLines, &
|
|
IO_intValue, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
integer :: i,c,cpNode
|
|
|
|
allocate (mesh_mapFEtoCPnode(2,mesh_Nnodes), source=0)
|
|
|
|
cpNode = 0
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,1)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(fileUnit)
|
|
do i = 1,c
|
|
backspace(fileUnit)
|
|
enddo
|
|
do i = 1,c
|
|
read (fileUnit,'(a300)') line
|
|
chunkPos = IO_stringPos(line)
|
|
cpNode = cpNode + 1
|
|
mesh_mapFEtoCPnode(1,cpNode) = IO_intValue(line,chunkPos,1)
|
|
mesh_mapFEtoCPnode(2,cpNode) = cpNode
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
call math_sort(mesh_mapFEtoCPnode,1,int(size(mesh_mapFEtoCPnode,2),pInt))
|
|
|
|
if (int(size(mesh_mapFEtoCPnode),pInt) == 0) call IO_error(error_ID=908)
|
|
|
|
end subroutine mesh_abaqus_map_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief store x,y,z coordinates of all nodes in mesh.
|
|
!! Allocates global arrays 'mesh_node0' and 'mesh_node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_nodes(fileUnit)
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_stringPos, &
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
integer :: i,j,m,c
|
|
|
|
allocate ( mesh_node0 (3,mesh_Nnodes), source=0.0_pReal)
|
|
allocate ( mesh_node (3,mesh_Nnodes), source=0.0_pReal)
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,1)) == '*node' .and. &
|
|
( IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'print' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'file' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' ) &
|
|
) then
|
|
c = IO_countDataLines(fileUnit) ! how many nodes are defined here?
|
|
do i = 1,c
|
|
backspace(fileUnit) ! rewind to first entry
|
|
enddo
|
|
do i = 1,c
|
|
read (fileUnit,'(a300)') line
|
|
chunkPos = IO_stringPos(line)
|
|
m = mesh_FEasCP('node',IO_intValue(line,chunkPos,1))
|
|
do j=1, 3
|
|
mesh_node0(j,m) = mesh_unitlength * IO_floatValue(line,chunkPos,j+1)
|
|
enddo
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
if (int(size(mesh_node0,2),pInt) /= mesh_Nnodes) call IO_error(error_ID=909)
|
|
mesh_node = mesh_node0
|
|
|
|
end subroutine mesh_abaqus_build_nodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gets maximum count of nodes, IPs, IP neighbors, and subNodes among cpElements.
|
|
!! Sets global values 'mesh_maxNnodes', 'mesh_maxNips', 'mesh_maxNipNeighbors',
|
|
!! and 'mesh_maxNcellnodes'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_count_cpSizes(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_extractValue ,&
|
|
IO_error, &
|
|
IO_countDataLines, &
|
|
IO_intValue
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart
|
|
integer :: i,c,t,g
|
|
|
|
mesh_maxNnodes = 0
|
|
mesh_maxNips = 0
|
|
mesh_maxNipNeighbors = 0
|
|
mesh_maxNcellnodes = 0
|
|
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,1)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2)),'type')) ! remember elem type
|
|
g = FE_geomtype(t)
|
|
c = FE_celltype(g)
|
|
mesh_maxNnodes = max(mesh_maxNnodes,FE_Nnodes(t))
|
|
mesh_maxNips = max(mesh_maxNips,FE_Nips(g))
|
|
mesh_maxNipNeighbors = max(mesh_maxNipNeighbors,FE_NipNeighbors(c))
|
|
mesh_maxNcellnodes = max(mesh_maxNcellnodes,FE_Ncellnodes(g))
|
|
endif
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_count_cpSizes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Store FEid, type, mat, tex, and node list per elemen.
|
|
!! Allocates global array 'mesh_element'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_abaqus_build_elements(fileUnit)
|
|
|
|
use IO, only: IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos, &
|
|
IO_intValue, &
|
|
IO_extractValue, &
|
|
IO_floatValue, &
|
|
IO_countDataLines, &
|
|
IO_error
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
logical :: inPart, materialFound
|
|
integer :: i,j,k,c,e,t,homog,micro, nNodesAlreadyRead
|
|
character (len=64) :: materialName,elemSetName
|
|
|
|
allocate(mesh_element (4+mesh_maxNnodes,mesh_NcpElems), source=0)
|
|
mesh_elemType = -1
|
|
|
|
inPart = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*part' ) inPart = .true.
|
|
if ( IO_lc(IO_stringValue(line,chunkPos,1)) == '*end' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) == 'part' ) inPart = .false.
|
|
|
|
if( (inPart .or. noPart) .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,1)) == '*element' .and. &
|
|
( IO_lc(IO_stringValue(line,chunkPos,2)) /= 'output' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'matrix' .and. &
|
|
IO_lc(IO_stringValue(line,chunkPos,2)) /= 'response' ) &
|
|
) then
|
|
t = FE_mapElemtype(IO_extractValue(IO_lc(IO_stringValue(line,chunkPos,2)),'type')) ! remember elem type
|
|
c = IO_countDataLines(fileUnit)
|
|
do i = 1,c
|
|
backspace(fileUnit)
|
|
enddo
|
|
do i = 1,c
|
|
read (fileUnit,'(a300)') line
|
|
chunkPos = IO_stringPos(line) ! limit to 64 nodes max
|
|
e = mesh_FEasCP('elem',IO_intValue(line,chunkPos,1))
|
|
if (e /= 0) then ! disregard non CP elems
|
|
mesh_element(1,e) = -1 ! DEPRECATED
|
|
if (mesh_elemType /= t .and. mesh_elemType /= -1) &
|
|
call IO_error(191,el=t,ip=mesh_elemType)
|
|
mesh_elemType = t
|
|
mesh_element(2,e) = t ! elem type
|
|
nNodesAlreadyRead = 0
|
|
do j = 1,chunkPos(1)-1
|
|
mesh_element(4+j,e) = mesh_FEasCP('node',IO_intValue(line,chunkPos,1+j)) ! put CP ids of nodes to position 5:
|
|
enddo
|
|
nNodesAlreadyRead = chunkPos(1) - 1
|
|
do while(nNodesAlreadyRead < FE_Nnodes(t)) ! read on if not all nodes in one line
|
|
read (fileUnit,'(a300)') line
|
|
chunkPos = IO_stringPos(line)
|
|
do j = 1,chunkPos(1)
|
|
mesh_element(4+nNodesAlreadyRead+j,e) &
|
|
= mesh_FEasCP('node',IO_IntValue(line,chunkPos,j)) ! CP ids of nodes
|
|
enddo
|
|
nNodesAlreadyRead = nNodesAlreadyRead + chunkPos(1)
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
|
|
rewind(fileUnit) ! just in case "*material" definitions apear before "*element"
|
|
|
|
materialFound = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
select case ( IO_lc(IO_StringValue(line,chunkPos,1)))
|
|
case('*material')
|
|
materialName = trim(IO_extractValue(IO_lc(IO_StringValue(line,chunkPos,2)),'name')) ! extract name=value
|
|
materialFound = materialName /= '' ! valid name?
|
|
case('*user')
|
|
if ( IO_lc(IO_StringValue(line,chunkPos,2)) == 'material' .and. &
|
|
materialFound ) then
|
|
read (fileUnit,'(a300)') line ! read homogenization and microstructure
|
|
chunkPos = IO_stringPos(line)
|
|
homog = nint(IO_floatValue(line,chunkPos,1),pInt)
|
|
micro = nint(IO_floatValue(line,chunkPos,2),pInt)
|
|
do i = 1,mesh_Nmaterials ! look thru material names
|
|
if (materialName == mesh_nameMaterial(i)) then ! found one
|
|
elemSetName = mesh_mapMaterial(i) ! take corresponding elemSet
|
|
do k = 1,mesh_NelemSets ! look thru all elemSet definitions
|
|
if (elemSetName == mesh_nameElemSet(k)) then ! matched?
