DAMASK_EICMD/python/damask/mechanics.py

181 lines
4.8 KiB
Python
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

import numpy as np
def Cauchy(F,P):
"""
Return Cauchy stress calculated from 1. Piola-Kirchhoff stress and deformation gradient.
Resulting tensor is symmetrized as the Cauchy stress needs to be symmetric.
Parameters
----------
F : numpy.array of shape (x,3,3) or (3,3)
Deformation gradient.
P : numpy.array of shape (x,3,3) or (3,3)
1. Piola-Kirchhoff stress.
"""
if np.shape(F) == np.shape(P) == (3,3):
sigma = 1.0/np.linalg.det(F) * np.dot(F,P)
else:
sigma = np.einsum('i,ijk,ilk->ijl',1.0/np.linalg.det(F),P,F)
return symmetric(sigma)
def strain_tensor(F,t,m):
"""
Return strain tensor calculated from deformation gradient.
For details refer to https://en.wikipedia.org/wiki/Finite_strain_theory and
https://de.wikipedia.org/wiki/Verzerrungstensor
Parameters
----------
F : numpy.array of shape (x,3,3) or (3,3)
Deformation gradient.
t : {V, U}
Type of the polar decomposition, V for right stretch tensor and U for left stretch tensor.
m : float
Order of the strain.
"""
F_ = F.reshape((1,3,3)) if F.shape == (3,3) else F
if t == 'U':
B = np.matmul(F_,transpose(F_))
w,n = np.linalg.eigh(B)
elif t == 'V':
C = np.matmul(transpose(F_),F_)
w,n = np.linalg.eigh(C)
if m > 0.0:
eps = 1.0/(2.0*abs(m)) * (+ np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
- np.broadcast_to(np.ones(3),[F_.shape[0],3]))
elif m < 0.0:
eps = 1.0/(2.0*abs(m)) * (- np.matmul(n,np.einsum('ij,ikj->ijk',w**m,n))
+ np.broadcast_to(np.ones(3),[F_.shape[0],3]))
else:
eps = np.matmul(n,np.einsum('ij,ikj->ijk',0.5*np.log(w),n))
return eps.reshape((3,3)) if np.shape(F) == (3,3) else \
eps
def deviatoric_part(x):
"""
Return deviatoric part of a tensor.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor of which the deviatoric part is computed.
"""
return x - np.eye(3)*spherical_part(x) if np.shape(x) == (3,3) else \
x - np.einsum('ijk,i->ijk',np.broadcast_to(np.eye(3),[x.shape[0],3,3]),spherical_part(x))
def spherical_part(x):
"""
Return spherical (hydrostatic) part of a tensor.
A single scalar is returned, i.e. the hydrostatic part is not mapped on the 3rd order identity
matrix.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor of which the hydrostatic part is computed.
"""
return np.trace(x)/3.0 if np.shape(x) == (3,3) else \
np.trace(x,axis1=1,axis2=2)/3.0
def Mises_stress(sigma):
"""
Return the Mises equivalent of a stress tensor.
Parameters
----------
sigma : numpy.array of shape (x,3,3) or (3,3)
Symmetric stress tensor of which the von Mises equivalent is computed.
"""
s = deviatoric_part(sigma)
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(sigma) == (3,3) else \
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
def Mises_strain(epsilon):
"""
Return the Mises equivalent of a strain tensor.
Parameters
----------
epsilon : numpy.array of shape (x,3,3) or (3,3)
Symmetric strain tensor of which the von Mises equivalent is computed.
"""
s = deviatoric_part(epsilon)
return np.sqrt(3.0/2.0*(np.sum(s**2.0))) if np.shape(epsilon) == (3,3) else \
np.sqrt(3.0/2.0*np.einsum('ijk->i',s**2.0))
def symmetric(x):
"""
Return the symmetrized tensor.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor of which the symmetrized values are computed.
"""
return (x+transpose(x))*0.5
def maximum_shear(x):
"""
Return the maximum shear component of a symmetric tensor.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Symmetric tensor of which the maximum shear is computed.
"""
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
return (w[2] - w[0])*0.5 if np.shape(x) == (3,3) else \
(w[:,2] - w[:,0])*0.5
def principal_components(x):
"""
Return the principal components of a symmetric tensor.
The principal components (eigenvalues) are sorted in descending order, each repeated according to
its multiplicity.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Symmetric tensor of which the principal compontents are computed.
"""
w = np.linalg.eigvalsh(symmetric(x)) # eigenvalues in ascending order
return w[::-1] if np.shape(x) == (3,3) else \
w[:,::-1]
def transpose(x):
"""
Return the transpose of a tensor.
Parameters
----------
x : numpy.array of shape (x,3,3) or (3,3)
Tensor of which the transpose is computer.
"""
return x.T if np.shape(x) == (3,3) else \
np.transpose(x,(0,2,1))