2919 lines
153 KiB
Fortran
2919 lines
153 KiB
Fortran
!* $Id$
|
|
!***************************************
|
|
!* Module: CRYSTALLITE *
|
|
!***************************************
|
|
!* contains: *
|
|
!* - _init *
|
|
!* - materialpoint_stressAndItsTangent *
|
|
!* - _partitionDeformation *
|
|
!* - _updateState *
|
|
!* - _stressAndItsTangent *
|
|
!* - _postResults *
|
|
!***************************************
|
|
|
|
MODULE crystallite
|
|
|
|
use prec, only: pReal, pInt
|
|
implicit none
|
|
!
|
|
! ****************************************************************
|
|
! *** General variables for the crystallite calculation ***
|
|
! ****************************************************************
|
|
|
|
integer(pInt) crystallite_maxSizePostResults
|
|
integer(pInt), dimension(:), allocatable :: crystallite_sizePostResults
|
|
integer(pInt), dimension(:,:), allocatable :: crystallite_sizePostResult
|
|
character(len=64), dimension(:,:), allocatable :: crystallite_output ! name of each post result output
|
|
integer(pInt), dimension (:,:,:), allocatable :: &
|
|
crystallite_symmetryID ! crystallographic symmetry 1=cubic 2=hexagonal, needed in all orientation calcs
|
|
|
|
real(pReal), dimension (:,:,:), allocatable :: &
|
|
crystallite_dt, & ! requested time increment of each grain
|
|
crystallite_subdt, & ! substepped time increment of each grain
|
|
crystallite_subFrac, & ! already calculated fraction of increment
|
|
crystallite_subStep, & ! size of next integration step
|
|
crystallite_statedamper, & ! damping for state update
|
|
crystallite_Temperature, & ! Temp of each grain
|
|
crystallite_partionedTemperature0, & ! Temp of each grain at start of homog inc
|
|
crystallite_subTemperature0, & ! Temp of each grain at start of crystallite inc
|
|
crystallite_dotTemperature ! evolution of Temperature of each grain
|
|
real(pReal), dimension (:,:,:,:), allocatable :: &
|
|
crystallite_Tstar_v, & ! current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
|
crystallite_Tstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of FE inc
|
|
crystallite_partionedTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of homog inc
|
|
crystallite_subTstar0_v, & ! 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
|
crystallite_orientation, & ! orientation as quaternion
|
|
crystallite_orientation0, & ! initial orientation as quaternion
|
|
crystallite_rotation ! grain rotation away from initial orientation as axis-angle (in degrees)
|
|
real(pReal), dimension (:,:,:,:,:), allocatable :: &
|
|
crystallite_Fe, & ! current "elastic" def grad (end of converged time step)
|
|
crystallite_Fp, & ! current plastic def grad (end of converged time step)
|
|
crystallite_invFp, & ! inverse of current plastic def grad (end of converged time step)
|
|
crystallite_Fp0, & ! plastic def grad at start of FE inc
|
|
crystallite_partionedFp0,& ! plastic def grad at start of homog inc
|
|
crystallite_subFp0,& ! plastic def grad at start of crystallite inc
|
|
crystallite_F0, & ! def grad at start of FE inc
|
|
crystallite_partionedF, & ! def grad to be reached at end of homog inc
|
|
crystallite_partionedF0, & ! def grad at start of homog inc
|
|
crystallite_subF, & ! def grad to be reached at end of crystallite inc
|
|
crystallite_subF0, & ! def grad at start of crystallite inc
|
|
crystallite_Lp, & ! current plastic velocitiy grad (end of converged time step)
|
|
crystallite_Lp0, & ! plastic velocitiy grad at start of FE inc
|
|
crystallite_partionedLp0,& ! plastic velocity grad at start of homog inc
|
|
crystallite_subLp0,& ! plastic velocity grad at start of crystallite inc
|
|
crystallite_P, & ! 1st Piola-Kirchhoff stress per grain
|
|
crystallite_disorientation ! disorientation between two neighboring ips (only calculated for single grain IPs)
|
|
real(pReal), dimension (:,:,:,:,:,:,:), allocatable :: &
|
|
crystallite_dPdF, & ! current individual dPdF per grain (end of converged time step)
|
|
crystallite_dPdF0, & ! individual dPdF per grain at start of FE inc
|
|
crystallite_partioneddPdF0, & ! individual dPdF per grain at start of homog inc
|
|
crystallite_fallbackdPdF ! dPdF fallback for non-converged grains (elastic prediction)
|
|
logical, dimension (:,:,:), allocatable :: &
|
|
crystallite_localConstitution, & ! indicates this grain to have purely local constitutive law
|
|
crystallite_requested, & ! flag to request crystallite calculation
|
|
crystallite_todo, & ! flag to indicate need for further computation
|
|
crystallite_converged, & ! convergence flag
|
|
crystallite_stateConverged, & ! flag indicating convergence of state
|
|
crystallite_temperatureConverged ! flag indicating convergence of temperature
|
|
|
|
CONTAINS
|
|
|
|
!********************************************************************
|
|
! allocate and initialize per grain variables
|
|
!********************************************************************
|
|
subroutine crystallite_init(Temperature)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debug_info, &
|
|
debug_reset
|
|
use numerics, only: integrator, &
|
|
integratorStiffness, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst
|
|
use math, only: math_I3, &
|
|
math_EulerToR, &
|
|
math_inv3x3, &
|
|
math_transpose3x3, &
|
|
math_mul33xx33, &
|
|
math_mul33x33
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips, &
|
|
mesh_maxNipNeighbors
|
|
use IO
|
|
use material
|
|
use lattice, only: lattice_symmetryType, &
|
|
lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
|
|
lattice_NslipSystem,lattice_NtwinSystem
|
|
|
|
use constitutive_phenopowerlaw, only: constitutive_phenopowerlaw_label, &
|
|
constitutive_phenopowerlaw_structure, &
|
|
constitutive_phenopowerlaw_Nslip
|
|
use constitutive_titanmod, only: constitutive_titanmod_label, &
|
|
constitutive_titanmod_structure
|
|
use constitutive_dislotwin, only: constitutive_dislotwin_label, &
|
|
constitutive_dislotwin_structure
|
|
use constitutive_nonlocal, only: constitutive_nonlocal_label, &
|
|
constitutive_nonlocal_structure
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: file = 200, &
|
|
maxNchunks = 2
|
|
|
|
!*** input variables ***!
|
|
real(pReal) Temperature
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
|
integer(pInt) g, & ! grain number
|
|
i, & ! integration point number
|
|
e, & ! element number
|
|
gMax, & ! maximum number of grains
|
|
iMax, & ! maximum number of integration points
|
|
eMax, & ! maximum number of elements
|
|
nMax, & ! maximum number of ip neighbors
|
|
myNgrains, & ! number of grains in current IP
|
|
myCrystallite, & ! crystallite of current elem
|
|
section, &
|
|
f, &
|
|
j, &
|
|
k, &
|
|
p, &
|
|
output, &
|
|
mySize, &
|
|
myStructure, & ! lattice structure
|
|
myPhase, &
|
|
myMat, &
|
|
index_myFamily
|
|
character(len=64) tag
|
|
character(len=1024) line
|
|
|
|
|
|
write(6,*)
|
|
write(6,*) '<<<+- crystallite init -+>>>'
|
|
write(6,*) '$Id$'
|
|
write(6,*)
|
|
|
|
|
|
gMax = homogenization_maxNgrains
|
|
iMax = mesh_maxNips
|
|
eMax = mesh_NcpElems
|
|
nMax = mesh_maxNipNeighbors
|
|
|
|
allocate(crystallite_Temperature(gMax,iMax,eMax)); crystallite_Temperature = Temperature
|
|
allocate(crystallite_partionedTemperature0(gMax,iMax,eMax)); crystallite_partionedTemperature0 = 0.0_pReal
|
|
allocate(crystallite_subTemperature0(gMax,iMax,eMax)); crystallite_subTemperature0 = 0.0_pReal
|
|
allocate(crystallite_dotTemperature(gMax,iMax,eMax)); crystallite_dotTemperature = 0.0_pReal
|
|
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax)); crystallite_Tstar0_v = 0.0_pReal
|
|
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax)); crystallite_partionedTstar0_v = 0.0_pReal
|
|
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax)); crystallite_subTstar0_v = 0.0_pReal
|
|
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax)); crystallite_Tstar_v = 0.0_pReal
|
|
allocate(crystallite_P(3,3,gMax,iMax,eMax)); crystallite_P = 0.0_pReal
|
|
allocate(crystallite_F0(3,3,gMax,iMax,eMax)); crystallite_F0 = 0.0_pReal
|
|
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax)); crystallite_partionedF0 = 0.0_pReal
|
|
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax)); crystallite_partionedF = 0.0_pReal
|
|
allocate(crystallite_subF0(3,3,gMax,iMax,eMax)); crystallite_subF0 = 0.0_pReal
|
|
allocate(crystallite_subF(3,3,gMax,iMax,eMax)); crystallite_subF = 0.0_pReal
|
|
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax)); crystallite_Fp0 = 0.0_pReal
|
|
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax)); crystallite_partionedFp0 = 0.0_pReal
|
|
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax)); crystallite_subFp0 = 0.0_pReal
|
|
allocate(crystallite_Fp(3,3,gMax,iMax,eMax)); crystallite_Fp = 0.0_pReal
|
|
allocate(crystallite_invFp(3,3,gMax,iMax,eMax)); crystallite_invFp = 0.0_pReal
|
|
allocate(crystallite_Fe(3,3,gMax,iMax,eMax)); crystallite_Fe = 0.0_pReal
|
|
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax)); crystallite_Lp0 = 0.0_pReal
|
|
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax)); crystallite_partionedLp0 = 0.0_pReal
|
|
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax)); crystallite_subLp0 = 0.0_pReal
|
|
allocate(crystallite_Lp(3,3,gMax,iMax,eMax)); crystallite_Lp = 0.0_pReal
|
|
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF = 0.0_pReal
|
|
allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_dPdF0 = 0.0_pReal
|
|
allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax)); crystallite_partioneddPdF0 = 0.0_pReal
|
|
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax)); crystallite_fallbackdPdF = 0.0_pReal
|
|
allocate(crystallite_dt(gMax,iMax,eMax)); crystallite_dt = 0.0_pReal
|
|
allocate(crystallite_subdt(gMax,iMax,eMax)); crystallite_subdt = 0.0_pReal
|
|
allocate(crystallite_subFrac(gMax,iMax,eMax)); crystallite_subFrac = 0.0_pReal
|
|
allocate(crystallite_subStep(gMax,iMax,eMax)); crystallite_subStep = 0.0_pReal
|
|
allocate(crystallite_statedamper(gMax,iMax,eMax)); crystallite_statedamper = 1.0_pReal
|
|
allocate(crystallite_symmetryID(gMax,iMax,eMax)); crystallite_symmetryID = 0.0_pReal !NEW
|
|
allocate(crystallite_orientation(4,gMax,iMax,eMax)); crystallite_orientation = 0.0_pReal
|
|
allocate(crystallite_orientation0(4,gMax,iMax,eMax)); crystallite_orientation0 = 0.0_pReal
|
|
allocate(crystallite_rotation(4,gMax,iMax,eMax)); crystallite_rotation = 0.0_pReal
|
|
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax)); crystallite_disorientation = 0.0_pReal
|
|
allocate(crystallite_localConstitution(gMax,iMax,eMax)); crystallite_localConstitution = .true.
