86 lines
4.3 KiB
Python
Executable File
86 lines
4.3 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys,string
|
|
import numpy as np
|
|
from collections import defaultdict
|
|
from optparse import OptionParser
|
|
import damask
|
|
|
|
scriptID = string.replace('$Id$','\n','\\n')
|
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Add column(s) containing eigenvalues and eigenvectors of requested tensor column(s).
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-t','--tensor', dest='tensor', action='extend', metavar='<string LIST>',
|
|
help='heading of columns containing tensor field values')
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if options.tensor == None:
|
|
parser.error('no data column specified...')
|
|
|
|
datainfo = { # list of requested labels per datatype
|
|
'tensor': {'len':9,
|
|
'label':[]},
|
|
}
|
|
|
|
datainfo['tensor']['label'] += options.tensor
|
|
|
|
# ------------------------------------------ setup file handles ------------------------------------
|
|
files = []
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w'), 'croak':sys.stderr})
|
|
|
|
#--- loop over input files -------------------------------------------------------------------------
|
|
for file in files:
|
|
file['croak'].write('\033[1m'+scriptName+'\033[0m: '+file['name']+'\n')
|
|
|
|
table = damask.ASCIItable(file['input'],file['output'],True) # make unbuffered ASCII_table
|
|
table.head_read() # read ASCII header info
|
|
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
|
|
|
|
active = []
|
|
column = defaultdict(dict)
|
|
|
|
for label in datainfo['tensor']['label']:
|
|
key = '1_%s'%label
|
|
if key not in table.labels:
|
|
file['croak'].write('column %s not found...\n'%key)
|
|
else:
|
|
active.append(label)
|
|
column[label] = table.labels.index(key) # remember columns of requested data
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
for label in active:
|
|
table.labels_append(['%i_eigval(%s)'%(i+1,label) for i in xrange(3)]) # extend ASCII header with new labels
|
|
table.labels_append(['%i_eigvec(%s)'%(i+1,label) for i in xrange(9)]) # extend ASCII header with new labels
|
|
table.head_write()
|
|
|
|
# ------------------------------------------ process data ------------------------------------------
|
|
outputAlive = True
|
|
while outputAlive and table.data_read(): # read next data line of ASCII table
|
|
for label in active: # loop over requested data
|
|
tensor = np.array(map(float,table.data[column[label]:column[label]+datainfo['tensor']['len']])).\
|
|
reshape((datainfo['tensor']['len']//3,3))
|
|
(u,v) = np.linalg.eig(tensor)
|
|
table.data_append(list(u))
|
|
table.data_append(list(v.transpose().reshape(datainfo['tensor']['len'])))
|
|
outputAlive = table.data_write() # output processed line
|
|
|
|
# ------------------------------------------ output result -----------------------------------------
|
|
outputAlive and table.output_flush() # just in case of buffered ASCII table
|
|
|
|
table.input_close() # close input ASCII table (works for stdin)
|
|
table.output_close() # close output ASCII table (works for stdout)
|
|
if file['name'] != 'STDIN':
|
|
os.rename(file['name']+'_tmp',file['name']) # overwrite old one with tmp new
|