DAMASK_EICMD/src/phase_mechanical.f90

1364 lines
60 KiB
Fortran

!----------------------------------------------------------------------------------------------------
!> @brief internal microstructure state for all plasticity constitutive models
!----------------------------------------------------------------------------------------------------
submodule(phase) mechanical
enum, bind(c); enumerator :: &
PLASTIC_UNDEFINED_ID, &
PLASTIC_NONE_ID, &
PLASTIC_ISOTROPIC_ID, &
PLASTIC_PHENOPOWERLAW_ID, &
PLASTIC_KINEHARDENING_ID, &
PLASTIC_DISLOTWIN_ID, &
PLASTIC_DISLOTUNGSTEN_ID, &
PLASTIC_NONLOCAL_ID, &
EIGEN_UNDEFINED_ID, &
EIGEN_CLEAVAGE_OPENING_ID, &
EIGEN_THERMAL_EXPANSION_ID
end enum
type(tTensorContainer), dimension(:), allocatable :: &
! current value
phase_mechanical_Fe, &
phase_mechanical_Fi, &
phase_mechanical_Fp, &
phase_mechanical_F, &
phase_mechanical_Li, &
phase_mechanical_Lp, &
phase_mechanical_S, &
phase_mechanical_P, &
! converged value at end of last solver increment
phase_mechanical_Fi0, &
phase_mechanical_Fp0, &
phase_mechanical_F0, &
phase_mechanical_Li0, &
phase_mechanical_Lp0, &
phase_mechanical_S0
integer(kind(PLASTIC_undefined_ID)), dimension(:), allocatable :: &
phase_plasticity !< plasticity of each phase
integer :: phase_plasticity_maxSizeDotState
interface
module subroutine eigen_init(phases)
class(tNode), pointer :: phases
end subroutine eigen_init
module subroutine elastic_init(phases)
class(tNode), pointer :: phases
end subroutine elastic_init
module subroutine plastic_init
end subroutine plastic_init
module subroutine phase_hooke_SandItsTangents(S,dS_dFe,dS_dFi,Fe,Fi,ph,en)
integer, intent(in) :: &
ph, &
en
real(pReal), intent(in), dimension(3,3) :: &
Fe, & !< elastic deformation gradient
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration
real(pReal), intent(out), dimension(3,3,3,3) :: &
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
end subroutine phase_hooke_SandItsTangents
module subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dMi,Mi,ph,en)
real(pReal), dimension(3,3), intent(out) :: &
Li !< inleastic velocity gradient
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dMi !< derivative of Li with respect to Mandel stress
real(pReal), dimension(3,3), intent(in) :: &
Mi !< Mandel stress
integer, intent(in) :: &
ph, &
en
end subroutine plastic_isotropic_LiAndItsTangent
module function plastic_dotState(subdt,co,ip,el,ph,en) result(broken)
integer, intent(in) :: &
co, & !< component-ID of integration point
ip, & !< integration point
el, & !< element
ph, &
en
real(pReal), intent(in) :: &
subdt !< timestep
logical :: broken
end function plastic_dotState
module function plastic_deltaState(ph, en) result(broken)
integer, intent(in) :: &
ph, &
en
logical :: &
broken
end function plastic_deltaState
module subroutine phase_LiAndItsTangents(Li, dLi_dS, dLi_dFi, &
S, Fi, ph,en)
integer, intent(in) :: &
ph,en
real(pReal), intent(in), dimension(3,3) :: &
S !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Li !< intermediate velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLi_dS, & !< derivative of Li with respect to S
dLi_dFi
end subroutine phase_LiAndItsTangents
module subroutine plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
S, Fi, ph,en)
integer, intent(in) :: &
ph,en
real(pReal), intent(in), dimension(3,3) :: &
S, & !< 2nd Piola-Kirchhoff stress
Fi !< intermediate deformation gradient
real(pReal), intent(out), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLp_dS, &
dLp_dFi !< derivative of Lp with respect to Fi
end subroutine plastic_LpAndItsTangents
module subroutine plastic_isotropic_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_isotropic_results
module subroutine plastic_phenopowerlaw_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_phenopowerlaw_results
module subroutine plastic_kinehardening_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_kinehardening_results
module subroutine plastic_dislotwin_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_dislotwin_results
module subroutine plastic_dislotungsten_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_dislotungsten_results
module subroutine plastic_nonlocal_results(ph,group)
integer, intent(in) :: ph
character(len=*), intent(in) :: group
end subroutine plastic_nonlocal_results
module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
real(pReal), dimension(6,6) :: homogenizedC
integer, intent(in) :: ph,en
end function plastic_dislotwin_homogenizedC