|
|
do j = 1,mesh_mapElemSet(1,k)
|
|
e = mesh_FEasCP('elem',mesh_mapElemSet(1+j,k))
|
|
mesh_element(3,e) = homog ! store homogenization
|
|
mesh_element(4,e) = micro ! store microstructure
|
|
mesh_maxValStateVar(1) = max(mesh_maxValStateVar(1),homog)
|
|
mesh_maxValStateVar(2) = max(mesh_maxValStateVar(2),micro)
|
|
enddo
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
materialFound = .false.
|
|
endif
|
|
endselect
|
|
enddo
|
|
|
|
end subroutine mesh_abaqus_build_elements
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get any additional damask options from input file, sets mesh_periodicSurface
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_get_damaskOptions(periodic_surface,fileUnit)
|
|
|
|
use IO, only: &
|
|
IO_lc, &
|
|
IO_stringValue, &
|
|
IO_stringPos
|
|
|
|
|
|
integer, intent(in) :: fileUnit
|
|
|
|
integer, allocatable, dimension(:) :: chunkPos
|
|
character(len=300) :: line
|
|
integer :: myStat
|
|
integer :: chunk, Nchunks
|
|
character(len=300) :: v
|
|
logical, dimension(3) :: periodic_surface
|
|
|
|
|
|
periodic_surface = .false.
|
|
myStat = 0
|
|
rewind(fileUnit)
|
|
do while(myStat == 0)
|
|
read (fileUnit,'(a300)',iostat=myStat) line
|
|
chunkPos = IO_stringPos(line)
|
|
Nchunks = chunkPos(1)
|
|
if (IO_lc(IO_stringValue(line,chunkPos,1)) == '**damask' .and. Nchunks > 1) then ! found keyword for damask option and there is at least one more chunk to read
|
|
select case(IO_lc(IO_stringValue(line,chunkPos,2)))
|
|
case('periodic') ! damask Option that allows to specify periodic fluxes
|
|
do chunk = 3,Nchunks ! loop through chunks (skipping the keyword)
|
|
v = IO_lc(IO_stringValue(line,chunkPos,chunk)) ! chunk matches keyvalues x,y, or z?
|
|
mesh_periodicSurface(1) = mesh_periodicSurface(1) .or. v == 'x'
|
|
mesh_periodicSurface(2) = mesh_periodicSurface(2) .or. v == 'y'
|
|
mesh_periodicSurface(3) = mesh_periodicSurface(3) .or. v == 'z'
|
|
enddo
|
|
endselect
|
|
endif
|
|
enddo
|
|
|
|
end subroutine mesh_get_damaskOptions
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Split CP elements into cells.
|
|
!> @details Build a mapping between cells and the corresponding cell nodes ('mesh_cell').
|
|
!> Cell nodes that are also matching nodes are unique in the list of cell nodes,
|
|
!> all others (currently) might be stored more than once.
|
|
!> Also allocates the 'mesh_node' array.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_cellconnectivity
|
|
|
|
|
|
integer, dimension(:), allocatable :: &
|
|
matchingNode2cellnode
|
|
integer, dimension(:,:), allocatable :: &
|
|
cellnodeParent
|
|
integer, dimension(mesh_maxNcellnodes) :: &
|
|
localCellnode2globalCellnode
|
|
integer :: &
|
|
e,t,g,c,n,i, &
|
|
matchingNodeID, &
|
|
localCellnodeID
|
|
|
|
allocate(mesh_cell(FE_maxNcellnodesPerCell,mesh_maxNips,mesh_NcpElems), source=0)
|
|
allocate(matchingNode2cellnode(mesh_Nnodes), source=0)
|
|
allocate(cellnodeParent(2,mesh_maxNcellnodes*mesh_NcpElems), source=0)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Count cell nodes (including duplicates) and generate cell connectivity list
|
|
mesh_Ncellnodes = 0
|
|
mesh_Ncells = 0
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
localCellnode2globalCellnode = 0
|
|
mesh_Ncells = mesh_Ncells + FE_Nips(g)
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
do n = 1,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
localCellnodeID = FE_cell(n,i,g)
|
|
if (localCellnodeID <= FE_NmatchingNodes(g)) then ! this cell node is a matching node
|
|
matchingNodeID = mesh_element(4+localCellnodeID,e)
|
|
if (matchingNode2cellnode(matchingNodeID) == 0) then ! if this matching node does not yet exist in the glbal cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1 ! ... count it as cell node ...
|
|
matchingNode2cellnode(matchingNodeID) = mesh_Ncellnodes ! ... and remember its global ID
|
|
cellnodeParent(1,mesh_Ncellnodes) = e ! ... and where it belongs to
|
|
cellnodeParent(2,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = matchingNode2cellnode(matchingNodeID)
|
|
else ! this cell node is no matching node
|
|
if (localCellnode2globalCellnode(localCellnodeID) == 0) then ! if this local cell node does not yet exist in the global cell node list ...
|
|
mesh_Ncellnodes = mesh_Ncellnodes + 1 ! ... count it as cell node ...
|
|
localCellnode2globalCellnode(localCellnodeID) = mesh_Ncellnodes ! ... and remember its global ID ...
|
|
cellnodeParent(1,mesh_Ncellnodes) = e ! ... and it belongs to
|
|
cellnodeParent(2,mesh_Ncellnodes) = localCellnodeID
|
|
endif
|
|
mesh_cell(n,i,e) = localCellnode2globalCellnode(localCellnodeID)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
allocate(mesh_cellnodeParent(2,mesh_Ncellnodes))
|
|
allocate(mesh_cellnode(3,mesh_Ncellnodes))
|
|
forall(n = 1:mesh_Ncellnodes)
|
|
mesh_cellnodeParent(1,n) = cellnodeParent(1,n)
|
|
mesh_cellnodeParent(2,n) = cellnodeParent(2,n)
|
|
endforall
|
|
|
|
end subroutine mesh_build_cellconnectivity
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate position of cellnodes from the given position of nodes
|
|
!> Build list of cellnodes' coordinates.
|
|
!> Cellnode coordinates are calculated from a weighted sum of node coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
function mesh_build_cellnodes(nodes,Ncellnodes)
|
|
|
|
|
|
integer, intent(in) :: Ncellnodes !< requested number of cellnodes
|
|
real(pReal), dimension(3,mesh_Nnodes), intent(in) :: nodes
|
|
real(pReal), dimension(3,Ncellnodes) :: mesh_build_cellnodes
|
|
|
|
integer :: &
|
|
e,t,n,m, &
|
|
localCellnodeID
|
|
real(pReal), dimension(3) :: &
|
|
myCoords
|
|
|
|
mesh_build_cellnodes = 0.0_pReal
|
|
!$OMP PARALLEL DO PRIVATE(e,localCellnodeID,t,myCoords)
|
|
do n = 1,Ncellnodes ! loop over cell nodes
|
|
e = mesh_cellnodeParent(1,n)
|
|
localCellnodeID = mesh_cellnodeParent(2,n)
|
|
t = mesh_element(2,e) ! get element type
|
|
myCoords = 0.0_pReal
|
|
do m = 1,FE_Nnodes(t)
|
|
myCoords = myCoords + nodes(1:3,mesh_element(4+m,e)) &
|
|
* FE_cellnodeParentnodeWeights(m,localCellnodeID,t)
|
|
enddo
|
|
mesh_build_cellnodes(1:3,n) = myCoords / sum(FE_cellnodeParentnodeWeights(:,localCellnodeID,t))
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end function mesh_build_cellnodes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP volume. Allocates global array 'mesh_ipVolume'
|
|
!> @details The IP volume is calculated differently depending on the cell type.
|
|
!> 2D cells assume an element depth of one in order to calculate the volume.