|
|
allocate(crystallite_requested(gMax,iMax,eMax)); crystallite_requested = .false.
|
|
allocate(crystallite_todo(gMax,iMax,eMax)); crystallite_todo = .false.
|
|
allocate(crystallite_converged(gMax,iMax,eMax)); crystallite_converged = .true.
|
|
allocate(crystallite_stateConverged(gMax,iMax,eMax)); crystallite_stateConverged = .false.
|
|
allocate(crystallite_temperatureConverged(gMax,iMax,eMax)); crystallite_temperatureConverged = .false.
|
|
|
|
allocate(crystallite_output(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite)) ; crystallite_output = ''
|
|
allocate(crystallite_sizePostResults(material_Ncrystallite)) ; crystallite_sizePostResults = 0_pInt
|
|
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite)) ; crystallite_sizePostResult = 0_pInt
|
|
|
|
|
|
if(.not. IO_open_file(file,material_configFile)) call IO_error (100) ! corrupt config file
|
|
line = ''
|
|
section = 0
|
|
|
|
do while (IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
|
|
read(file,'(a1024)',END=100) line
|
|
enddo
|
|
|
|
do ! read thru sections of phase part
|
|
read(file,'(a1024)',END=100) line
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1
|
|
output = 0 ! reset output counter
|
|
endif
|
|
if (section > 0) then
|
|
positions = IO_stringPos(line,maxNchunks)
|
|
tag = IO_lc(IO_stringValue(line,positions,1)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
output = output + 1
|
|
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2))
|
|
end select
|
|
endif
|
|
enddo
|
|
|
|
100 close(file)
|
|
|
|
do i = 1,material_Ncrystallite ! sanity checks
|
|
enddo
|
|
|
|
do i = 1,material_Ncrystallite
|
|
do j = 1,crystallite_Noutput(i)
|
|
select case(crystallite_output(j,i))
|
|
case('phase')
|
|
mySize = 1
|
|
case('volume')
|
|
mySize = 1
|
|
case('orientation') ! orientation as quaternion
|
|
mySize = 4
|
|
case('eulerangles') ! Bunge Euler angles
|
|
mySize = 3
|
|
case('grainrotation') ! Deviation from initial grain orientation in axis-angle form (angle in degrees)
|
|
mySize = 4
|
|
case('defgrad','f','fe','fp','ee','p','firstpiola','1stpiola','s','tstar','secondpiola','2ndpiola')
|
|
mySize = 9
|
|
case default
|
|
mySize = 0
|
|
end select
|
|
|
|
if (mySize > 0_pInt) then ! any meaningful output found
|
|
crystallite_sizePostResult(j,i) = mySize
|
|
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
|
|
endif
|
|
enddo
|
|
enddo
|
|
crystallite_maxSizePostResults = maxval(crystallite_sizePostResults)
|
|
|
|
! write description file for crystallite output
|
|
|
|
if(.not. IO_open_jobFile(file,'outputCrystallite')) call IO_error (50) ! problems in writing file
|
|
|
|
do p = 1,material_Ncrystallite
|
|
write(file,*)
|
|
write(file,'(a)') '['//trim(crystallite_name(p))//']'
|
|
write(file,*)
|
|
do e = 1,crystallite_Noutput(p)
|
|
write(file,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
|
|
enddo
|
|
enddo
|
|
|
|
close(file)
|
|
|
|
!$OMP PARALLEL PRIVATE(myNgrains,myPhase,myStructure)
|
|
|
|
!$OMP DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element
|
|
do g = 1,myNgrains
|
|
crystallite_partionedTemperature0(g,i,e) = Temperature ! isothermal assumption
|
|
crystallite_Fp0(:,:,g,i,e) = math_EulerToR(material_EulerAngles(1:3,g,i,e)) ! plastic def gradient reflects init orientation
|
|
crystallite_Fe(:,:,g,i,e) = math_transpose3x3(crystallite_Fp0(1:3,1:3,g,i,e))
|
|
crystallite_F0(:,:,g,i,e) = math_I3
|
|
crystallite_partionedFp0(:,:,g,i,e) = crystallite_Fp0(:,:,g,i,e)
|
|
crystallite_partionedF0(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
|
|
crystallite_partionedF(:,:,g,i,e) = crystallite_F0(:,:,g,i,e)
|
|
crystallite_requested(g,i,e) = .true.
|
|
crystallite_localConstitution(g,i,e) = phase_localConstitution(material_phase(g,i,e))
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! Initialize crystallite_symmetryID(g,i,e)
|
|
|
|
!$OMP DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
myPhase = material_phase(g,i,e)
|
|
myMat = phase_constitutionInstance(myPhase)
|
|
select case (phase_constitution(myPhase))
|
|
case (constitutive_phenopowerlaw_label)
|
|
myStructure = constitutive_phenopowerlaw_structure(myMat)
|
|
case (constitutive_titanmod_label)
|
|
myStructure = constitutive_titanmod_structure(myMat)
|
|
case (constitutive_dislotwin_label)
|
|
myStructure = constitutive_dislotwin_structure(myMat)
|
|
case (constitutive_nonlocal_label)
|
|
myStructure = constitutive_nonlocal_structure(myMat)
|
|
case default
|
|
myStructure = -1_pInt ! does this happen for j2 material?
|
|
end select
|
|
if (myStructure > 0_pInt) then
|
|
crystallite_symmetryID(g,i,e) = lattice_symmetryType(myStructure) ! structure = 1(fcc) or 2(bcc) => 1; 3(hex)=>2
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
call crystallite_orientations()
|
|
crystallite_orientation0 = crystallite_orientation ! Store initial orientations for calculation of grain rotations
|
|
|
|
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
|
|
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
|
|
|
|
! *** Output to MARC output file ***
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Temperature: ', shape(crystallite_Temperature)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_dotTemperature: ', shape(crystallite_dotTemperature)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Fe: ', shape(crystallite_Fe)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp: ', shape(crystallite_Fp)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp: ', shape(crystallite_Lp)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_F0: ', shape(crystallite_F0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTemp0: ', shape(crystallite_partionedTemperature0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subF: ', shape(crystallite_subF)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subTemperature0: ', shape(crystallite_subTemperature0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_symmetryID: ', shape(crystallite_symmetryID)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_P: ', shape(crystallite_P)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation: ', shape(crystallite_orientation)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_rotation: ', shape(crystallite_rotation)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_dt: ', shape(crystallite_dt)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subdt: ', shape(crystallite_subdt)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_subStep: ', shape(crystallite_subStep)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_stateDamper: ', shape(crystallite_stateDamper)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_localConstitution: ', shape(crystallite_localConstitution)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_requested: ', shape(crystallite_requested)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_todo: ', shape(crystallite_todo)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_converged: ', shape(crystallite_converged)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_stateConverged: ', shape(crystallite_stateConverged)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_temperatureConverged: ', shape(crystallite_temperatureConverged)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
|
|
write(6,'(a35,x,7(i5,x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
|
|
write(6,*)
|
|
write(6,*) 'Number of nonlocal grains: ',count(.not. crystallite_localConstitution)
|
|
call flush(6)
|
|
|
|
call debug_info()
|
|
call debug_reset()
|
|
|
|
return
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! calculate stress (P) and tangent (dPdF) for crystallites
|
|
!********************************************************************
|
|
subroutine crystallite_stressAndItsTangent(updateJaco)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use numerics, only: subStepMinCryst, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst, &
|
|
pert_Fg, &
|
|
pert_method, &
|
|
nCryst, &
|
|
iJacoStiffness, &
|
|
integratorStiffness, &
|
|
integrator
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_CrystalliteLoopDistribution
|
|
use IO, only: IO_warning
|
|
use math, only: math_inv3x3, &
|
|
math_transpose3x3, &
|
|
math_mul33x33, &
|
|
math_mul66x6, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_I3
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
theInc, &
|
|
cycleCounter
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_maxSizeState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_sizeState, &
|
|
constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_state_backup, &
|
|
constitutive_subState0, &
|
|
constitutive_partionedState0, &
|
|
constitutive_homogenizedC, &
|
|
constitutive_dotState, &
|
|
constitutive_dotState_backup, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
logical, intent(in) :: updateJaco ! flag indicating wehther we want to update the Jacobian (stiffness) or not
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
real(pReal) myTemperature, & ! local copy of the temperature
|
|
myPert, & ! perturbation with correct sign
|
|
formerSubStep
|
|
real(pReal), dimension(3,3) :: invFp, & ! inverse of the plastic deformation gradient
|
|
Fe_guess, & ! guess for elastic deformation gradient
|
|
Tstar ! 2nd Piola-Kirchhoff stress tensor
|
|
real(pReal), dimension(9,9) :: dPdF99
|
|
real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
dPdF_perturbation1, &
|
|
dPdF_perturbation2
|
|
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
F_backup, &
|
|
Fp_backup, &
|
|
InvFp_backup, &
|
|
Fe_backup, &
|
|
Lp_backup, &
|
|
P_backup
|
|
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
Tstar_v_backup
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
Temperature_backup
|
|
integer(pInt) NiterationCrystallite, & ! number of iterations in crystallite loop
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
k, &
|
|
l, &
|
|
perturbation , & ! loop counter for forward,backward perturbation mode
|
|
myNgrains, &
|
|
mySizeState, &
|
|
mySizeDotState
|
|
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
convergenceFlag_backup
|
|
|
|
! --+>> INITIALIZE TO STARTING CONDITION <<+--
|
|
|
|
crystallite_subStep = 0.0_pReal
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
if (crystallite_requested(g,i,e)) then ! initialize restoration point of ...