pure module function elastic_C66(ph,en) result(C66)
real(pReal), dimension(6,6) :: C66
integer, intent(in) :: ph, en
end function elastic_C66
pure module function elastic_mu(ph,en) result(mu)
real(pReal) :: mu
integer, intent(in) :: ph, en
end function elastic_mu
pure module function elastic_nu(ph,en) result(nu)
real(pReal) :: nu
integer, intent(in) :: ph, en
end function elastic_nu
end interface
type :: tOutput !< new requested output (per phase)
character(len=pStringLen), allocatable, dimension(:) :: &
label
end type tOutput
type(tOutput), allocatable, dimension(:) :: output_constituent
procedure(integrateStateFPI), pointer :: integrateState
contains
!--------------------------------------------------------------------------------------------------
!> @brief Initialize mechanical field related constitutive models
!> @details Initialize elasticity, plasticity and stiffness degradation models.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_init(phases)
class(tNode), pointer :: &
phases
integer :: &
ce, &
co, &
ma, &
ph, &
en, &
Nmembers
class(tNode), pointer :: &
num_crystallite, &
phase, &
mech
print'(/,1x,a)', '<<<+- phase:mechanical init -+>>>'
!-------------------------------------------------------------------------------------------------
allocate(output_constituent(phases%length))
allocate(phase_mechanical_Fe(phases%length))
allocate(phase_mechanical_Fi(phases%length))
allocate(phase_mechanical_Fi0(phases%length))
allocate(phase_mechanical_Fp(phases%length))
allocate(phase_mechanical_Fp0(phases%length))
allocate(phase_mechanical_F(phases%length))
allocate(phase_mechanical_F0(phases%length))
allocate(phase_mechanical_Li(phases%length))
allocate(phase_mechanical_Li0(phases%length))
allocate(phase_mechanical_Lp(phases%length))
allocate(phase_mechanical_Lp0(phases%length))
allocate(phase_mechanical_S(phases%length))
allocate(phase_mechanical_P(phases%length))
allocate(phase_mechanical_S0(phases%length))
do ph = 1, phases%length
Nmembers = count(material_phaseID == ph)
allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fp(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_F(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_F0(ph)%data(3,3,Nmembers))
allocate(phase_mechanical_Li(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_Li0(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_Lp(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_S(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_P(ph)%data(3,3,Nmembers),source=0.0_pReal)
allocate(phase_mechanical_S0(ph)%data(3,3,Nmembers),source=0.0_pReal)
phase => phases%get(ph)
mech => phase%get('mechanical')
#if defined(__GFORTRAN__)
output_constituent(ph)%label = output_as1dString(mech)
#else
output_constituent(ph)%label = mech%get_as1dString('output',defaultVal=emptyStringArray)
#endif
enddo
do ce = 1, size(material_phaseID,2)
ma = discretization_materialAt((ce-1)/discretization_nIPs+1)
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
ph = material_phaseID(co,ce)
phase_mechanical_Fi0(ph)%data(1:3,1:3,material_phaseEntry(co,ce)) = material_F_i_0(ma)%data(1:3,1:3,co)
enddo
enddo
do ph = 1, phases%length
do en = 1, count(material_phaseID == ph)
phase_mechanical_Fp0(ph)%data(1:3,1:3,en) = phase_O_0(ph)%data(en)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
phase_mechanical_Fp0(ph)%data(1:3,1:3,en) = phase_mechanical_Fp0(ph)%data(1:3,1:3,en) &
/ math_det33(phase_mechanical_Fp0(ph)%data(1:3,1:3,en))**(1.0_pReal/3.0_pReal)
phase_mechanical_F0(ph)%data(1:3,1:3,en) = math_I3
phase_mechanical_Fe(ph)%data(1:3,1:3,en) = math_inv33(matmul(phase_mechanical_Fi0(ph)%data(1:3,1:3,en), &
phase_mechanical_Fp0(ph)%data(1:3,1:3,en))) ! assuming that euler angles are given in internal strain free configuration
enddo
phase_mechanical_Fp(ph)%data = phase_mechanical_Fp0(ph)%data
phase_mechanical_Fi(ph)%data = phase_mechanical_Fi0(ph)%data
phase_mechanical_F(ph)%data = phase_mechanical_F0(ph)%data
enddo
call elastic_init(phases)
allocate(plasticState(phases%length))
allocate(phase_plasticity(phases%length),source = PLASTIC_UNDEFINED_ID)
call plastic_init()
do ph = 1,phases%length
plasticState(ph)%state0 = plasticState(ph)%state
enddo
phase_plasticity_maxSizeDotState = maxval(plasticState%sizeDotState)
num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict)
select case(num_crystallite%get_asString('integrator',defaultVal='FPI'))
case('FPI')
integrateState => integrateStateFPI
case('Euler')
integrateState => integrateStateEuler
case('AdaptiveEuler')
integrateState => integrateStateAdaptiveEuler
