90 lines
3.8 KiB
Python
90 lines
3.8 KiB
Python
import pytest
|
|
import numpy as np
|
|
|
|
import damask
|
|
from damask import Rotation
|
|
from damask import Orientation
|
|
from damask import Lattice
|
|
|
|
rot0= Rotation.from_random()
|
|
rot1= Rotation.from_random()
|
|
rot2= Rotation.from_random()
|
|
rot3= Rotation.from_random()
|
|
|
|
class TestOrientation_vec:
|
|
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
|
def test_equivalentOrientations_vec(self,lattice):
|
|
ori0=Orientation(rot0,lattice)
|
|
ori1=Orientation(rot1,lattice)
|
|
ori2=Orientation(rot2,lattice)
|
|
ori3=Orientation(rot3,lattice)
|
|
|
|
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),rot2.as_quaternion(),rot3.as_quaternion()])
|
|
rot_vec=Rotation.from_quaternion(quat)
|
|
ori_vec=Orientation(rot_vec,lattice)
|
|
|
|
for s in range(len(ori_vec.lattice.symmetry.symmetryOperations())):
|
|
assert all(ori_vec.equivalent_vec()[s,0].rotation.as_Eulers() == \
|
|
ori0.equivalentOrientations()[s].rotation.as_Eulers())
|
|
assert all(ori_vec.equivalent_vec()[s,1].rotation.as_quaternion() == \
|
|
ori1.equivalentOrientations()[s].rotation.as_quaternion())
|
|
assert all(ori_vec.equivalent_vec()[s,2].rotation.as_Rodrigues() == \
|
|
ori2.equivalentOrientations()[s].rotation.as_Rodrigues())
|
|
assert all(ori_vec.equivalent_vec()[s,3].rotation.as_cubochoric() == \
|
|
ori3.equivalentOrientations()[s].rotation.as_cubochoric())
|
|
|
|
@pytest.mark.parametrize('lattice',Lattice.lattices)
|
|
def test_inFZ_vec(self,lattice):
|
|
ori0=Orientation(rot0,lattice)
|
|
ori1=Orientation(rot1,lattice)
|
|
ori2=Orientation(rot2,lattice)
|
|
ori3=Orientation(rot3,lattice)
|
|
#ensure 1 of them is in FZ
|
|
ori4=ori0.reduced()
|
|
rot4=ori4.rotation
|
|
|
|
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),\
|
|
rot2.as_quaternion(),rot3.as_quaternion(), rot4.as_quaternion()])
|
|
rot_vec=Rotation.from_quaternion(quat)
|
|
ori_vec=Orientation(rot_vec,lattice)
|
|
|
|
assert ori_vec.inFZ_vec()[0] == ori0.inFZ()
|
|
assert ori_vec.inFZ_vec()[1] == ori1.inFZ()
|
|
assert ori_vec.inFZ_vec()[2] == ori2.inFZ()
|
|
assert ori_vec.inFZ_vec()[3] == ori3.inFZ()
|
|
assert ori_vec.inFZ_vec()[4] == ori4.inFZ()
|
|
|
|
|
|
@pytest.mark.parametrize('model',['Bain','KS','GT','GT_prime','NW','Pitsch'])
|
|
@pytest.mark.parametrize('lattice',['fcc','bcc'])
|
|
def test_relatedOrientations_vec(self,model,lattice):
|
|
ori0=Orientation(rot0,lattice)
|
|
ori1=Orientation(rot1,lattice)
|
|
ori2=Orientation(rot2,lattice)
|
|
ori3=Orientation(rot3,lattice)
|
|
|
|
quat=np.array([rot0.as_quaternion(),rot1.as_quaternion(),rot2.as_quaternion(),rot3.as_quaternion()])
|
|
rot_vec=Rotation.from_quaternion(quat)
|
|
ori_vec=Orientation(rot_vec,lattice)
|
|
|
|
for s in range(len(ori1.lattice.relationOperations(model)['rotations'])):
|
|
assert all(ori_vec.relatedOrientations_vec(model)[s,0].rotation.as_Eulers() == \
|
|
ori0.relatedOrientations(model)[s].rotation.as_Eulers())
|
|
assert all(ori_vec.relatedOrientations_vec(model)[s,1].rotation.as_quaternion() == \
|
|
ori1.relatedOrientations(model)[s].rotation.as_quaternion())
|
|
assert all(ori_vec.relatedOrientations_vec(model)[s,2].rotation.as_Rodrigues() == \
|
|
ori2.relatedOrientations(model)[s].rotation.as_Rodrigues())
|
|
assert all(ori_vec.relatedOrientations_vec(model)[s,3].rotation.as_cubochoric() == \
|
|
ori3.relatedOrientations(model)[s].rotation.as_cubochoric())
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|