|
|
crystallite_subTemperature0(g,i,e) = crystallite_partionedTemperature0(g,i,e) ! ...temperature
|
|
constitutive_subState0(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructure
|
|
crystallite_subFp0(:,:,g,i,e) = crystallite_partionedFp0(:,:,g,i,e) ! ...plastic def grad
|
|
crystallite_subLp0(:,:,g,i,e) = crystallite_partionedLp0(:,:,g,i,e) ! ...plastic velocity grad
|
|
crystallite_dPdF0(:,:,:,:,g,i,e) = crystallite_partioneddPdF0(:,:,:,:,g,i,e) ! ...stiffness
|
|
crystallite_subF0(:,:,g,i,e) = crystallite_partionedF0(:,:,g,i,e) ! ...def grad
|
|
crystallite_subTstar0_v(:,g,i,e) = crystallite_partionedTstar0_v(:,g,i,e) !...2nd PK stress
|
|
|
|
crystallite_subFrac(g,i,e) = 0.0_pReal
|
|
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
|
|
crystallite_todo(g,i,e) = .true.
|
|
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --+>> CRYSTALLITE CUTBACK LOOP <<+--
|
|
|
|
NiterationCrystallite = 0_pInt
|
|
do while (any(crystallite_subStep(:,:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMinCryst)) ! cutback loop for crystallites
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,formerSubStep)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
|
|
! --- wind forward ---
|
|
|
|
if (crystallite_converged(g,i,e)) then
|
|
if (debugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a21,f10.8,a32,f10.8,a35)') 'winding forward from ', &
|
|
crystallite_subFrac(g,i,e),' to current crystallite_subfrac ', &
|
|
crystallite_subFrac(g,i,e)+crystallite_subStep(g,i,e),' in crystallite_stressAndItsTangent'
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
|
|
formerSubStep = crystallite_subStep(g,i,e)
|
|
crystallite_subStep(g,i,e) = min( 1.0_pReal - crystallite_subFrac(g,i,e), &
|
|
stepIncreaseCryst * crystallite_subStep(g,i,e) )
|
|
if (crystallite_subStep(g,i,e) > subStepMinCryst) then
|
|
crystallite_subTemperature0(g,i,e) = crystallite_Temperature(g,i,e) ! wind forward...
|
|
crystallite_subF0(:,:,g,i,e) = crystallite_subF(:,:,g,i,e) ! ...def grad
|
|
crystallite_subFp0(:,:,g,i,e) = crystallite_Fp(:,:,g,i,e) ! ...plastic def grad
|
|
crystallite_subLp0(:,:,g,i,e) = crystallite_Lp(:,:,g,i,e) ! ...plastic velocity gradient
|
|
constitutive_subState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructure
|
|
crystallite_subTstar0_v(:,g,i,e) = crystallite_Tstar_v(:,g,i,e) ! ...2nd PK stress
|
|
elseif (formerSubStep > subStepMinCryst) then ! this crystallite just converged
|
|
!$OMP CRITICAL (distributionCrystallite)
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) = &
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1,NiterationCrystallite)) + 1
|
|
!$OMP END CRITICAL (distributionCrystallite)
|
|
endif
|
|
|
|
! --- cutback ---
|
|
|
|
else
|
|
crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore...
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) ! ...temperature
|
|
crystallite_Fp(:,:,g,i,e) = crystallite_subFp0(:,:,g,i,e) ! ...plastic def grad
|
|
crystallite_invFp(:,:,g,i,e) = math_inv3x3(crystallite_Fp(1:3,1:3,g,i,e))
|
|
crystallite_Lp(:,:,g,i,e) = crystallite_subLp0(:,:,g,i,e) ! ...plastic velocity grad
|
|
constitutive_state(g,i,e)%p = constitutive_subState0(g,i,e)%p ! ...microstructure
|
|
crystallite_Tstar_v(:,g,i,e) = crystallite_subTstar0_v(:,g,i,e) ! ...2nd PK stress
|
|
! cant restore dotState here, since not yet calculated in first cutback after initialization
|
|
if (debugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a78,f10.8)') 'cutback step in crystallite_stressAndItsTangent with new crystallite_subStep: ',&
|
|
crystallite_subStep(g,i,e)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
|
|
! --- prepare for integration ---
|
|
|
|
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_subF(:,:,g,i,e) = crystallite_subF0(:,:,g,i,e) + &
|
|
crystallite_subStep(g,i,e) * &
|
|
(crystallite_partionedF(:,:,g,i,e) - crystallite_partionedF0(:,:,g,i,e))
|
|
crystallite_Fe(:,:,g,i,e) = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), crystallite_invFp(1:3,1:3,g,i,e))
|
|
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
|
|
crystallite_converged(g,i,e) = .false. ! start out non-converged
|
|
endif
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
! --- integrate ---
|
|
|
|
if (any(crystallite_todo)) then
|
|
select case(integrator)
|
|
case(1)
|
|
call crystallite_integrateStateFPI(1)
|
|
case(2)
|
|
call crystallite_integrateStateEuler(1)
|
|
case(3)
|
|
call crystallite_integrateStateAdaptiveEuler(1)
|
|
case(4)
|
|
call crystallite_integrateStateRK4(1)
|
|
case(5)
|
|
call crystallite_integrateStateRKCK45(1)
|
|
endselect
|
|
endif
|
|
|
|
NiterationCrystallite = NiterationCrystallite + 1
|
|
|
|
enddo ! cutback loop
|
|
|
|
|
|
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,invFp,Fe_guess,Tstar)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
|
|
invFp = math_inv3x3(crystallite_partionedFp0(1:3,1:3,g,i,e))
|
|
Fe_guess = math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp)
|
|
Tstar = math_Mandel6to33( math_mul66x6( 0.5_pReal*constitutive_homogenizedC(g,i,e), &
|
|
math_Mandel33to6( math_mul33x33(transpose(Fe_guess),Fe_guess) - math_I3 ) ) )
|
|
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_guess,math_mul33x33(Tstar,transpose(invFp)))
|
|
endif
|
|
if (debugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write (6,*) '#############'
|
|
write (6,*) 'central solution of cryst_StressAndTangent'
|
|
write (6,*) '#############'
|
|
write (6,'(a8,3(x,i4),/,3(3(f12.4,x)/))') ' P of', g, i, e, math_transpose3x3(crystallite_P(:,:,g,i,e))/1e6
|
|
write (6,'(a8,3(x,i4),/,3(3(f14.9,x)/))') ' Fp of', g, i, e, math_transpose3x3(crystallite_Fp(:,:,g,i,e))
|
|
write (6,'(a8,3(x,i4),/,3(3(f14.9,x)/))') ' Lp of', g, i, e, math_transpose3x3(crystallite_Lp(:,:,g,i,e))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --+>> STIFFNESS CALCULATION <<+--
|
|
|
|
if(updateJaco) then ! Jacobian required
|
|
|
|
! --- BACKUP ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
mySizeState = constitutive_sizeState(g,i,e) ! number of state variables for this grain
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e) ! number of dotStates for this grain
|
|
constitutive_state_backup(g,i,e)%p(1:mySizeState) = &
|
|
constitutive_state(g,i,e)%p(1:mySizeState) ! remember unperturbed, converged state, ...
|
|
constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState) = &
|
|
constitutive_dotState(g,i,e)%p(1:mySizeDotState) ! ... dotStates, ...
|
|
enddo; enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
Temperature_backup = crystallite_Temperature ! ... Temperature, ...