|
|
!> For the hexahedral cell we subdivide the cell into subvolumes of pyramidal
|
|
!> shape with a cell face as basis and the central ip at the tip. This subvolume is
|
|
!> calculated as an average of four tetrahedals with three corners on the cell face
|
|
!> and one corner at the central ip.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipVolumes
|
|
use math, only: &
|
|
math_volTetrahedron, &
|
|
math_areaTriangle
|
|
|
|
|
|
integer :: e,t,g,c,i,m,f,n
|
|
real(pReal), dimension(FE_maxNcellnodesPerCellface,FE_maxNcellfaces) :: subvolume
|
|
|
|
allocate(mesh_ipVolume(mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,m,subvolume)
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
select case (c)
|
|
|
|
case (1) ! 2D 3node
|
|
forall (i = 1:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)))
|
|
|
|
case (2) ! 2D 4node
|
|
forall (i = 1:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_areaTriangle(mesh_cellnode(1:3,mesh_cell(1,i,e)), & ! here we assume a planar shape, so division in two triangles suffices
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e))) &
|
|
+ math_areaTriangle(mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(1,i,e)))
|
|
|
|
case (3) ! 3D 4node
|
|
forall (i = 1:FE_Nips(g)) & ! loop over ips=cells in this element
|
|
mesh_ipVolume(i,e) = math_volTetrahedron(mesh_cellnode(1:3,mesh_cell(1,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(2,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(3,i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(4,i,e)))
|
|
|
|
case (4) ! 3D 8node
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
subvolume = 0.0_pReal
|
|
forall(f = 1:FE_NipNeighbors(c), n = 1:FE_NcellnodesPerCellface(c)) &
|
|
subvolume(n,f) = math_volTetrahedron(&
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface( n ,f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n ,m),f,c),i,e)), &
|
|
mesh_cellnode(1:3,mesh_cell(FE_cellface(1+mod(n+1,m),f,c),i,e)), &
|
|
mesh_ipCoordinates(1:3,i,e))
|
|
mesh_ipVolume(i,e) = 0.5_pReal * sum(subvolume) ! each subvolume is based on four tetrahedrons, altough the face consists of only two triangles -> averaging factor two
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipVolumes
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates IP Coordinates. Allocates global array 'mesh_ipCoordinates'
|
|
! Called by all solvers in mesh_init in order to initialize the ip coordinates.
|
|
! Later on the current ip coordinates are directly prvided by the spectral solver and by Abaqus,
|
|
! so no need to use this subroutine anymore; Marc however only provides nodal displacements,
|
|
! so in this case the ip coordinates are always calculated on the basis of this subroutine.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
! FOR THE MOMENT THIS SUBROUTINE ACTUALLY CALCULATES THE CELL CENTER AND NOT THE IP COORDINATES,
|
|
! AS THE IP IS NOT (ALWAYS) LOCATED IN THE CENTER OF THE IP VOLUME.
|
|
! HAS TO BE CHANGED IN A LATER VERSION.
|
|
! !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipCoordinates
|
|
|
|
|
|
integer :: e,t,g,c,i,n
|
|
real(pReal), dimension(3) :: myCoords
|
|
|
|
if (.not. allocated(mesh_ipCoordinates)) &
|
|
allocate(mesh_ipCoordinates(3,mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,myCoords)
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
myCoords = 0.0_pReal
|
|
do n = 1,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
myCoords = myCoords + mesh_cellnode(1:3,mesh_cell(n,i,e))
|
|
enddo
|
|
mesh_ipCoordinates(1:3,i,e) = myCoords / real(FE_NcellnodesPerCell(c),pReal)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipCoordinates
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculates cell center coordinates.
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function mesh_cellCenterCoordinates(ip,el)
|
|
|
|
|
|
integer, intent(in) :: el, & !< element number
|
|
ip !< integration point number
|
|
real(pReal), dimension(3) :: mesh_cellCenterCoordinates !< x,y,z coordinates of the cell center of the requested IP cell
|
|
integer :: t,g,c,n
|
|
|
|
t = mesh_element(2,el) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
mesh_cellCenterCoordinates = 0.0_pReal
|
|
do n = 1,FE_NcellnodesPerCell(c) ! loop over cell nodes in this cell
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates + mesh_cellnode(1:3,mesh_cell(n,ip,el))
|
|
enddo
|
|
mesh_cellCenterCoordinates = mesh_cellCenterCoordinates / real(FE_NcellnodesPerCell(c),pReal)
|
|
|
|
end function mesh_cellCenterCoordinates
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculation of IP interface areas, allocate globals '_ipArea', and '_ipAreaNormal'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipAreas
|
|
use math, only: &
|
|
math_cross
|
|
|
|
|
|
integer :: e,t,g,c,i,f,n,m
|
|
real(pReal), dimension (3,FE_maxNcellnodesPerCellface) :: nodePos, normals
|
|
real(pReal), dimension(3) :: normal
|
|
|
|
allocate(mesh_ipArea(mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
allocate(mesh_ipAreaNormal(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
|
|
|
|
!$OMP PARALLEL DO PRIVATE(t,g,c,nodePos,normal,normals)
|
|
do e = 1,mesh_NcpElems ! loop over cpElems
|
|
t = mesh_element(2,e) ! get element type
|
|
g = FE_geomtype(t) ! get geometry type
|
|
c = FE_celltype(g) ! get cell type
|
|
select case (c)
|
|
|
|
case (1,2) ! 2D 3 or 4 node
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal(1) = nodePos(2,2) - nodePos(2,1) ! x_normal = y_connectingVector
|
|
normal(2) = -(nodePos(1,2) - nodePos(1,1)) ! y_normal = -x_connectingVector
|
|
normal(3) = 0.0_pReal
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (3) ! 3D 4node
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
normal = math_cross(nodePos(1:3,2) - nodePos(1:3,1), &
|
|
nodePos(1:3,3) - nodePos(1:3,1))
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal) ! ensure unit length of area normal
|
|
enddo
|
|
enddo
|
|
|
|
case (4) ! 3D 8node
|
|
! for this cell type we get the normal of the quadrilateral face as an average of
|
|
! four normals of triangular subfaces; since the face consists only of two triangles,
|
|
! the sum has to be divided by two; this whole prcedure tries to compensate for
|
|
! probable non-planar cell surfaces
|
|
m = FE_NcellnodesPerCellface(c)
|
|
do i = 1,FE_Nips(g) ! loop over ips=cells in this element
|
|
do f = 1,FE_NipNeighbors(c) ! loop over cell faces
|
|
forall(n = 1:FE_NcellnodesPerCellface(c)) &
|
|
nodePos(1:3,n) = mesh_cellnode(1:3,mesh_cell(FE_cellface(n,f,c),i,e))
|
|
forall(n = 1:FE_NcellnodesPerCellface(c)) &
|
|
normals(1:3,n) = 0.5_pReal &
|
|
* math_cross(nodePos(1:3,1+mod(n ,m)) - nodePos(1:3,n), &
|
|
nodePos(1:3,1+mod(n+1,m)) - nodePos(1:3,n))
|
|
normal = 0.5_pReal * sum(normals,2)
|
|
mesh_ipArea(f,i,e) = norm2(normal)
|
|
mesh_ipAreaNormal(1:3,f,i,e) = normal / norm2(normal)
|
|
enddo
|
|
enddo
|
|
|
|
end select
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine mesh_build_ipAreas
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief assignment of twin nodes for each cp node, allocate globals '_nodeTwins'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_nodeTwins
|
|
|
|
|
|
integer dir, & ! direction of periodicity
|
|
node, &
|
|
minimumNode, &
|
|
maximumNode, &
|
|
n1, &
|
|
n2
|
|
integer, dimension(mesh_Nnodes+1) :: minimumNodes, maximumNodes ! list of surface nodes (minimum and maximum coordinate value) with first entry giving the number of nodes
|
|
real(pReal) minCoord, maxCoord, & ! extreme positions in one dimension
|
|
tolerance ! tolerance below which positions are assumed identical
|
|
real(pReal), dimension(3) :: distance ! distance between two nodes in all three coordinates
|
|
logical, dimension(mesh_Nnodes) :: unpaired
|
|
|
|
allocate(mesh_nodeTwins(3,mesh_Nnodes))
|
|
mesh_nodeTwins = 0
|
|
|
|
tolerance = 0.001_pReal * minval(mesh_ipVolume) ** 0.333_pReal
|
|
|
|
do dir = 1,3 ! check periodicity in directions of x,y,z
|
|
if (mesh_periodicSurface(dir)) then ! only if periodicity is requested
|
|
|
|
|
|
!*** find out which nodes sit on the surface
|
|
!*** and have a minimum or maximum position in this dimension
|
|
|
|
minimumNodes = 0
|
|
maximumNodes = 0
|
|
minCoord = minval(mesh_node0(dir,:))
|
|
maxCoord = maxval(mesh_node0(dir,:))
|
|
do node = 1,mesh_Nnodes ! loop through all nodes and find surface nodes
|
|
if (abs(mesh_node0(dir,node) - minCoord) <= tolerance) then
|
|
minimumNodes(1) = minimumNodes(1) + 1
|
|
minimumNodes(minimumNodes(1)+1) = node
|
|
elseif (abs(mesh_node0(dir,node) - maxCoord) <= tolerance) then
|
|
maximumNodes(1) = maximumNodes(1) + 1
|
|
maximumNodes(maximumNodes(1)+1) = node
|
|
endif
|
|
enddo
|
|
|
|
|
|
!*** find the corresponding node on the other side with the same position in this dimension
|
|
|
|
unpaired = .true.
