DAMASK_EICMD/src/homogenization_thermal.f90

245 lines
7.6 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Martin Diehl, KU Leuven
!--------------------------------------------------------------------------------------------------
submodule(homogenization) thermal
use lattice
type :: tDataContainer
real(pReal), dimension(:), allocatable :: T, dot_T
end type tDataContainer
type(tDataContainer), dimension(:), allocatable :: current
type :: tParameters
character(len=pStringLen), allocatable, dimension(:) :: &
output
end type tParameters
type(tparameters), dimension(:), allocatable :: &
param
contains
!--------------------------------------------------------------------------------------------------
!> @brief Allocate variables and set parameters.
!--------------------------------------------------------------------------------------------------
module subroutine thermal_init()
class(tNode), pointer :: &
configHomogenizations, &
configHomogenization, &
configHomogenizationThermal
integer :: ho
print'(/,a)', ' <<<+- homogenization:thermal init -+>>>'
print'(/,a)', ' <<<+- homogenization:thermal:isotemperature init -+>>>'
configHomogenizations => config_material%get('homogenization')
allocate(param(configHomogenizations%length))
allocate(current(configHomogenizations%length))
do ho = 1, configHomogenizations%length
allocate(current(ho)%T(count(material_homogenizationAt2==ho)), source=300.0_pReal)
allocate(current(ho)%dot_T(count(material_homogenizationAt2==ho)), source=0.0_pReal)
configHomogenization => configHomogenizations%get(ho)
associate(prm => param(ho))
if (configHomogenization%contains('thermal')) then
configHomogenizationThermal => configHomogenization%get('thermal')
#if defined (__GFORTRAN__)
prm%output = output_asStrings(configHomogenizationThermal)
#else
prm%output = configHomogenizationThermal%get_asStrings('output',defaultVal=emptyStringArray)
#endif
else
prm%output = emptyStringArray
endif
end associate
enddo
end subroutine thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief Partition temperature onto the individual constituents.
!--------------------------------------------------------------------------------------------------
module subroutine thermal_partition(ce)
integer, intent(in) :: ce
real(pReal) :: T, dot_T
integer :: co
T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce))
dot_T = current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce))
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
call phase_thermal_setField(T,dot_T,co,ce)
enddo
end subroutine thermal_partition
!--------------------------------------------------------------------------------------------------
!> @brief Homogenize temperature rates
!--------------------------------------------------------------------------------------------------
module subroutine thermal_homogenize(ip,el)
integer, intent(in) :: ip,el
!call phase_thermal_getRate(homogenization_dot_T((el-1)*discretization_nIPs+ip), ip,el)
end subroutine thermal_homogenize
!--------------------------------------------------------------------------------------------------
!> @brief return homogenized thermal conductivity in reference configuration
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getConductivity(ce) result(K)
integer, intent(in) :: ce
real(pReal), dimension(3,3) :: K
integer :: &
co
K = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
K = K + crystallite_push33ToRef(co,ce,lattice_K(:,:,material_phaseAt2(co,ce)))
enddo
K = K / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getConductivity
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized specific heat capacity
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getSpecificHeat(ce) result(c_P)
integer, intent(in) :: ce
real(pReal) :: c_P
integer :: co
c_P = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
c_P = c_P + lattice_c_p(material_phaseAt2(co,ce))
enddo
c_P = c_P / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getSpecificHeat
!--------------------------------------------------------------------------------------------------
!> @brief returns homogenized mass density
!--------------------------------------------------------------------------------------------------
module function thermal_conduction_getMassDensity(ce) result(rho)
integer, intent(in) :: ce
real(pReal) :: rho
integer :: co
rho = 0.0_pReal
do co = 1, homogenization_Nconstituents(material_homogenizationAt2(ce))
rho = rho + lattice_rho(material_phaseAt2(co,ce))
enddo
rho = rho / real(homogenization_Nconstituents(material_homogenizationAt2(ce)),pReal)
end function thermal_conduction_getMassDensity
!--------------------------------------------------------------------------------------------------
!> @brief Set thermal field and its rate (T and dot_T)
!--------------------------------------------------------------------------------------------------
module subroutine homogenization_thermal_setField(T,dot_T, ce)
integer, intent(in) :: ce
real(pReal), intent(in) :: T, dot_T
current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce)) = T
current(material_homogenizationAt2(ce))%dot_T(material_homogenizationMemberAt2(ce)) = dot_T
end subroutine homogenization_thermal_setField
!--------------------------------------------------------------------------------------------------
!> @brief writes results to HDF5 output file
!--------------------------------------------------------------------------------------------------
module subroutine thermal_conduction_results(ho,group)
integer, intent(in) :: ho
character(len=*), intent(in) :: group
integer :: o
associate(prm => param(ho))
outputsLoop: do o = 1,size(prm%output)
select case(trim(prm%output(o)))
case('T')
call results_writeDataset(group,current(ho)%T,'T','temperature','K')
end select
enddo outputsLoop
end associate
end subroutine thermal_conduction_results
module function homogenization_thermal_T(ce) result(T)
integer, intent(in) :: ce
real(pReal) :: T
T = current(material_homogenizationAt2(ce))%T(material_homogenizationMemberAt2(ce))
end function homogenization_thermal_T
!--------------------------------------------------------------------------------------------------
!> @brief return heat generation rate
!--------------------------------------------------------------------------------------------------
module subroutine thermal_conduction_getSource(Tdot, ip, el)
integer, intent(in) :: &
ip, &
el
real(pReal), intent(out) :: &
Tdot
integer :: co, ho,ph,me
real(pReal) :: dot_T_temp
ho = material_homogenizationAt(el)
Tdot = 0.0_pReal
do co = 1, homogenization_Nconstituents(ho)
ph = material_phaseAt(co,el)
me = material_phasememberAt(co,ip,el)
call phase_thermal_getRate(dot_T_temp, ph,me)
Tdot = Tdot + dot_T_temp
enddo
Tdot = Tdot/real(homogenization_Nconstituents(ho),pReal)
end subroutine thermal_conduction_getSource
end submodule thermal