|
|
F_backup = crystallite_subF ! ... and kinematics
|
|
Fp_backup = crystallite_Fp
|
|
InvFp_backup = crystallite_invFp
|
|
Fe_backup = crystallite_Fe
|
|
Lp_backup = crystallite_Lp
|
|
Tstar_v_backup = crystallite_Tstar_v
|
|
P_backup = crystallite_P
|
|
convergenceFlag_backup = crystallite_converged
|
|
|
|
|
|
! --- CALCULATE STATE AND STRESS FOR PERTURBATION ---
|
|
|
|
dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
do perturbation = 1,2 ! forward and backward perturbation
|
|
if (iand(pert_method,perturbation) > 0) then ! mask for desired direction
|
|
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
|
|
do k = 1,3; do l = 1,3 ! ...alter individual components
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write (6,'(a,x,i1,x,i1,x,a)') '[[[[[[[ Stiffness perturbation',k,l,']]]]]]]'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
crystallite_subF(k,l,:,:,:) = crystallite_subF(k,l,:,:,:) + myPert ! perturb either forward or backward
|
|
|
|
crystallite_todo = crystallite_requested .and. crystallite_converged
|
|
where (crystallite_todo) crystallite_converged = .false. ! start out non-converged
|
|
|
|
select case(integratorStiffness)
|
|
case(1)
|
|
call crystallite_integrateStateFPI(2)
|
|
case(2)
|
|
call crystallite_integrateStateEuler(2)
|
|
case(3)
|
|
call crystallite_integrateStateAdaptiveEuler(2)
|
|
case(4)
|
|
call crystallite_integrateStateRK4(2)
|
|
case(5)
|
|
call crystallite_integrateStateRKCK45(2)
|
|
end select
|
|
|
|
!OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged state warrants stiffness update
|
|
select case(perturbation)
|
|
case(1)
|
|
dPdF_perturbation1(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - P_backup(:,:,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
case(2)
|
|
dPdF_perturbation2(:,:,k,l,g,i,e) = (crystallite_P(:,:,g,i,e) - P_backup(:,:,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
end select
|
|
endif
|
|
enddo; enddo; enddo
|
|
!OMP END PARALLEL DO
|
|
|
|
|
|
! --- RESTORE ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,mySizeState,mySizeDotState)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
mySizeState = constitutive_sizeState(g,i,e)
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeState) = constitutive_state_backup(g,i,e)%p(1:mySizeState)
|
|
constitutive_dotState(g,i,e)%p(1:mySizeDotState) = constitutive_dotState_backup(g,i,e)%p(1:mySizeDotState)
|
|
enddo; enddo; enddo
|
|
!OMP END PARALLEL DO
|
|
crystallite_Temperature = Temperature_backup
|
|
crystallite_subF = F_backup
|
|
crystallite_Fp = Fp_backup
|
|
crystallite_invFp = InvFp_backup
|
|
crystallite_Fe = Fe_backup
|
|
crystallite_Lp = Lp_backup
|
|
crystallite_Tstar_v = Tstar_v_backup
|
|
crystallite_P = P_backup
|
|
crystallite_converged = convergenceFlag_backup
|
|
|
|
enddo; enddo ! k,l loop
|
|
endif
|
|
enddo ! perturbation direction
|
|
|
|
|
|
! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
if (crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) then ! central solution converged
|
|
select case(pert_method)
|
|
case(1)
|
|
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation1(:,:,:,:,g,i,e)
|
|
case(2)
|
|
crystallite_dPdF(:,:,:,:,g,i,e) = dPdF_perturbation2(:,:,:,:,g,i,e)
|
|
case(3)
|
|
crystallite_dPdF(:,:,:,:,g,i,e) = 0.5_pReal* (dPdF_perturbation1(:,:,:,:,g,i,e) + dPdF_perturbation2(:,:,:,:,g,i,e))
|
|
end select
|
|
elseif (crystallite_requested(g,i,e) .and. .not. crystallite_converged(g,i,e)) then ! central solution did not converge
|
|
crystallite_dPdF(:,:,:,:,g,i,e) = crystallite_fallbackdPdF(:,:,:,:,g,i,e) ! use (elastic) fallback
|
|
endif
|
|
enddo; enddo; enddo
|
|
!OMP END PARALLEL DO
|
|
|
|
endif ! jacobian calculation
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 4h order explicit Runge Kutta method
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateRK4(mode,gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_RK4dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(4), parameter :: timeStepFraction = (/0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal/) ! weight of slope used for Runge Kutta integration
|
|
real(pReal), dimension(4), parameter :: weight = (/1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/) ! factor giving the fraction of the original timestep used for Runge Kutta Integration
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
n, &
|
|
mySizeDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
RK4dotTemperature ! evolution of Temperature of each grain for Runge Kutta integration
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(:,ee) = ii
|
|
gIter(:,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(:,e) = FEsolving_execIP(1:2,e)
|
|
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --- RESET DEPENDENT STATES AND DOTSTATE ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- FIRST RUNGE KUTTA STEP ---
|
|
|
|
RK4dotTemperature = 0.0_pReal ! initialize Runge-Kutta dotTemperature
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
constitutive_RK4dotState(g,i,e)%p = 0.0_pReal ! initialize Runge-Kutta dotState
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
|
|
|
|
do n = 1,4
|
|
|
|
! --- state update ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_RK4dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p + weight(n)*constitutive_dotState(g,i,e)%p
|
|
RK4dotTemperature(g,i,e) = RK4dotTemperature(g,i,e) + weight(n)*crystallite_dotTemperature(g,i,e)
|
|
if (n == 4) then
|
|
constitutive_dotState(g,i,e)%p = constitutive_RK4dotState(g,i,e)%p / 6.0_pReal ! use weighted RKdotState for final integration
|
|
endif
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (crystallite_integrateStress(mode,g,i,e,timeStepFraction(n))) then ! fraction of original times step
|
|
if (n == 4) then ! final integration step
|
|
if (verboseDebugger .and. selectiveDebugger .and. e == debug_e .and. i == debug_i .and. g == debug_g) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateState',g,i,e
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definition
|
|
crystallite_todo(g,i,e) = .false. ! ... integration done
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(n,mode) = debug_StateLoopDistribution(n,mode) + 1
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
else ! broken stress integration
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
|
|
if (n < 4) then
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
|
timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
endif
|
|
|
|
enddo
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- CHECK CONVERGENCE ---
|
|
|
|
crystallite_todo = .false. ! done with integration
|
|
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 5th order Runge-Kutta Cash-Karp method with adaptive step size
|
|
! (use 5th order solution to advance = "local extrapolation")
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateRKCK45(mode,gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: rTol_crystalliteState, &
|
|
rTol_crystalliteTemperature, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP, &
|
|
theInc
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_aTolState, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_RKCK45dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
j, &
|
|
n, & ! stage index in integration stage loop
|
|
mySizeDotState, & ! size of dot State
|
|
s ! state index
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
RKCK45dotTemperature ! evolution of Temperature of each grain for Runge Kutta Cash Karp integration
|
|
real(pReal), dimension(5,5) :: a ! coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
|
|
real(pReal), dimension(6) :: b, db ! coefficients in Butcher tableau (used for final integration and error estimate)
|
|
real(pReal), dimension(5) :: c ! coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in micrstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
temperatureResiduum, & ! residuum from evolution in temperature
|
|
relTemperatureResiduum ! relative residuum from evolution in temperature
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
! --- FILL BUTCHER TABLEAU ---
|
|
|
|
a = 0.0_pReal
|
|
b = 0.0_pReal
|
|
db = 0.0_pReal
|
|
c = 0.0_pReal
|
|
|
|
a(1,1) = 0.2_pReal
|
|
a(1,2) = 0.075_pReal
|
|
a(2,2) = 0.225_pReal
|
|
a(1,3) = 0.3_pReal
|
|
a(2,3) = -0.9_pReal
|
|
a(3,3) = 1.2_pReal
|
|
a(1,4) = -11.0_pReal / 54.0_pReal
|
|
a(2,4) = 2.5_pReal
|
|
a(3,4) = -70.0_pReal / 27.0_pReal
|
|
a(4,4) = 35.0_pReal / 27.0_pReal
|
|
a(1,5) = 1631.0_pReal / 55296.0_pReal
|
|
a(2,5) = 175.0_pReal / 512.0_pReal
|
|
a(3,5) = 575.0_pReal / 13824.0_pReal
|
|
a(4,5) = 44275.0_pReal / 110592.0_pReal
|
|
a(5,5) = 253.0_pReal / 4096.0_pReal
|
|
|
|
b(1) = 37.0_pReal / 378.0_pReal
|
|
b(3) = 250.0_pReal / 621.0_pReal
|
|
b(4) = 125.0_pReal / 594.0_pReal
|
|
b(6) = 512.0_pReal / 1771.0_pReal
|
|
|
|
db(1) = b(1) - 2825.0_pReal / 27648.0_pReal
|
|
db(3) = b(3) - 18575.0_pReal / 48384.0_pReal
|
|
db(4) = b(4) - 13525.0_pReal / 55296.0_pReal
|
|
db(5) = - 277.0_pReal / 14336.0_pReal
|
|
db(6) = b(6) - 0.25_pReal
|
|
|
|
c(1) = 0.2_pReal
|
|
c(2) = 0.3_pReal
|
|
c(3) = 0.6_pReal
|
|
c(4) = 1.0_pReal
|
|
c(5) = 0.875_pReal
|
|
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(:,ee) = ii
|
|
gIter(:,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(:,e) = FEsolving_execIP(1:2,e)
|
|
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --- RESET DEPENDENT STATES AND DOTSTATE ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- FIRST RUNGE KUTTA STEP ---
|
|
if (verboseDebugger) then
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,x,i1)') '<<<RUNGE KUTTA STEP',1
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
endif
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
|
|
|
|
do n = 1,5
|
|
|
|
! --- state update ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_RKCK45dotState(n,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
|
|
RKCK45dotTemperature(n,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState
|
|
crystallite_dotTemperature(g,i,e) = 0.0_pReal ! reset dotTemperature
|
|
do j = 1,n ! rates as combination of Runge-Kutta rates
|
|
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p + a(j,n) * constitutive_RKCK45dotState(j,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = crystallite_dotTemperature(g,i,e) + a(j,n) * RKCK45dotTemperature(j,g,i,e)
|
|
enddo
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (.not. crystallite_integrateStress(mode,g,i,e,c(n))) then ! fraction of original time step
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
if (verboseDebugger) then
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,x,i1)') '<<<RUNGE KUTTA STEP',n+1
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
endif
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, crystallite_Temperature(g,i,e), &
|
|
c(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
enddo
|
|
|
|
|
|
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE AND TEMPERATURE ---
|
|
|
|
stateResiduum = 0.0_pReal
|
|
temperatureResiduum = 0.0_pReal
|
|
relStateResiduum = 0.0_pReal
|
|
relTemperatureResiduum = 0.0_pReal
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_RKCK45dotState(6,g,i,e)%p = constitutive_dotState(g,i,e)%p ! store Runge-Kutta dotState
|
|
RKCK45dotTemperature(6,g,i,e) = crystallite_dotTemperature(g,i,e) ! store Runge-Kutta dotTemperature
|
|
|
|
|
|
! --- absolute residuum in state and temperature ---
|
|
|
|
do j = 1,6
|
|
stateResiduum(1:mySizeDotState,g,i,e) = stateResiduum(1:mySizeDotState,g,i,e) &
|
|
+ db(j) * constitutive_RKCK45dotState(j,g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) + db(j) * RKCK45dotTemperature(j,g,i,e) * crystallite_subdt(g,i,e)
|
|
enddo
|
|
|
|
|
|
! --- dot state and dot temperature ---
|
|
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal
|
|
crystallite_dotTemperature(g,i,e) = 0.0_pReal
|
|
do j = 1,6
|
|
constitutive_dotState(g,i,e)%p = constitutive_dotState(g,i,e)%p + b(j) * constitutive_RKCK45dotState(j,g,i,e)%p
|
|
crystallite_dotTemperature(g,i,e) = crystallite_dotTemperature(g,i,e) + b(j) * RKCK45dotTemperature(j,g,i,e)
|
|
enddo
|
|
|
|
|
|
! --- state and temperature update and relative residui ---
|
|
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
forall (s = 1:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
|
|
if (crystallite_Temperature(g,i,e) > 0) &
|
|
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
|
|
|
|
|
|
! --- state convergence ---
|
|
crystallite_todo(g,i,e) = &
|
|
( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
|
|
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState) ) &
|
|
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature )
|
|
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateState',g,i,e
|
|
write(6,*)
|
|
write(6,'(a,/,12(f12.1,x))') 'updateState: absolute residuum tolerance', stateResiduum(1:mySizeDotState,g,i,e) &
|
|
/ constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,12(f12.1,x))') 'updateState: relative residuum tolerance', relStateResiduum(1:mySizeDotState,g,i,e) &
|
|
/ rTol_crystalliteState
|
|
write(6,*)
|
|
! write(6,'(a)') 'updateState: RKCK45dotState'
|
|
! do j = 1,6
|
|
! write(6,'(12(e14.8,x))') constitutive_RKCK45dotState(j,g,i,e)%p(1:mySizeDotState)
|
|
! write(6,*)
|
|
! enddo
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (crystallite_integrateStress(mode,g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
crystallite_todo(g,i,e) = .false. ! ... integration done
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(6,mode) = debug_StateLoopDistribution(6,mode) + 1
|
|
!$OMP END CRITICAL (distributionState)
|
|
else
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
! --- nonlocal convergence check ---
|
|
|
|
if (verboseDebugger .and. mode==1) write(6,*) 'crystallite_converged',crystallite_converged
|
|
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
|
|
if ( any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
|
endif
|
|
|
|
endif
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 1nd order Euler method with adaptive step size