|
|
do n1 = 1,minimumNodes(1)
|
|
minimumNode = minimumNodes(n1+1)
|
|
if (unpaired(minimumNode)) then
|
|
do n2 = 1,maximumNodes(1)
|
|
maximumNode = maximumNodes(n2+1)
|
|
distance = abs(mesh_node0(:,minimumNode) - mesh_node0(:,maximumNode))
|
|
if (sum(distance) - distance(dir) <= tolerance) then ! minimum possible distance (within tolerance)
|
|
mesh_nodeTwins(dir,minimumNode) = maximumNode
|
|
mesh_nodeTwins(dir,maximumNode) = minimumNode
|
|
unpaired(maximumNode) = .false. ! remember this node, we don't have to look for his partner again
|
|
exit
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
|
|
endif
|
|
enddo
|
|
|
|
end subroutine mesh_build_nodeTwins
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get maximum count of shared elements among cpElements and build list of elements shared
|
|
!! by each node in mesh. Allocate globals '_maxNsharedElems' and '_sharedElem'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_sharedElems
|
|
|
|
|
|
integer(pint) e, & ! element index
|
|
g, & ! element type
|
|
node, & ! CP node index
|
|
n, & ! node index per element
|
|
myDim, & ! dimension index
|
|
nodeTwin ! node twin in the specified dimension
|
|
integer, dimension (mesh_Nnodes) :: node_count
|
|
integer, dimension(:), allocatable :: node_seen
|
|
|
|
allocate(node_seen(maxval(FE_NmatchingNodes)))
|
|
|
|
node_count = 0
|
|
|
|
do e = 1,mesh_NcpElems
|
|
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
|
|
node_seen = 0 ! reset node duplicates
|
|
do n = 1,FE_NmatchingNodes(g) ! check each node of element
|
|
node = mesh_element(4+n,e)
|
|
if (all(node_seen /= node)) then
|
|
node_count(node) = node_count(node) + 1 ! if FE node not yet encountered -> count it
|
|
do myDim = 1,3 ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0) & ! if I am a twin of some node...
|
|
node_count(nodeTwin) = node_count(nodeTwin) + 1 ! -> count me again for the twin node
|
|
enddo
|
|
endif
|
|
node_seen(n) = node ! remember this node to be counted already
|
|
enddo
|
|
enddo
|
|
|
|
mesh_maxNsharedElems = int(maxval(node_count),pInt) ! most shared node
|
|
|
|
allocate(mesh_sharedElem(1+mesh_maxNsharedElems,mesh_Nnodes),source=0)
|
|
|
|
do e = 1,mesh_NcpElems
|
|
g = FE_geomtype(mesh_element(2,e)) ! get elemGeomType
|
|
node_seen = 0
|
|
do n = 1,FE_NmatchingNodes(g)
|
|
node = mesh_element(4+n,e)
|
|
if (all(node_seen /= node)) then
|
|
mesh_sharedElem(1,node) = mesh_sharedElem(1,node) + 1 ! count for each node the connected elements
|
|
mesh_sharedElem(mesh_sharedElem(1,node)+1,node) = e ! store the respective element id
|
|
do myDim = 1,3 ! check in each dimension...
|
|
nodeTwin = mesh_nodeTwins(myDim,node)
|
|
if (nodeTwin > 0) then ! if i am a twin of some node...
|
|
mesh_sharedElem(1,nodeTwin) = mesh_sharedElem(1,nodeTwin) + 1 ! ...count me again for the twin
|
|
mesh_sharedElem(mesh_sharedElem(1,nodeTwin)+1,nodeTwin) = e ! store the respective element id
|
|
endif
|
|
enddo
|
|
endif
|
|
node_seen(n) = node
|
|
enddo
|
|
enddo
|
|
|
|
end subroutine mesh_build_sharedElems
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief build up of IP neighborhood, allocate globals '_ipNeighborhood'
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_ipNeighborhood
|
|
|
|
integer :: myElem, & ! my CP element index
|
|
myIP, &
|
|
myType, & ! my element type
|
|
myFace, &
|
|
neighbor, & ! neighor index
|
|
neighboringIPkey, & ! positive integer indicating the neighboring IP (for intra-element) and negative integer indicating the face towards neighbor (for neighboring element)
|
|
candidateIP, &
|
|
neighboringType, & ! element type of neighbor
|
|
NlinkedNodes, & ! number of linked nodes
|
|
twin_of_linkedNode, & ! node twin of a specific linkedNode
|
|
NmatchingNodes, & ! number of matching nodes
|
|
dir, & ! direction of periodicity
|
|
matchingElem, & ! CP elem number of matching element
|
|
matchingFace, & ! face ID of matching element
|
|
a, anchor, &
|
|
neighboringIP, &
|
|
neighboringElem, &
|
|
pointingToMe
|
|
integer, dimension(FE_maxmaxNnodesAtIP) :: &
|
|
linkedNodes = 0, &
|
|
matchingNodes
|
|
logical checkTwins
|
|
|
|
allocate(mesh_ipNeighborhood(3,mesh_maxNipNeighbors,mesh_maxNips,mesh_NcpElems))
|
|
mesh_ipNeighborhood = 0
|
|
|
|
|
|
do myElem = 1,mesh_NcpElems ! loop over cpElems
|
|
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
|
|
do myIP = 1,FE_Nips(myType) ! loop over IPs of elem
|
|
|
|
do neighbor = 1,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
|
|
neighboringIPkey = FE_ipNeighbor(neighbor,myIP,myType)
|
|
|
|
!*** if the key is positive, the neighbor is inside the element
|
|
!*** that means, we have already found our neighboring IP
|
|
|
|
if (neighboringIPkey > 0) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = myElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = neighboringIPkey
|
|
|
|
|
|
!*** if the key is negative, the neighbor resides in a neighboring element
|
|
!*** that means, we have to look through the face indicated by the key and see which element is behind that face
|
|
|
|
elseif (neighboringIPkey < 0) then ! neighboring element's IP
|
|
myFace = -neighboringIPkey
|
|
call mesh_faceMatch(myElem, myFace, matchingElem, matchingFace) ! get face and CP elem id of face match
|
|
if (matchingElem > 0) then ! found match?
|
|
neighboringType = FE_geomtype(mesh_element(2,matchingElem))
|
|
|
|
!*** trivial solution if neighbor has only one IP
|
|
|
|
if (FE_Nips(neighboringType) == 1) then
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = 1
|
|
cycle
|
|
endif
|
|
|
|
!*** find those nodes which build the link to the neighbor
|
|
|
|
NlinkedNodes = 0
|
|
linkedNodes = 0
|
|
do a = 1,FE_maxNnodesAtIP(myType) ! figure my anchor nodes on connecting face
|
|
anchor = FE_nodesAtIP(a,myIP,myType)
|
|
if (anchor /= 0) then ! valid anchor node
|
|
if (any(FE_face(:,myFace,myType) == anchor)) then ! ip anchor sits on face?
|
|
NlinkedNodes = NlinkedNodes + 1
|
|
linkedNodes(NlinkedNodes) = mesh_element(4+anchor,myElem) ! CP id of anchor node
|
|
else ! something went wrong with the linkage, since not all anchors sit on my face
|
|
NlinkedNodes = 0
|
|
linkedNodes = 0
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
!*** loop through the ips of my neighbor
|
|
!*** and try to find an ip with matching nodes
|
|
!*** also try to match with node twins
|
|
|
|
checkCandidateIP: do candidateIP = 1,FE_Nips(neighboringType)
|
|
NmatchingNodes = 0
|
|
matchingNodes = 0
|
|
do a = 1,FE_maxNnodesAtIP(neighboringType) ! check each anchor node of that ip
|
|
anchor = FE_nodesAtIP(a,candidateIP,neighboringType)
|
|
if (anchor /= 0) then ! valid anchor node
|
|
if (any(FE_face(:,matchingFace,neighboringType) == anchor)) then ! sits on matching face?