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateAdaptiveEuler(mode,gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: rTol_crystalliteState, &
|
|
rTol_crystalliteTemperature, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: homogenization_Ngrains, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_aTolState, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
j, &
|
|
n, & ! stage index in integration stage loop
|
|
mySizeDotState, & ! size of dot State
|
|
s ! state index
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in micrstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
temperatureResiduum, & ! residuum from evolution in temperature
|
|
relTemperatureResiduum ! relative residuum from evolution in temperature
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(:,ee) = ii
|
|
gIter(:,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(:,e) = FEsolving_execIP(1:2,e)
|
|
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --- RESET DEPENDENT STATES AND DOTSTATE ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- DOT STATE AND TEMPERATURE (EULER INTEGRATION) ---
|
|
|
|
stateResiduum = 0.0_pReal
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE UPDATE (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
stateResiduum(1:mySizeDotState,g,i,e) = - 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
|
|
temperatureResiduum(g,i,e) = - 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (.not. crystallite_integrateStress(mode,g,i,e)) then
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- DOT STATE AND TEMPERATURE (HEUN METHOD) ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- ERROR ESTIMATE FOR STATE AND TEMPERATURE (HEUN METHOD) ---
|
|
|
|
relStateResiduum = 0.0_pReal
|
|
relTemperatureResiduum = 0.0_pReal
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
|
|
|
|
! --- contribution of heun step to absolute residui ---
|
|
|
|
stateResiduum(1:mySizeDotState,g,i,e) = stateResiduum(1:mySizeDotState,g,i,e) &
|
|
+ 0.5_pReal * constitutive_dotState(g,i,e)%p * crystallite_subdt(g,i,e) ! contribution to absolute residuum in state and temperature
|
|
temperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) &
|
|
+ 0.5_pReal * crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
|
|
|
|
! --- relative residui ---
|
|
|
|
forall (s = 1:mySizeDotState, abs(constitutive_state(g,i,e)%p(s)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / constitutive_state(g,i,e)%p(s)
|
|
if (crystallite_Temperature(g,i,e) > 0) &
|
|
relTemperatureResiduum(g,i,e) = temperatureResiduum(g,i,e) / crystallite_Temperature(g,i,e)
|
|
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateState',g,i,e
|
|
write(6,*)
|
|
write(6,'(a,/,12(f12.1,x))') 'updateState: absolute residuum tolerance', stateResiduum(1:mySizeDotState,g,i,e) &
|
|
/ constitutive_aTolState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,12(f12.1,x))') 'updateState: relative residuum tolerance', relStateResiduum(1:mySizeDotState,g,i,e) &
|
|
/ rTol_crystalliteState
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState) &
|
|
- 2.0_pReal * stateResiduum(1:mySizeDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
|
|
! --- converged ? ---
|
|
|
|
if ( all( abs(relStateResiduum(:,g,i,e)) < rTol_crystalliteState &
|
|
.or. abs(stateResiduum(1:mySizeDotState,g,i,e)) < constitutive_aTolState(g,i,e)%p(1:mySizeDotState)) &
|
|
.and. abs(relTemperatureResiduum(g,i,e)) < rTol_crystalliteTemperature ) then
|
|
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
crystallite_todo(g,i,e) = .false. ! ... integration done
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(2,mode) = debug_StateLoopDistribution(2,mode) + 1
|
|
!$OMP END CRITICAL (distributionState)
|
|
|
|
endif
|
|
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
! --- NONLOCAL CONVERGENCE CHECK ---
|
|
|
|
if (verboseDebugger .and. mode==1) write(6,*) 'crystallite_converged',crystallite_converged
|
|
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
|
|
if ( any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! 1st order explicit Euler method
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateEuler(mode,gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_subState0, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
n, &
|
|
mySizeDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(:,ee) = ii
|
|
gIter(:,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(:,e) = FEsolving_execIP(1:2,e)
|
|
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --- RESET DEPENDENT STATES AND DOTSTATE ---
|
|
|
|
!$OMP PARALLEL PRIVATE(mySizeDotState)
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- DOT STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g,i,e)
|
|
crystallite_dotTemperature(g,i,e) = constitutive_dotTemperature(crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Temperature(g,i,e),g,i,e)
|
|
if ( any(constitutive_dotState(g,i,e)%p/=constitutive_dotState(g,i,e)%p) & ! NaN occured in dotState
|
|
.or. crystallite_dotTemperature(g,i,e)/=crystallite_dotTemperature(g,i,e) ) then ! NaN occured in dotTemperature
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE STATE AND TEMPERATURE ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
mySizeDotState = constitutive_sizeDotState(g,i,e)
|
|
constitutive_state(g,i,e)%p(1:mySizeDotState) = constitutive_subState0(g,i,e)%p(1:mySizeDotState) &
|
|
+ constitutive_dotState(g,i,e)%p(1:mySizeDotState) * crystallite_subdt(g,i,e)
|
|
crystallite_Temperature(g,i,e) = crystallite_subTemperature0(g,i,e) &
|
|
+ crystallite_dotTemperature(g,i,e) * crystallite_subdt(g,i,e)
|
|
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateState',g,i,e
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState', constitutive_dotState(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: new state', constitutive_state(g,i,e)%p(1:mySizeDotState)
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(:,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
if (crystallite_integrateStress(mode,g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true.
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(1,mode) = debug_StateLoopDistribution(1,mode) + 1
|
|
!$OMP END CRITICAL (distributionState)
|
|
else ! broken stress integration
|
|
if (.not. crystallite_localConstitution(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- CHECK NON-LOCAL CONVERGENCE ---
|
|
|
|
crystallite_todo = .false. ! done with integration
|
|
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! integrate stress, state and Temperature with
|
|
! adaptive 1st order explicit Euler method
|
|
! using Fixed Point Iteration to adapt the stepsize
|
|
!********************************************************************
|
|
subroutine crystallite_integrateStateFPI(mode,gg,ii,ee)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use debug, only: debugger, &
|
|
selectiveDebugger, &
|
|
verboseDebugger, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: nState
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizeDotState, &
|
|
constitutive_state, &
|
|
constitutive_dotState, &
|
|
constitutive_collectDotState, &
|
|
constitutive_dotTemperature, &
|
|
constitutive_microstructure, &
|
|
constitutive_previousDotState, &
|
|
constitutive_previousDotState2
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in) :: mode ! mode of calculation; 1: central solution, 2: stiffness (by perturbation)
|
|
integer(pInt), optional, intent(in):: ee, & ! element index
|
|
ii, & ! integration point index
|
|
gg ! grain index
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) NiterationState, & ! number of iterations in state loop
|
|
e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g ! grain index in grain loop
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal) dot_prod12, &
|
|
dot_prod22
|
|
logical singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
if (present(ee) .and. present(ii) .and. present(gg)) then
|
|
eIter = ee
|
|
iIter(:,ee) = ii
|
|
gIter(:,ee) = gg
|
|
singleRun = .true.
|
|
else
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(:,e) = FEsolving_execIP(1:2,e)
|
|
gIter(:,e) = (/1,homogenization_Ngrains(mesh_element(3,e))/)
|
|
enddo
|
|
singleRun = .false.
|
|
endif
|
|
|
|
|
|
! --+>> PREGUESS FOR STATE <<+--
|
|
|
|
! --- RESET DEPENDENT STATES AND DOTSTATE ---
|
|
|
|
!$OMP PARALLEL
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
constitutive_previousDotState(g,i,e)%p = 0.0_pReal
|
|
constitutive_previousDotState2(g,i,e)%p = 0.0_pReal
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- DOT STATES ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_subTstar0_v(1:6,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g, i, e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE & TEMPERATURE UPDATE ---
|
|
|
|
!$OMP SINGLE
|
|
crystallite_statedamper = 1.0_pReal
|
|
!$OMP END SINGLE
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
|
|
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
|
|
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e) ) then ! if updateState or updateTemperature signals broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
|
|
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --+>> STATE LOOP <<+--
|
|
|
|
!$OMP SINGLE
|
|
NiterationState = 0_pInt
|
|
!$OMP END SINGLE
|
|
|
|
do while (any(crystallite_todo) .and. NiterationState < nState ) ! convergence loop for crystallite
|
|
|
|
!$OMP SINGLE
|
|
NiterationState = NiterationState + 1_pInt
|
|
!$OMP END SINGLE
|
|
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(mode,g,i,e)
|
|
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
if (verboseDebugger .and. mode == 1) then
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after stress integration'
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
endif
|
|
|
|
|
|
! --- DOT STATES ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_subTstar0_v(1:6,g,i,e), crystallite_Fe, &
|
|
crystallite_Fp, crystallite_Temperature(g,i,e), crystallite_subdt(g,i,e), &
|
|
crystallite_orientation, g, i, e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE & TEMPERATURE UPDATE ---
|
|
|
|
!$OMP SINGLE
|
|
crystallite_statedamper = 1.0_pReal
|
|
!$OMP END SINGLE
|
|
!$OMP DO PRIVATE(dot_prod12,dot_prod22)
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
|
|
! --- state damper ---
|
|
|
|
dot_prod12 = dot_product( constitutive_dotState(g,i,e)%p - constitutive_previousDotState(g,i,e)%p, &
|
|
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
|
|
dot_prod22 = dot_product( constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p, &
|
|
constitutive_previousDotState(g,i,e)%p - constitutive_previousDotState2(g,i,e)%p )
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(constitutive_dotState(g,i,e)%p, constitutive_previousDotState(g,i,e)%p) < 0.0_pReal) ) &
|
|
crystallite_statedamper(g,i,e) = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
|
|
! --- updates ---
|
|
|
|
crystallite_stateConverged(g,i,e) = crystallite_updateState(g,i,e) ! update state
|
|
crystallite_temperatureConverged(g,i,e) = crystallite_updateTemperature(g,i,e) ! update temperature
|
|
crystallite_converged(g,i,e) = crystallite_stateConverged(g,i,e) .and. crystallite_temperatureConverged(g,i,e)
|
|
if ( .not. crystallite_localConstitution(g,i,e) .and. .not. crystallite_todo(g,i,e)) then ! if updateState or updateTemperature signals broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localConstitution ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
elseif (crystallite_converged(g,i,e)) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(NiterationState,mode) = debug_StateLoopDistribution(NiterationState,mode) + 1
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e=eIter(1),eIter(2); do i=iIter(1,e),iIter(2,e); do g=gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
call constitutive_microstructure(crystallite_Temperature(g,i,e), crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe, crystallite_Fp, g, i, e) ! update dependent state variables to be consistent with basic states
|
|
endif
|
|
constitutive_dotState(g,i,e)%p = 0.0_pReal ! reset dotState to zero
|
|
constitutive_previousDotState(g,i,e)%p = constitutive_dotState(g,i,e)%p
|
|
constitutive_previousDotState2(g,i,e)%p = constitutive_previousDotState(g,i,e)%p
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
if (verboseDebugger .and. mode == 1) then
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after state integration no.', NiterationState
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
endif
|
|
|
|
|
|
! --- CONVERGENCE CHECK ---
|
|
|
|
if ( mode == 1 .and. .not. singleRun ) then ! for central solution
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localConstitution)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localConstitution ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
crystallite_todo = crystallite_todo .and. .not. crystallite_converged ! skip all converged
|
|
|
|
if (verboseDebugger .and. mode == 1) then
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) count(crystallite_converged(:,:,:)),'grains converged after non-local check'
|
|
write(6,*) count(crystallite_todo(:,:,:)),'grains todo after state integration no.', NiterationState
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
endif
|
|
|
|
enddo ! crystallite convergence loop
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! update the internal state of the constitutive law
|
|
! and tell whether state has converged
|
|
!********************************************************************
|
|
function crystallite_updateState(g,i,e)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pReal, &
|
|
pInt, &
|
|
pLongInt
|
|
use numerics, only: rTol_crystalliteState
|
|
use constitutive, only: constitutive_dotState, &
|
|
constitutive_previousDotState, &
|
|
constitutive_sizeDotState, &
|
|
constitutive_subState0, &
|
|
constitutive_state, &
|
|
constitutive_aTolState, &
|
|
constitutive_microstructure
|
|
use debug, only: debugger, &
|
|
debug_g, &
|
|
debug_i, &
|
|
debug_e, &
|
|
verboseDebugger
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
|
|
!*** output variables ***!
|
|
logical crystallite_updateState ! flag indicating if integration suceeded
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(constitutive_sizeDotState(g,i,e)) :: residuum ! residuum from evolution of microstructure
|
|
integer(pInt) mySize
|
|
|
|
|
|
mySize = constitutive_sizeDotState(g,i,e)
|
|
|
|
! correct my dotState
|
|
constitutive_dotState(g,i,e)%p(1:mySize) = constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_statedamper(g,i,e) &
|
|
+ constitutive_previousDotState(g,i,e)%p(1:mySize) * (1.0_pReal-crystallite_statedamper(g,i,e))
|
|
|
|
residuum = constitutive_state(g,i,e)%p(1:mySize) - constitutive_subState0(g,i,e)%p(1:mySize) &
|
|
- constitutive_dotState(g,i,e)%p(1:mySize) * crystallite_subdt(g,i,e)
|
|
|
|
if (any(residuum/=residuum)) then ! if NaN occured then return without changing the state...
|
|
crystallite_updateState = .false. ! ...indicate state update failed
|
|
crystallite_todo(g,i,e) = .false. ! ...no need to calculate any further
|
|
if (verboseDebugger) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateState encountered NaN',g,i,e
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
endif
|
|
|
|
constitutive_state(g,i,e)%p(1:mySize) = constitutive_state(g,i,e)%p(1:mySize) - residuum
|
|
|
|
! setting flag to true if residuum is below relative/absolute tolerance, otherwise set it to false
|
|
crystallite_updateState = all( abs(residuum) < constitutive_aTolState(g,i,e)%p(1:mySize) &
|
|
.or. abs(residuum) < rTol_crystalliteState*abs(constitutive_state(g,i,e)%p(1:mySize)) )
|
|
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
if (crystallite_updateState) then
|
|
write(6,*) '::: updateState converged',g,i,e
|
|
else
|
|
write(6,*) '::: updateState did not converge',g,i,e
|
|
endif
|
|
write(6,*)
|
|
write(6,'(a,f6.1)') 'updateState: crystallite_statedamper',crystallite_statedamper(g,i,e)
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: dotState',constitutive_dotState(g,i,e)%p(1:mySize)
|
|
write(6,*)
|
|
write(6,'(a,/,12(e12.5,x))') 'updateState: new state',constitutive_state(g,i,e)%p(1:mySize)
|
|
write(6,*)
|
|
write(6,'(a,/,12(f12.1,x))') 'updateState: relative residuum tolerance', abs(residuum / rTol_crystalliteState &
|
|
/ constitutive_state(g,i,e)%p(1:mySize))
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! update the temperature of the grain
|
|
! and tell whether it has converged
|
|
!********************************************************************
|
|
function crystallite_updateTemperature(&
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e & ! element number
|
|
)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pReal, &
|
|
pInt, &
|
|
pLongInt
|
|
use numerics, only: rTol_crystalliteTemperature
|
|
use constitutive, only: constitutive_dotTemperature
|
|
use debug, only: debugger
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
|
|
!*** output variables ***!
|
|
logical crystallite_updateTemperature ! flag indicating if integration suceeded
|
|
|
|
!*** local variables ***!
|
|
real(pReal) residuum ! residuum from evolution of temperature
|
|
|
|
! calculate the residuum
|
|
residuum = crystallite_Temperature(g,i,e) - crystallite_subTemperature0(g,i,e) - &
|
|
crystallite_subdt(g,i,e) * &
|
|
constitutive_dotTemperature(crystallite_Tstar_v(1:6,g,i,e),crystallite_Temperature(g,i,e),g,i,e)
|
|
|
|
! if NaN occured then return without changing the state
|
|
if (residuum/=residuum) then
|
|
crystallite_updateTemperature = .false. ! indicate update failed
|
|
crystallite_todo(g,i,e) = .false. ! ...no need to calculate any further
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: updateTemperature encountered NaN',g,i,e
|
|
!$OMP END CRITICAL (write2out)
|
|
return
|
|
endif
|
|
|
|
! update the microstructure
|
|
crystallite_Temperature(g,i,e) = crystallite_Temperature(g,i,e) - residuum
|
|
|
|
! setting flag to true if residuum is below relative tolerance (or zero Kelvin), otherwise set it to false
|
|
crystallite_updateTemperature = crystallite_Temperature(g,i,e) == 0.0_pReal .or. &
|
|
abs(residuum) < rTol_crystalliteTemperature*crystallite_Temperature(g,i,e)
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
!***********************************************************************
|
|
!*** calculation of stress (P) with time integration ***
|
|
!*** based on a residuum in Lp and intermediate ***
|
|
!*** acceleration of the Newton-Raphson correction ***
|
|
!***********************************************************************
|
|
function crystallite_integrateStress(&
|
|
mode, & ! 1: central solution, 2: stiffness (by perturbation)
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e,& ! element number
|
|
fraction &
|
|
)
|
|
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pReal, &
|
|
pInt, &
|
|
pLongInt
|
|
use numerics, only: nStress, &
|
|
aTol_crystalliteStress, &
|
|
rTol_crystalliteStress, &
|
|
iJacoLpresiduum, &
|
|
relevantStrain
|
|
use debug, only: debugger, &
|
|
debug_g, &
|
|
debug_i, &
|
|
debug_e, &
|
|
verboseDebugger, &
|
|
debug_cumLpCalls, &
|
|
debug_cumLpTicks, &
|
|
debug_StressLoopDistribution, &
|
|
debug_LeapfrogBreakDistribution
|
|
use constitutive, only: constitutive_homogenizedC, &
|
|
constitutive_LpAndItsTangent
|
|
use math, only: math_mul33x33, &
|
|
math_mul66x6, &
|
|
math_mul99x99, &
|
|
math_transpose3x3, &
|
|
math_inv3x3, &
|
|
math_invert3x3, &
|
|
math_invert, &
|
|
math_det3x3, &
|
|
math_I3, &
|
|
math_identity2nd, &
|
|
math_Mandel66to3333, &
|
|
math_Mandel6to33, &
|
|
math_mandel33to6
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: mode, & ! 1 or 2
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
real(pReal), optional, intent(in) :: fraction ! fraction of timestep
|
|
|
|
!*** output variables ***!
|
|
logical crystallite_integrateStress ! flag indicating if integration suceeded
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
|
|
Fp_current, & ! plastic deformation gradient at start of timestep
|
|
Fp_new, & ! plastic deformation gradient at end of timestep
|
|
Fe_new, & ! elastic deformation gradient at end of timestep
|
|
invFp_new, & ! inverse of Fp_new
|
|
invFp_current, & ! inverse of Fp_current
|
|
Lpguess, & ! current guess for plastic velocity gradient
|
|
Lpguess_old, & ! known last good guess for plastic velocity gradient
|
|
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
|
|
residuum, & ! current residuum of plastic velocity gradient
|
|
residuum_old, & ! last residuum of plastic velocity gradient
|
|
A, &
|
|
B, &
|
|
BT, &
|
|
AB, &
|
|
BTA
|
|
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
|
|
real(pReal), dimension(9,9):: dLpdT_constitutive, & ! partial derivative of plastic velocity gradient calculated by constitutive law
|
|
dTdLp, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
|
dRdLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
|
invdRdLp ! inverse of dRdLp
|
|
real(pReal), dimension(3,3,3,3):: C ! 4th rank elasticity tensor
|
|
real(pReal), dimension(6,6):: C_66 ! simplified 2nd rank elasticity tensor
|
|
real(pReal) p_hydro, & ! volumetric part of 2nd Piola-Kirchhoff Stress
|
|
det, & ! determinant
|
|
leapfrog, & ! acceleration factor for Newton-Raphson scheme
|
|
maxleap, & ! maximum acceleration factor
|
|
dt ! time increment
|
|
logical error ! flag indicating an error
|
|
integer(pInt) NiterationStress, & ! number of stress integrations
|
|
dummy, &
|
|
h, &
|
|
j, &
|
|
k, &
|
|
l, &
|
|
m, &
|
|
n, &
|
|
jacoCounter ! counter to check for Jacobian update
|
|
integer(pLongInt) tick, &
|
|
tock, &
|
|
tickrate, &
|
|
maxticks
|
|
|
|
! be pessimistic
|
|
crystallite_integrateStress = .false.
|
|
|
|
! only integrate over fraction of timestep?