|
|
NmatchingNodes = NmatchingNodes + 1
|
|
matchingNodes(NmatchingNodes) = mesh_element(4+anchor,matchingElem) ! CP id of neighbor's anchor node
|
|
else ! no matching, because not all nodes sit on the matching face
|
|
NmatchingNodes = 0
|
|
matchingNodes = 0
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
if (NmatchingNodes /= NlinkedNodes) & ! this ip has wrong count of anchors on face
|
|
cycle checkCandidateIP
|
|
|
|
!*** check "normal" nodes whether they match or not
|
|
|
|
checkTwins = .false.
|
|
do a = 1,NlinkedNodes
|
|
if (all(matchingNodes /= linkedNodes(a))) then ! this linkedNode does not match any matchingNode
|
|
checkTwins = .true.
|
|
exit ! no need to search further
|
|
endif
|
|
enddo
|
|
|
|
!*** if no match found, then also check node twins
|
|
|
|
if(checkTwins) then
|
|
dir = int(maxloc(abs(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem)),1),pInt) ! check for twins only in direction of the surface normal
|
|
do a = 1,NlinkedNodes
|
|
twin_of_linkedNode = mesh_nodeTwins(dir,linkedNodes(a))
|
|
if (twin_of_linkedNode == 0 .or. & ! twin of linkedNode does not exist...
|
|
all(matchingNodes /= twin_of_linkedNode)) then ! ... or it does not match any matchingNode
|
|
cycle checkCandidateIP ! ... then check next candidateIP
|
|
endif
|
|
enddo
|
|
endif
|
|
|
|
!*** we found a match !!!
|
|
|
|
mesh_ipNeighborhood(1,neighbor,myIP,myElem) = matchingElem
|
|
mesh_ipNeighborhood(2,neighbor,myIP,myElem) = candidateIP
|
|
exit checkCandidateIP
|
|
enddo checkCandidateIP
|
|
endif ! end of valid external matching
|
|
endif ! end of internal/external matching
|
|
enddo
|
|
enddo
|
|
enddo
|
|
do myElem = 1,mesh_NcpElems ! loop over cpElems
|
|
myType = FE_geomtype(mesh_element(2,myElem)) ! get elemGeomType
|
|
do myIP = 1,FE_Nips(myType) ! loop over IPs of elem
|
|
do neighbor = 1,FE_NipNeighbors(FE_celltype(myType)) ! loop over neighbors of IP
|
|
neighboringElem = mesh_ipNeighborhood(1,neighbor,myIP,myElem)
|
|
neighboringIP = mesh_ipNeighborhood(2,neighbor,myIP,myElem)
|
|
if (neighboringElem > 0 .and. neighboringIP > 0) then ! if neighbor exists ...
|
|
neighboringType = FE_geomtype(mesh_element(2,neighboringElem))
|
|
do pointingToMe = 1,FE_NipNeighbors(FE_celltype(neighboringType)) ! find neighboring index that points from my neighbor to myself
|
|
if ( myElem == mesh_ipNeighborhood(1,pointingToMe,neighboringIP,neighboringElem) &
|
|
.and. myIP == mesh_ipNeighborhood(2,pointingToMe,neighboringIP,neighboringElem)) then ! possible candidate
|
|
if (math_inner(mesh_ipAreaNormal(1:3,neighbor,myIP,myElem),&
|
|
mesh_ipAreaNormal(1:3,pointingToMe,neighboringIP,neighboringElem)) < 0.0_pReal) then ! area normals have opposite orientation (we have to check that because of special case for single element with two ips and periodicity. In this case the neighbor is identical in two different directions.)
|
|
mesh_ipNeighborhood(3,neighbor,myIP,myElem) = pointingToMe ! found match
|
|
exit ! so no need to search further
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
|
|
call geometry_plastic_nonlocal_set_IPneighborhood(mesh_ipNeighborhood)
|
|
|
|
contains
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief find face-matching element of same type
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_faceMatch(elem, face ,matchingElem, matchingFace)
|
|
|
|
|
|
integer, intent(out) :: matchingElem, & ! matching CP element ID
|
|
matchingFace ! matching face ID
|
|
integer, intent(in) :: face, & ! face ID
|
|
elem ! CP elem ID
|
|
integer, dimension(FE_NmatchingNodesPerFace(face,FE_geomtype(mesh_element(2,elem)))) :: &
|
|
myFaceNodes ! global node ids on my face
|
|
integer :: myType, &
|
|
candidateType, &
|
|
candidateElem, &
|
|
candidateFace, &
|
|
candidateFaceNode, &
|
|
minNsharedElems, &
|
|
NsharedElems, &
|
|
lonelyNode = 0, &
|
|
i, &
|
|
n, &
|
|
dir ! periodicity direction
|
|
integer, dimension(:), allocatable :: element_seen
|
|
logical checkTwins
|
|
|
|
matchingElem = 0
|
|
matchingFace = 0
|
|
minNsharedElems = mesh_maxNsharedElems + 1 ! init to worst case
|
|
myType = FE_geomtype(mesh_element(2,elem)) ! figure elemGeomType
|
|
|
|
do n = 1,FE_NmatchingNodesPerFace(face,myType) ! loop over nodes on face
|
|
myFaceNodes(n) = mesh_element(4+FE_face(n,face,myType),elem) ! CP id of face node
|
|
NsharedElems = mesh_sharedElem(1,myFaceNodes(n)) ! figure # shared elements for this node
|
|
if (NsharedElems < minNsharedElems) then
|
|
minNsharedElems = NsharedElems ! remember min # shared elems
|
|
lonelyNode = n ! remember most lonely node
|
|
endif
|
|
enddo
|
|
|
|
allocate(element_seen(minNsharedElems))
|
|
element_seen = 0
|
|
|
|
checkCandidate: do i = 1,minNsharedElems ! iterate over lonelyNode's shared elements
|
|
candidateElem = mesh_sharedElem(1+i,myFaceNodes(lonelyNode)) ! present candidate elem
|
|
if (all(element_seen /= candidateElem)) then ! element seen for the first time?
|
|
element_seen(i) = candidateElem
|
|
candidateType = FE_geomtype(mesh_element(2,candidateElem)) ! figure elemGeomType of candidate
|
|
checkCandidateFace: do candidateFace = 1,FE_maxNipNeighbors ! check each face of candidate
|
|
if (FE_NmatchingNodesPerFace(candidateFace,candidateType) &
|
|
/= FE_NmatchingNodesPerFace(face,myType) & ! incompatible face
|
|
.or. (candidateElem == elem .and. candidateFace == face)) then ! this is my face
|
|
cycle checkCandidateFace
|
|
endif
|
|
checkTwins = .false.
|
|
do n = 1,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem)
|
|
if (all(myFaceNodes /= candidateFaceNode)) then ! candidate node does not match any of my face nodes
|
|
checkTwins = .true. ! perhaps the twin nodes do match
|
|
exit
|
|
endif
|
|
enddo
|
|
if(checkTwins) then
|
|
checkCandidateFaceTwins: do dir = 1,3
|
|
do n = 1,FE_NmatchingNodesPerFace(candidateFace,candidateType) ! loop through nodes on face
|
|
candidateFaceNode = mesh_element(4+FE_face(n,candidateFace,candidateType),candidateElem)
|
|
if (all(myFaceNodes /= mesh_nodeTwins(dir,candidateFaceNode))) then ! node twin does not match either
|
|
if (dir == 3) then
|
|
cycle checkCandidateFace
|
|
else
|
|
cycle checkCandidateFaceTwins ! try twins in next dimension
|
|
endif
|
|
endif
|
|
enddo
|
|
exit checkCandidateFaceTwins
|
|
enddo checkCandidateFaceTwins
|
|
endif
|
|
matchingFace = candidateFace
|
|
matchingElem = candidateElem
|
|
exit checkCandidate ! found my matching candidate
|
|
enddo checkCandidateFace
|
|
endif
|
|
enddo checkCandidate
|
|
|
|
end subroutine mesh_faceMatch
|
|
|
|
end subroutine mesh_build_ipNeighborhood
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief mapping of FE element types to internal representation
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer function FE_mapElemtype(what)
|
|
use IO, only: IO_lc, IO_error
|
|
|
|
|
|
character(len=*), intent(in) :: what
|
|
|
|
select case (IO_lc(what))
|
|
case ( 'cpe4', &
|
|
'cpe4t')
|
|
FE_mapElemtype = 3 ! Arbitrary Quadrilateral Plane-strain
|
|
case ( 'cpe8', &
|
|
'cpe8t')
|
|
FE_mapElemtype = 4 ! Plane Strain, Eight-node Distorted Quadrilateral
|
|
case ( 'c3d4', &
|
|
'c3d4t')
|
|
FE_mapElemtype = 6 ! Three-dimensional Four-node Tetrahedron
|
|
case ( 'c3d6', &
|
|
'c3d6t')
|
|
FE_mapElemtype = 9 ! Three-dimensional Arbitrarily Distorted Pentahedral
|
|
case ( 'c3d8r', &
|
|
'c3d8rt')
|
|
FE_mapElemtype = 10 ! Three-dimensional Arbitrarily Distorted linear hexahedral with reduced integration
|
|
case ( 'c3d8', &
|
|
'c3d8t')
|
|
FE_mapElemtype = 11 ! Three-dimensional Arbitrarily Distorted Brick
|
|
case ( 'c3d20r', &
|
|
'c3d20rt')
|
|
FE_mapElemtype = 12 ! Three-dimensional Arbitrarily Distorted quad hexahedral with reduced integration
|
|
case ( 'c3d20', &
|
|
'c3d20t')
|
|
FE_mapElemtype = 13 ! Three-dimensional Arbitrarily Distorted quadratic hexahedral
|
|
case default
|
|
call IO_error(error_ID=190,ext_msg=IO_lc(what))
|
|
end select
|
|
|
|
end function FE_mapElemtype
|
|
|
|
|
|
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief get properties of different types of finite elements
|
|
!> @details assign globals: FE_nodesAtIP, FE_ipNeighbor, FE_cellnodeParentnodeWeights, FE_subNodeOnIPFace
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine mesh_build_FEdata
|
|
|
|
|
|
integer :: me
|
|
allocate(FE_nodesAtIP(FE_maxmaxNnodesAtIP,FE_maxNips,FE_Ngeomtypes), source=0)
|
|
allocate(FE_ipNeighbor(FE_maxNipNeighbors,FE_maxNips,FE_Ngeomtypes), source=0)
|
|
allocate(FE_cell(FE_maxNcellnodesPerCell,FE_maxNips,FE_Ngeomtypes), source=0)
|
|
allocate(FE_cellnodeParentnodeWeights(FE_maxNnodes,FE_maxNcellnodes,FE_Nelemtypes), source=0.0_pReal)
|
|
allocate(FE_cellface(FE_maxNcellnodesPerCellface,FE_maxNcellfaces,FE_Ncelltypes), source=0)
|
|
|
|
|
|
!*** fill FE_nodesAtIP with data ***
|
|
|
|
me = 0
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
1,2,3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
1,0, &
|
|
1,2, &
|
|
2,0, &
|
|
1,4, &
|
|
0,0, &
|
|
2,3, &
|
|
4,0, &
|
|
3,4, &
|
|
3,0 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
1,2,3,4 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
3, &
|
|
4, &
|
|
5, &
|
|
6 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
1,2,3,4,5,6,7,8 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
1, &
|
|
2, &
|
|
4, &
|
|
3, &
|
|
5, &
|
|
6, &
|
|
8, &
|
|
7 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_nodesAtIP(1:FE_maxNnodesAtIP(me),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
1,0, 0,0, &
|
|
1,2, 0,0, &
|
|
2,0, 0,0, &
|
|
1,4, 0,0, &
|
|
1,3, 2,4, &
|
|
2,3, 0,0, &
|
|
4,0, 0,0, &
|
|
3,4, 0,0, &
|
|
3,0, 0,0, &
|
|
1,5, 0,0, &
|
|
1,6, 2,5, &
|
|
2,6, 0,0, &
|
|
1,8, 4,5, &
|
|
0,0, 0,0, &
|
|
2,7, 3,6, &
|
|
4,8, 0,0, &
|
|
3,8, 4,7, &
|
|
3,7, 0,0, &
|
|
5,0, 0,0, &
|
|
5,6, 0,0, &
|
|
6,0, 0,0, &
|
|
5,8, 0,0, &
|
|
5,7, 6,8, &
|
|
6,7, 0,0, &
|
|
8,0, 0,0, &
|
|
7,8, 0,0, &
|
|
7,0, 0,0 &
|
|
],pInt),[FE_maxNnodesAtIP(me),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_ipNeighbor ***
|
|
! is a list of the neighborhood of each IP.
|
|
! It is sorted in (local) +x,-x, +y,-y, +z,-z direction.
|
|
! Positive integers denote an intra-FE IP identifier.
|
|
! Negative integers denote the interface behind which the neighboring (extra-FE) IP will be located.
|
|
me = 0
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
-2,-3,-1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
2,-3, 3,-1, &
|
|
-2, 1, 3,-1, &
|
|
2,-3,-2, 1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
2,-4, 3,-1, &
|
|
-2, 1, 4,-1, &
|
|
4,-4,-3, 1, &
|
|
-2, 3,-3, 2 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
2,-4, 4,-1, &
|
|
3, 1, 5,-1, &
|
|
-2, 2, 6,-1, &
|
|
5,-4, 7, 1, &
|
|
6, 4, 8, 2, &
|
|
-2, 5, 9, 3, &
|
|
8,-4,-3, 4, &
|
|
9, 7,-3, 5, &
|
|
-2, 8,-3, 6 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
-1,-2,-3,-4 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
-2, 1, 3,-2, 4,-1, &
|
|
2,-4,-3, 1, 4,-1, &
|
|
2,-4, 3,-2,-3, 1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
2,-4, 3,-2, 4,-1, &
|
|
-3, 1, 3,-2, 5,-1, &
|
|
2,-4,-3, 1, 6,-1, &
|
|
5,-4, 6,-2,-5, 1, &
|
|
-3, 4, 6,-2,-5, 2, &
|
|
5,-4,-3, 4,-5, 3 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
-3,-5,-4,-2,-6,-1 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
2,-5, 3,-2, 5,-1, &
|
|
-3, 1, 4,-2, 6,-1, &
|
|
4,-5,-4, 1, 7,-1, &
|
|
-3, 3,-4, 2, 8,-1, &
|
|
6,-5, 7,-2,-6, 1, &
|
|
-3, 5, 8,-2,-6, 2, &
|
|
8,-5,-4, 5,-6, 3, &
|
|
-3, 7,-4, 6,-6, 4 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_ipNeighbor(1:FE_NipNeighbors(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
2,-5, 4,-2,10,-1, &
|
|
3, 1, 5,-2,11,-1, &
|
|
-3, 2, 6,-2,12,-1, &
|
|
5,-5, 7, 1,13,-1, &
|
|
6, 4, 8, 2,14,-1, &
|
|
-3, 5, 9, 3,15,-1, &
|
|
8,-5,-4, 4,16,-1, &
|
|
9, 7,-4, 5,17,-1, &
|
|
-3, 8,-4, 6,18,-1, &