|
|
if (present(fraction)) then
|
|
dt = crystallite_subdt(g,i,e) * fraction
|
|
Fg_new = crystallite_subF0(:,:,g,i,e) + (crystallite_subF(:,:,g,i,e) - crystallite_subF0(:,:,g,i,e)) * fraction
|
|
else
|
|
dt = crystallite_subdt(g,i,e)
|
|
Fg_new = crystallite_subF(:,:,g,i,e)
|
|
endif
|
|
|
|
! feed local variables
|
|
Fp_current = crystallite_subFp0(:,:,g,i,e)
|
|
Tstar_v = crystallite_Tstar_v(:,g,i,e)
|
|
Lpguess_old = crystallite_Lp(:,:,g,i,e) ! consider present Lp good (i.e. worth remembering) ...
|
|
Lpguess = crystallite_Lp(:,:,g,i,e) ! ... and take it as first guess
|
|
|
|
|
|
! inversion of Fp_current...
|
|
invFp_current = math_inv3x3(Fp_current)
|
|
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: integrateStress failed on invFp_current inversion',g,i,e
|
|
write(6,*)
|
|
write(6,'(a11,i3,x,i2,x,i5,/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,math_transpose3x3(invFp_new(:,:))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
endif
|
|
|
|
A = math_mul33x33(transpose(invFp_current), math_mul33x33(transpose(Fg_new),math_mul33x33(Fg_new,invFp_current)))
|
|
|
|
! get elasticity tensor
|
|
C_66 = constitutive_homogenizedC(g,i,e)
|
|
! if (debugger) write(6,'(a,/,6(6(f10.4,x)/))') 'elasticity',transpose(C_66(1:6,:))/1e9
|
|
C = math_Mandel66to3333(C_66)
|
|
|
|
! start LpLoop with no acceleration
|
|
NiterationStress = 0_pInt
|
|
leapfrog = 1.0_pReal
|
|
maxleap = 16.0_pReal
|
|
jacoCounter = 0_pInt
|
|
|
|
LpLoop: do
|
|
|
|
! increase loop counter
|
|
NiterationStress = NiterationStress + 1
|
|
|
|
! too many loops required ?
|
|
if (NiterationStress > nStress) then
|
|
if (verboseDebugger) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*) '::: integrateStress reached loop limit at ',g,i,e
|
|
write(6,*)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
endif
|
|
|
|
B = math_I3 - dt*Lpguess
|
|
BT = math_transpose3x3(B)
|
|
AB = math_mul33x33(A,B)
|
|
BTA = math_mul33x33(BT,A)
|
|
|
|
! calculate 2nd Piola-Kirchhoff stress tensor
|
|
Tstar_v = 0.5_pReal*math_mul66x6(C_66,math_mandel33to6(math_mul33x33(BT,AB)-math_I3))
|
|
p_hydro = sum(Tstar_v(1:3))/3.0_pReal
|
|
forall(n=1:3) Tstar_v(n) = Tstar_v(n) - p_hydro ! get deviatoric stress tensor
|
|
|
|
! calculate plastic velocity gradient and its tangent according to constitutive law
|
|
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
|
|
call constitutive_LpAndItsTangent(Lp_constitutive, dLpdT_constitutive, Tstar_v, crystallite_Temperature(g,i,e), g, i, e)
|
|
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
|
|
!$OMP CRITICAL (debugTimingLpTangent)
|
|
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
|
|
debug_cumLpTicks = debug_cumLpTicks + tock-tick
|
|
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
|
|
!$OMP END CRITICAL (debugTimingLpTangent)
|
|
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress at ' ,g,i,e, ' ; iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive', math_transpose3x3(Lp_constitutive(:,:))
|
|
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess', math_transpose3x3(Lpguess(:,:))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
! update current residuum
|
|
residuum = Lpguess - Lp_constitutive
|
|
|
|
! Check for convergence of loop
|
|
if (.not.(any(residuum/=residuum)) .and. & ! exclude any NaN in residuum
|
|
( maxval(abs(residuum)) < aTol_crystalliteStress .or. & ! below absolute tolerance .or.
|
|
( any(abs(dt*Lpguess) > relevantStrain) .and. & ! worth checking? .and.
|
|
maxval(abs(residuum/Lpguess), abs(dt*Lpguess) > relevantStrain) < rTol_crystalliteStress & ! below relative tolerance
|
|
) &
|
|
) &
|
|
) &
|
|
exit LpLoop
|
|
|
|
! NaN occured at regular speed?
|
|
if (any(residuum/=residuum) .and. leapfrog == 1.0) then
|
|
if (debugger) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,i3,x,a)') '::: integrateStress encountered NaN at ',g,i,e,&
|
|
'; iteration ', NiterationStress, &
|
|
'>> returning..!'
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
|
|
! something went wrong at accelerated speed?
|
|
elseif (leapfrog > 1.0_pReal .and. & ! at fast pace .and.
|
|
( sum(residuum*residuum) > sum(residuum_old*residuum_old) .or. & ! worse residuum .or.
|
|
sum(residuum*residuum_old) < 0.0_pReal .or. & ! residuum changed sign (overshoot) .or.
|
|
any(residuum/=residuum) & ! NaN occured
|
|
) &
|
|
) then
|
|
if (verboseDebugger) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress encountered high-speed crash at ',g,i,e,&
|
|
'; iteration ', NiterationStress
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
maxleap = 0.5_pReal * leapfrog ! limit next acceleration
|
|
leapfrog = 1.0_pReal ! grinding halt
|
|
jacoCounter = 0_pInt ! reset counter for Jacobian update (we want to do an update next time!)
|
|
|
|
! restore old residuum and Lp
|
|
Lpguess = Lpguess_old
|
|
residuum = residuum_old
|
|
|
|
!$OMP CRITICAL (distributionLeapfrogBreak)
|
|
debug_LeapfrogBreakDistribution(NiterationStress,mode) = debug_LeapfrogBreakDistribution(NiterationStress,mode) + 1
|
|
!$OMP END CRITICAL (distributionLeapfrogBreak)
|
|
|
|
! residuum got better
|
|
else
|
|
! calculate Jacobian for correction term
|
|
if (mod(jacoCounter, iJacoLpresiduum) == 0_pInt) then
|
|
dTdLp = 0.0_pReal
|
|
do h=1,3; do j=1,3; do k=1,3; do l=1,3; do m=1,3
|
|
! forall (h=1:3,j=1:3,k=1:3,l=1:3,m=1:3) &
|
|
dTdLp(3*(h-1)+j,3*(k-1)+l) = dTdLp(3*(h-1)+j,3*(k-1)+l) + C(h,j,l,m)*AB(k,m)+C(h,j,m,l)*BTA(m,k)
|
|
enddo; enddo; enddo; enddo; enddo
|
|
dTdLp = -0.5_pReal*dt*dTdLp
|
|
dRdLp = math_identity2nd(9) - math_mul99x99(dLpdT_constitutive,dTdLp)
|
|
invdRdLp = 0.0_pReal
|
|
call math_invert(9,dRdLp,invdRdLp,dummy,error) ! invert dR/dLp --> dLp/dR
|
|
if (error) then
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress failed on dR/dLp inversion at ',g,i,e, &
|
|
'; iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a,/,9(9(e15.3,x)/))') 'dRdLp',transpose(dRdLp(:,:))
|
|
write(6,'(a,/,9(9(e15.3,x)/))') 'dLpdT_constitutive',transpose(dLpdT_constitutive(:,:))
|
|
write(6,'(a,/,3(3(e20.7,x)/))') 'Lp_constitutive',math_transpose3x3(Lp_constitutive(:,:))
|
|
write(6,'(a,/,3(3(e20.7,x)/))') 'Lpguess',math_transpose3x3(Lpguess(:,:))
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
else
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,i3)') '::: integrateStress did dR/dLp inversion at ',g,i,e, &
|
|
'; iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a,/,9(9(e15.3,x)/))') 'dRdLp',dRdLp(1:9,:)
|
|
write(6,'(a,/,9(9(e15.3,x)/))') 'dLpdT_constitutive',dLpdT_constitutive(1:9,:)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
endif
|
|
endif
|
|
jacoCounter = jacoCounter + 1_pInt ! increase counter for jaco update
|
|
|
|
! remember current residuum and Lpguess
|
|
residuum_old = residuum
|
|
Lpguess_old = Lpguess
|
|
|
|
! accelerate?
|
|
if (NiterationStress > 1 .and. leapfrog+1.0_pReal <= maxleap) leapfrog = leapfrog + 1.0_pReal
|
|
endif
|
|
|
|
! leapfrog to updated Lp
|
|
do k=1,3; do l=1,3; do m=1,3; do n=1,3
|
|
Lpguess(k,l) = Lpguess(k,l) - leapfrog*invdRdLp(3*(k-1)+l,3*(m-1)+n)*residuum(m,n)
|
|
enddo; enddo; enddo; enddo
|
|
enddo LpLoop
|
|
|
|
! calculate new plastic and elastic deformation gradient
|
|
invFp_new = math_mul33x33(invFp_current,B)
|
|
invFp_new = invFp_new/math_det3x3(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
|
|
call math_invert3x3(invFp_new,Fp_new,det,error)
|
|
if (error) then
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress failed on invFp_new inversion at ',g,i,e, &
|
|
' ; iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a11,3(i3,x),/,3(3(f12.7,x)/))') 'invFp_new at ',g,i,e,invFp_new(1:3,:)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
return
|
|
endif
|
|
Fe_new = math_mul33x33(Fg_new,invFp_new) ! calc resulting Fe
|
|
|
|
! add volumetric component to 2nd Piola-Kirchhoff stress
|
|
forall (n=1:3) Tstar_v(n) = Tstar_v(n) + p_hydro
|
|
|
|
! calculate 1st Piola-Kirchhoff stress
|
|
crystallite_P(:,:,g,i,e) = math_mul33x33(Fe_new,math_mul33x33(math_Mandel6to33(Tstar_v),transpose(invFp_new)))
|
|
|
|
! store local values in global variables
|
|
crystallite_Lp(:,:,g,i,e) = Lpguess
|
|
crystallite_Tstar_v(:,g,i,e) = Tstar_v
|
|
crystallite_Fp(:,:,g,i,e) = Fp_new
|
|
crystallite_Fe(:,:,g,i,e) = Fe_new
|
|
crystallite_invFp(:,:,g,i,e) = invFp_new
|
|
|
|
! set return flag to true
|
|
crystallite_integrateStress = .true.
|
|
if (verboseDebugger .and. (e == debug_e .and. i == debug_i .and. g == debug_g)) then
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,'(a,i3,x,i2,x,i5,x,a,x,i3)') '::: integrateStress converged at ',g,i,e,' ; iteration ', NiterationStress
|
|
write(6,*)
|
|
write(6,'(a,/,3(3(f12.7,x)/))') 'P / MPa',crystallite_P(1:3,:,g,i,e)/1e6
|
|
write(6,'(a,/,3(3(f12.7,x)/))') 'Cauchy / MPa', math_mul33x33(crystallite_P(1:3,1:3,g,i,e),transpose(Fg_new)) &
|
|
/ 1e6 / math_det3x3(Fg_new)
|
|
write(6,'(a,/,3(3(f12.7,x)/))') 'Fe Lp Fe^-1',math_transpose3x3( &
|
|
math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,g,i,e), &
|
|
math_inv3x3(Fe_new)))) ! transpose to get correct print out order
|
|
write(6,'(a,/,3(3(f12.7,x)/))') 'Fp',crystallite_Fp(1:3,:,g,i,e)
|
|
!$OMP END CRITICAL (write2out)
|
|
endif
|
|
|
|
!$OMP CRITICAL (distributionStress)
|
|
debug_StressLoopDistribution(NiterationStress,mode) = debug_StressLoopDistribution(NiterationStress,mode) + 1
|
|
!$OMP END CRITICAL (distributionStress)
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! calculates orientations and disorientations (in case of single grain ips)
|
|
!********************************************************************
|
|
subroutine crystallite_orientations()
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use math, only: math_pDecomposition, &
|
|
math_RtoQuaternion, &
|
|
math_QuaternionDisorientation, &
|
|
inDeg, &
|
|
math_qConj
|
|
use FEsolving, only: FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use IO, only: IO_warning
|
|
use material, only: material_phase, &
|
|
homogenization_Ngrains, &
|
|
phase_constitution, &
|
|
phase_localConstitution, &
|
|
phase_constitutionInstance
|
|
use mesh, only: mesh_element, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors
|
|
use debug, only: debugger, &
|
|
debug_e, debug_i, debug_g, &
|
|
verboseDebugger, &
|
|
selectiveDebugger
|
|
use constitutive_nonlocal, only: constitutive_nonlocal_structure, &
|
|
constitutive_nonlocal_updateCompatibility
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
|
|
!*** output variables ***!
|
|
|
|
!*** local variables ***!
|
|
integer(pInt) e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
n, & ! neighbor index
|
|
neighboring_e, & ! element index of my neighbor
|
|
neighboring_i, & ! integration point index of my neighbor
|
|
myPhase, & ! phase
|
|
neighboringPhase, &
|
|
myInstance, & ! instance of constitution
|
|
neighboringInstance, &
|
|
myStructure, & ! lattice structure
|
|
neighboringStructure
|
|
real(pReal), dimension(3,3) :: U, R
|
|
logical error
|
|
|
|
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(error,U,R)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,homogenization_Ngrains(mesh_element(3,e))
|
|
|
|
call math_pDecomposition(crystallite_Fe(1:3,1:3,g,i,e), U, R, error) ! polar decomposition of Fe
|
|
if (error) then
|
|
call IO_warning(650, e, i, g)
|
|
crystallite_orientation(:,g,i,e) = (/1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! fake orientation
|
|
else
|
|
crystallite_orientation(:,g,i,e) = math_RtoQuaternion(transpose(R))
|
|
endif
|
|
|
|
crystallite_rotation(:,g,i,e) = &
|
|
math_QuaternionDisorientation( math_qConj(crystallite_orientation(1:4,g,i,e)), & ! calculate grainrotation
|
|
math_qConj(crystallite_orientation0(1:4,g,i,e)), &
|
|
0_pInt ) ! we don't want symmetry here
|
|
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
|
|
! --- we use crystallite_orientation from above, so need a seperate loop
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myPhase,myInstance,myStructure,neighboring_e,neighboring_i, &
|
|
!$OMP & neighboringPhase,neighboringInstance,neighboringStructure)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
myPhase = material_phase(1,i,e) ! get my phase
|
|
if (.not. phase_localConstitution(myPhase)) then ! if nonlocal model
|
|
myInstance = phase_constitutionInstance(myPhase)
|
|
myStructure = constitutive_nonlocal_structure(myInstance) ! get my crystal structure
|
|
|
|
|
|
! --- calculate disorientation between me and my neighbor ---
|
|
|
|
do n = 1,FE_NipNeighbors(mesh_element(2,e)) ! loop through my neighbors
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if ((neighboring_e > 0) .and. (neighboring_i > 0)) then ! if neighbor exists
|
|
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
|
|
if (.not. phase_localConstitution(neighboringPhase)) then ! neighbor got also nonlocal constitution
|
|
neighboringInstance = phase_constitutionInstance(neighboringPhase)
|
|
neighboringStructure = constitutive_nonlocal_structure(neighboringInstance) ! get my neighbor's crystal structure
|
|
if (myStructure == neighboringStructure) then ! if my neighbor has same crystal structure like me
|
|
crystallite_disorientation(:,n,1,i,e) = &
|
|
math_QuaternionDisorientation( crystallite_orientation(1:4,1,i,e), &
|
|
crystallite_orientation(1:4,1,neighboring_i,neighboring_e), &
|
|
crystallite_symmetryID(1,i,e)) ! calculate disorientation
|
|
else ! for neighbor with different phase
|
|
crystallite_disorientation(:,n,1,i,e) = (/0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal/) ! 180 degree rotation about 100 axis
|
|
endif
|
|
else ! for neighbor with local constitution
|
|
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
|
endif
|
|
else ! no existing neighbor
|
|
crystallite_disorientation(:,n,1,i,e) = (/-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal/) ! homomorphic identity
|
|
endif
|
|
enddo
|
|
|
|
|
|
! --- calculate compatibility and transmissivity between me and my neighbor ---
|
|
|
|
call constitutive_nonlocal_updateCompatibility(crystallite_orientation,i,e)
|
|
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
endsubroutine
|
|
|
|
|
|
|
|
!********************************************************************
|
|
! return results of particular grain
|
|
!********************************************************************
|
|
function crystallite_postResults(&
|
|
dt,& ! time increment
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e & ! element number
|
|
)
|
|
|
|
!*** variables and functions from other modules ***!
|
|
use prec, only: pInt, &
|
|
pReal
|
|
use math, only: math_QuaternionToEuler, &
|
|
math_QuaternionToAxisAngle, &
|
|
math_mul33x33, &
|
|
math_I3, &
|
|
inDeg, &
|
|
math_Mandel6to33
|
|
use mesh, only: mesh_element
|
|
use material, only: microstructure_crystallite, &
|
|
crystallite_Noutput, &
|
|
material_phase, &
|
|
material_volume
|
|
use constitutive, only: constitutive_sizePostResults, &
|
|
constitutive_postResults
|
|
|
|
implicit none
|
|
|
|
!*** input variables ***!
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
real(pReal), intent(in):: dt ! time increment
|
|
|
|
!*** output variables ***!
|
|
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,e)))+ &
|
|
1+constitutive_sizePostResults(g,i,e)) :: crystallite_postResults
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(3,3) :: Ee
|
|
integer(pInt) k,l,o,c,crystID,mySize
|
|
logical error
|
|
|
|
crystID = microstructure_crystallite(mesh_element(4,e))
|
|
|
|
crystallite_postResults = 0.0_pReal
|
|
c = 0_pInt
|
|
crystallite_postResults(c+1) = crystallite_sizePostResults(crystID); c = c+1_pInt ! size of results from cryst
|
|
|
|
do o = 1,crystallite_Noutput(crystID)
|
|
select case(crystallite_output(o,crystID))
|
|
case ('phase')
|
|
crystallite_postResults(c+1) = material_phase(g,i,e) ! phaseID of grain
|
|
c = c + 1_pInt
|
|
case ('volume')
|
|
crystallite_postResults(c+1) = material_volume(g,i,e) ! grain volume (not fraction but absolute, right?)
|
|
c = c + 1_pInt
|
|
case ('orientation')
|
|
crystallite_postResults(c+1:c+4) = &
|
|
crystallite_orientation(:,g,i,e) ! grain orientation as quaternion
|
|
c = c + 4_pInt
|
|
case ('eulerangles')
|
|
crystallite_postResults(c+1:c+3) = inDeg * &
|
|
math_QuaternionToEuler(crystallite_orientation(:,g,i,e)) ! grain orientation as Euler angles in degree
|
|
c = c + 3_pInt
|
|
case ('grainrotation')
|
|
crystallite_postResults(c+1:c+4) = &
|
|
math_QuaternionToAxisAngle(crystallite_rotation(1:4,g,i,e)) ! grain rotation away from initial orientation as axis-angle
|
|
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
|
|
c = c + 4_pInt
|
|
case ('defgrad','f')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_partionedF(1:3,:,g,i,e),(/mySize/))
|
|
c = c + mySize
|
|
case ('fe')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fe(1:3,:,g,i,e),(/mySize/))
|
|
c = c + mySize
|
|
case ('ee')
|
|
Ee = 0.5_pReal * (math_mul33x33(transpose(crystallite_Fe(:,:,g,i,e)), crystallite_Fe(:,:,g,i,e)) - math_I3)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(Ee(1:3,:),(/mySize/))
|
|
c = c + mySize
|
|
case ('fp')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_Fp(1:3,:,g,i,e),(/mySize/))
|
|
c = c + mySize
|
|
case ('p','firstpiola','1stpiola')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(crystallite_P(1:3,:,g,i,e),(/mySize/))
|
|
c = c + mySize
|
|
case ('s','tstar','secondpiola','2ndpiola')
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+1+mySize) = reshape(math_Mandel6to33(crystallite_Tstar_v(:,g,i,e)),(/mySize/))
|
|
c = c + mySize
|
|
end select
|
|
enddo
|
|
|
|
crystallite_postResults(c+1) = constitutive_sizePostResults(g,i,e); c = c+1_pInt ! size of constitutive results
|
|
crystallite_postResults(c+1:c+constitutive_sizePostResults(g,i,e)) = &
|
|
constitutive_postResults(crystallite_Tstar_v(:,g,i,e), crystallite_subTstar0_v(:,g,i,e), crystallite_Fe, crystallite_Fp, &
|
|
crystallite_Temperature(g,i,e), crystallite_disorientation(:,:,g,i,e), dt, &
|
|
crystallite_subdt(g,i,e), g, i, e)
|
|
c = c + constitutive_sizePostResults(g,i,e)
|
|
|
|
return
|
|
|
|
endfunction
|
|
|
|
|
|
END MODULE
|
|
!##############################################################
|
|
|