|
|
11,-5,13,-2,19, 1, &
|
|
12,10,14,-2,20, 2, &
|
|
-3,11,15,-2,21, 3, &
|
|
14,-5,16,10,22, 4, &
|
|
15,13,17,11,23, 5, &
|
|
-3,14,18,12,24, 6, &
|
|
17,-5,-4,13,25, 7, &
|
|
18,16,-4,14,26, 8, &
|
|
-3,17,-4,15,27, 9, &
|
|
20,-5,22,-2,-6,10, &
|
|
21,19,23,-2,-6,11, &
|
|
-3,20,24,-2,-6,12, &
|
|
23,-5,25,19,-6,13, &
|
|
24,22,26,20,-6,14, &
|
|
-3,23,27,21,-6,15, &
|
|
26,-5,-4,22,-6,16, &
|
|
27,25,-4,23,-6,17, &
|
|
-3,26,-4,24,-6,18 &
|
|
],pInt),[FE_NipNeighbors(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_cell ***
|
|
me = 0
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(int([&
|
|
1,2,3 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(int([&
|
|
1, 4, 7, 6, &
|
|
2, 5, 7, 4, &
|
|
3, 6, 7, 5 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(int([&
|
|
1, 5, 9, 8, &
|
|
5, 2, 6, 9, &
|
|
8, 9, 7, 4, &
|
|
9, 6, 3, 7 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(int([&
|
|
1, 5,13,12, &
|
|
5, 6,14,13, &
|
|
6, 2, 7,14, &
|
|
12,13,16,11, &
|
|
13,14,15,16, &
|
|
14, 7, 8,15, &
|
|
11,16,10, 4, &
|
|
16,15, 9,10, &
|
|
15, 8, 3, 9 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(int([&
|
|
1, 2, 3, 4 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(int([&
|
|
1, 5,11, 7, 8,12,15,14, &
|
|
5, 2, 6,11,12, 9,13,15, &
|
|
7,11, 6, 3,14,15,13,10, &
|
|
8,12,15, 4, 4, 9,13,10 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(int([&
|
|
1, 7,16, 9,10,17,21,19, &
|
|
7, 2, 8,16,17,11,18,21, &
|
|
9,16, 8, 3,19,21,18,12, &
|
|
10,17,21,19, 4,13,20,15, &
|
|
17,11,18,21,13, 5,14,20, &
|
|
19,21,18,12,15,20,14, 6 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(int([&
|
|
1, 2, 3, 4, 5, 6, 7, 8 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(int([&
|
|
1, 9,21,12,13,22,27,25, &
|
|
9, 2,10,21,22,14,23,27, &
|
|
12,21,11, 4,25,27,24,16, &
|
|
21,10, 3,11,27,23,15,24, &
|
|
13,22,27,25, 5,17,26,20, &
|
|
22,14,23,27,17, 6,18,26, &
|
|
25,27,24,16,20,26,19, 8, &
|
|
27,23,15,24,26,18, 7,19 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
me = me + 1
|
|
FE_cell(1:FE_NcellnodesPerCell(FE_celltype(me)),1:FE_Nips(me),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(int([&
|
|
1, 9,33,16,17,37,57,44, &
|
|
9,10,34,33,37,38,58,57, &
|
|
10, 2,11,34,38,18,39,58, &
|
|
16,33,36,15,44,57,60,43, &
|
|
33,34,35,36,57,58,59,60, &
|
|
34,11,12,35,58,39,40,59, &
|
|
15,36,14, 4,43,60,42,20, &
|
|
36,35,13,14,60,59,41,42, &
|
|
35,12, 3,13,59,40,19,41, &
|
|
17,37,57,44,21,45,61,52, &
|
|
37,38,58,57,45,46,62,61, &
|
|
38,18,39,58,46,22,47,62, &
|
|
44,57,60,43,52,61,64,51, &
|
|
57,58,59,60,61,62,63,64, &
|
|
58,39,40,59,62,47,48,63, &
|
|
43,60,42,20,51,64,50,24, &
|
|
60,59,41,42,64,63,49,50, &
|
|
59,40,19,41,63,48,23,49, &
|
|
21,45,61,52, 5,25,53,32, &
|
|
45,46,62,61,25,26,54,53, &
|
|
46,22,47,62,26, 6,27,54, &
|
|
52,61,64,51,32,53,56,31, &
|
|
61,62,63,64,53,54,55,56, &
|
|
62,47,48,63,54,27,28,55, &
|
|
51,64,50,24,31,56,30, 8, &
|
|
64,63,49,50,56,55,29,30, &
|
|
63,48,23,49,55,28, 7,29 &
|
|
],pInt),[FE_NcellnodesPerCell(FE_celltype(me)),FE_Nips(me)])
|
|
|
|
|
|
! *** FE_cellnodeParentnodeWeights ***
|
|
! center of gravity of the weighted nodes gives the position of the cell node.
|
|
! fill with 0.
|
|
! example: face-centered cell node with face nodes 1,2,5,6 to be used in,
|
|
! e.g., an 8 node element, would be encoded:
|
|
! 1, 1, 0, 0, 1, 1, 0, 0
|
|
me = 0
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 6 (2D 3node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, &
|
|
0, 1, 0, &
|
|
0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 125 (2D 6node 3ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 2, 2, 2 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 11 (2D 4node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, &
|
|
0, 1, 0, 0, &
|
|
0, 0, 1, 0, &
|
|
0, 0, 0, 1, &
|
|
1, 1, 0, 0, &
|
|
0, 1, 1, 0, &
|
|
0, 0, 1, 1, &
|
|
1, 0, 0, 1, &
|
|
1, 1, 1, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 27 (2D 8node 9ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
1, 0, 0, 0, 2, 0, 0, 0, &
|
|
0, 1, 0, 0, 2, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 2, 0, 0, &
|
|
0, 0, 1, 0, 0, 2, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 2, 0, &
|
|
0, 0, 0, 1, 0, 0, 2, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 2, &
|
|
1, 0, 0, 0, 0, 0, 0, 2, &
|
|
4, 1, 1, 1, 8, 2, 2, 8, &
|
|
1, 4, 1, 1, 8, 8, 2, 2, &
|
|
1, 1, 4, 1, 2, 8, 8, 2, &
|
|
1, 1, 1, 4, 2, 2, 8, 8 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 54 (2D 8node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 1, 2, 2, 2, 2 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 134 (3D 4node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, &
|
|
0, 1, 0, 0, &
|
|
0, 0, 1, 0, &
|
|
0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 157 (3D 5node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, &
|
|
0, 0, 0, 1, 0, &
|
|
1, 1, 0, 0, 0, &
|
|
0, 1, 1, 0, 0, &
|
|
1, 0, 1, 0, 0, &
|
|
1, 0, 0, 1, 0, &
|
|
0, 1, 0, 1, 0, &
|
|
0, 0, 1, 1, 0, &
|
|
1, 1, 1, 0, 0, &
|
|
1, 1, 0, 1, 0, &
|
|
0, 1, 1, 1, 0, &
|
|
1, 0, 1, 1, 0, &
|
|
0, 0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 127 (3D 10node 4ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, &
|
|
1, 1, 1, 0, 2, 2, 2, 0, 0, 0, &
|
|
1, 1, 0, 1, 2, 0, 0, 2, 2, 0, &
|
|
0, 1, 1, 1, 0, 2, 0, 0, 2, 2, &
|
|
1, 0, 1, 1, 0, 0, 2, 2, 0, 2, &
|
|
3, 3, 3, 3, 4, 4, 4, 4, 4, 4 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 136 (3D 6node 6ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 1, &
|
|
1, 1, 0, 0, 0, 0, &
|
|
0, 1, 1, 0, 0, 0, &
|
|
1, 0, 1, 0, 0, 0, &
|
|
1, 0, 0, 1, 0, 0, &
|
|
0, 1, 0, 0, 1, 0, &
|
|
0, 0, 1, 0, 0, 1, &
|
|
0, 0, 0, 1, 1, 0, &
|
|
0, 0, 0, 0, 1, 1, &
|
|
0, 0, 0, 1, 0, 1, &
|
|
1, 1, 1, 0, 0, 0, &
|
|
1, 1, 0, 1, 1, 0, &
|
|
0, 1, 1, 0, 1, 1, &
|
|
1, 0, 1, 1, 0, 1, &
|
|
0, 0, 0, 1, 1, 1, &
|
|
1, 1, 1, 1, 1, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 117 (3D 8node 1ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, &
|
|
0, 1, 0, 0, 0, 0, 0, 0, &
|
|
0, 0, 1, 0, 0, 0, 0, 0, &
|
|
0, 0, 0, 1, 0, 0, 0, 0, &
|
|
0, 0, 0, 0, 1, 0, 0, 0, &
|
|
0, 0, 0, 0, 0, 1, 0, 0, &
|
|
0, 0, 0, 0, 0, 0, 1, 0, &
|
|
0, 0, 0, 0, 0, 0, 0, 1 &
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 7 (3D 8node 8ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, & !
|
|
1, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 1, 0, 0, 0, 0, 0, & ! 10
|
|
0, 0, 1, 1, 0, 0, 0, 0, & !
|
|
1, 0, 0, 1, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 1, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 1, 0, & ! 15
|
|
0, 0, 0, 1, 0, 0, 0, 1, & !
|
|
0, 0, 0, 0, 1, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 1, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 1, & !
|
|
0, 0, 0, 0, 1, 0, 0, 1, & ! 20
|
|
1, 1, 1, 1, 0, 0, 0, 0, & !
|
|
1, 1, 0, 0, 1, 1, 0, 0, & !
|
|
0, 1, 1, 0, 0, 1, 1, 0, & !
|
|
0, 0, 1, 1, 0, 0, 1, 1, & !
|
|
1, 0, 0, 1, 1, 0, 0, 1, & ! 25
|
|
0, 0, 0, 0, 1, 1, 1, 1, & !
|
|
1, 1, 1, 1, 1, 1, 1, 1 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 57 (3D 20node 8ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, & ! 15
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, & ! 20
|
|
1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, & !
|
|
0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, & !
|
|
0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 2, 0, 0, 0, 2, 0, 0, 0, 2, 2, & !
|
|
1, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 2, 2, 0, 0, 2, & ! 25
|
|
0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 2, 2, 2, 2, 0, 0, 0, 0, & !
|
|
3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
me = me + 1
|
|
FE_cellnodeParentnodeWeights(1:FE_Nnodes(me),1:FE_Ncellnodes(FE_geomtype(me)),me) = & ! element 21 (3D 20node 27ip)
|
|
reshape(real([&
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 5
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & ! 10
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 15
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
|
|
0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
|
|
0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
|
|
0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & ! 20
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & ! 25
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, & ! 30
|
|
0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, & !
|
|
4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, 0, 0, 0, 0, & ! 35
|
|
1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, 0, 0, 0, 0, & !
|
|
4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, & !
|
|
1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, 0, & !
|
|
0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, & !
|
|
0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, 0, & ! 40
|
|
0, 0, 4, 1, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 8, 2, & !
|
|
0, 0, 1, 4, 0, 0, 1, 1, 0, 0, 8, 0, 0, 0, 2, 0, 0, 0, 2, 8, & !
|
|
1, 0, 0, 4, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 2, 0, 0, 8, & !
|
|
4, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, 2, & !
|
|
1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, 0, & ! 45
|
|
1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, 0, & !
|
|
0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, 0, & !
|
|
0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, 0, & !
|
|
0, 0, 1, 1, 0, 0, 4, 1, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 8, 2, & !
|
|
0, 0, 1, 1, 0, 0, 1, 4, 0, 0, 2, 0, 0, 0, 8, 0, 0, 0, 2, 8, & ! 50
|
|
1, 0, 0, 1, 1, 0, 0, 4, 0, 0, 0, 2, 0, 0, 0, 8, 2, 0, 0, 8, & !
|
|
1, 0, 0, 1, 4, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 8, 8, 0, 0, 2, & !
|
|
0, 0, 0, 0, 4, 1, 1, 1, 0, 0, 0, 0, 8, 2, 2, 8, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 4, 1, 1, 0, 0, 0, 0, 8, 8, 2, 2, 0, 0, 0, 0, & !
|
|
0, 0, 0, 0, 1, 1, 4, 1, 0, 0, 0, 0, 2, 8, 8, 2, 0, 0, 0, 0, & ! 55
|
|
0, 0, 0, 0, 1, 1, 1, 4, 0, 0, 0, 0, 2, 2, 8, 8, 0, 0, 0, 0, & !
|
|
24, 8, 4, 8, 8, 4, 3, 4, 32,12,12,32, 12, 4, 4,12, 32,12, 4,12, & !
|
|
8,24, 8, 4, 4, 8, 4, 3, 32,32,12,12, 12,12, 4, 4, 12,32,12, 4, & !
|
|
4, 8,24, 8, 3, 4, 8, 4, 12,32,32,12, 4,12,12, 4, 4,12,32,12, & !
|
|
8, 4, 8,24, 4, 3, 4, 8, 12,12,32,32, 4, 4,12,12, 12, 4,12,32, & ! 60
|
|
8, 4, 3, 4, 24, 8, 4, 8, 12, 4, 4,12, 32,12,12,32, 32,12, 4,12, & !
|
|
4, 8, 4, 3, 8,24, 8, 4, 12,12, 4, 4, 32,32,12,12, 12,32,12, 4, & !
|
|
3, 4, 8, 4, 4, 8,24, 8, 4,12,12, 4, 12,32,32,12, 4,12,32,12, & !
|
|
4, 3, 4, 8, 8, 4, 8,24, 4, 4,12,12, 12,12,32,32, 12, 4,12,32 & !
|
|
],pReal),[FE_Nnodes(me),FE_Ncellnodes(FE_geomtype(me))])
|
|
|
|
|
|
|
|
! *** FE_cellface ***
|
|
me = 0
|
|
|
|
me = me + 1
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 3node, VTK_TRIANGLE (5)
|
|
reshape(int([&
|
|
2,3, &
|
|
3,1, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 2D 4node, VTK_QUAD (9)
|
|
reshape(int([&
|
|
2,3, &
|
|
4,1, &
|
|
3,4, &
|
|
1,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 4node, VTK_TETRA (10)
|
|
reshape(int([&
|
|
1,3,2, &
|
|
1,2,4, &
|
|
2,3,4, &
|
|
1,4,3 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
me = me + 1
|
|
FE_cellface(1:FE_NcellnodesPerCellface(me),1:FE_NipNeighbors(me),me) = & ! 3D 8node, VTK_HEXAHEDRON (12)
|
|
reshape(int([&
|
|
2,3,7,6, &
|
|
4,1,5,8, &
|
|
3,4,8,7, &
|
|
1,2,6,5, &
|
|
5,6,7,8, &
|
|
1,4,3,2 &
|
|
],pInt),[FE_NcellnodesPerCellface(me),FE_NipNeighbors(me)])
|
|
|
|
|
|
end subroutine mesh_build_FEdata
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Gives the FE to CP ID mapping by binary search through lookup array
|
|
!! valid questions (what) are 'elem', 'node'
|
|
!--------------------------------------------------------------------------------------------------
|
|
integer function mesh_FEasCP(what,myID)
|
|
use IO, only: &
|
|
IO_lc
|
|
|
|
character(len=*), intent(in) :: what
|
|
integer, intent(in) :: myID
|
|
|
|
integer, dimension(:,:), pointer :: lookupMap
|
|
integer :: lower,upper,center
|
|
|
|
mesh_FEasCP = 0
|
|
select case(IO_lc(what(1:4)))
|
|
case('elem')
|
|
lookupMap => mesh_mapFEtoCPelem
|
|
case('node')
|
|
lookupMap => mesh_mapFEtoCPnode
|
|
case default
|
|
return
|
|
endselect
|
|
|
|
lower = 1
|
|
upper = int(size(lookupMap,2),pInt)
|
|
|
|
if (lookupMap(1,lower) == myID) then ! check at bounds QUESTION is it valid to extend bounds by 1 and just do binary search w/o init check at bounds?
|
|
mesh_FEasCP = lookupMap(2,lower)
|
|
return
|
|
elseif (lookupMap(1,upper) == myID) then
|
|
mesh_FEasCP = lookupMap(2,upper)
|
|
return
|
|
endif
|
|
binarySearch: do while (upper-lower > 1)
|
|
center = (lower+upper)/2
|
|
if (lookupMap(1,center) < myID) then
|
|
lower = center
|
|
elseif (lookupMap(1,center) > myID) then
|
|
upper = center
|
|
else
|
|
mesh_FEasCP = lookupMap(2,center)
|
|
exit
|
|
endif
|
|
enddo binarySearch
|
|
|
|
end function mesh_FEasCP
|
|
|
|
end module mesh
|