case('RK4')
integrateState => integrateStateRK4
case('RKCK45')
integrateState => integrateStateRKCK45
case default
call IO_error(301,ext_msg='integrator')
end select
call eigen_init(phases)
end subroutine mechanical_init
module subroutine mechanical_results(group,ph)
character(len=*), intent(in) :: group
integer, intent(in) :: ph
call crystallite_results(group,ph)
select case(phase_plasticity(ph))
case(PLASTIC_ISOTROPIC_ID)
call plastic_isotropic_results(ph,group//'mechanical/')
case(PLASTIC_PHENOPOWERLAW_ID)
call plastic_phenopowerlaw_results(ph,group//'mechanical/')
case(PLASTIC_KINEHARDENING_ID)
call plastic_kinehardening_results(ph,group//'mechanical/')
case(PLASTIC_DISLOTWIN_ID)
call plastic_dislotwin_results(ph,group//'mechanical/')
case(PLASTIC_DISLOTUNGSTEN_ID)
call plastic_dislotungsten_results(ph,group//'mechanical/')
case(PLASTIC_NONLOCAL_ID)
call plastic_nonlocal_results(ph,group//'mechanical/')
end select
end subroutine mechanical_results
!--------------------------------------------------------------------------------------------------
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
!> intermediate acceleration of the Newton-Raphson correction
!--------------------------------------------------------------------------------------------------
function integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el) result(broken)
real(pReal), dimension(3,3), intent(in) :: F,subFp0,subFi0
real(pReal), intent(in) :: Delta_t
integer, intent(in):: el, & ! element index
ip, & ! integration point index
co ! grain index
real(pReal), dimension(3,3):: Fp_new, & ! plastic deformation gradient at end of timestep
invFp_new, & ! inverse of Fp_new
invFp_current, & ! inverse of Fp_current
Lpguess, & ! current guess for plastic velocity gradient
Lpguess_old, & ! known last good guess for plastic velocity gradient
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
residuumLp, & ! current residuum of plastic velocity gradient
residuumLp_old, & ! last residuum of plastic velocity gradient
deltaLp, & ! direction of next guess
Fi_new, & ! gradient of intermediate deformation stages
invFi_new, &
invFi_current, & ! inverse of Fi_current
Liguess, & ! current guess for intermediate velocity gradient
Liguess_old, & ! known last good guess for intermediate velocity gradient
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
residuumLi, & ! current residuum of intermediate velocity gradient
residuumLi_old, & ! last residuum of intermediate velocity gradient
deltaLi, & ! direction of next guess
Fe, & ! elastic deformation gradient
S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
A, &
B, &
temp_33
real(pReal), dimension(9) :: temp_9 ! needed for matrix inversion by LAPACK
integer, dimension(9) :: devNull_9 ! needed for matrix inversion by LAPACK
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme)
dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme)
real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress
dS_dFi, &
dFe_dLp, & ! partial derivative of elastic deformation gradient
dFe_dLi, &
dFi_dLi, &
dLp_dFi, &
dLi_dFi, &
dLp_dS, &
dLi_dS
real(pReal) steplengthLp, &
steplengthLi, &
atol_Lp, &
atol_Li, &
devNull
integer NiterationStressLp, & ! number of stress integrations
NiterationStressLi, & ! number of inner stress integrations
ierr, & ! error indicator for LAPACK
o, &
p, &
ph, &
en, &
jacoCounterLp, &
jacoCounterLi ! counters to check for Jacobian update
logical :: error,broken
broken = .true.
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
call plastic_dependentState(co,ip,el)
Lpguess = phase_mechanical_Lp(ph)%data(1:3,1:3,en) ! take as first guess
Liguess = phase_mechanical_Li(ph)%data(1:3,1:3,en) ! take as first guess
call math_invert33(invFp_current,devNull,error,subFp0)
if (error) return ! error
call math_invert33(invFi_current,devNull,error,subFi0)
if (error) return ! error
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
jacoCounterLi = 0
steplengthLi = 1.0_pReal
residuumLi_old = 0.0_pReal
Liguess_old = Liguess
NiterationStressLi = 0
LiLoop: do
NiterationStressLi = NiterationStressLi + 1
if (NiterationStressLi>num%nStress) return ! error
invFi_new = matmul(invFi_current,math_I3 - Delta_t*Liguess)
Fi_new = math_inv33(invFi_new)
jacoCounterLp = 0
steplengthLp = 1.0_pReal
residuumLp_old = 0.0_pReal
Lpguess_old = Lpguess
NiterationStressLp = 0
LpLoop: do
NiterationStressLp = NiterationStressLp + 1
if (NiterationStressLp>num%nStress) return ! error
B = math_I3 - Delta_t*Lpguess
Fe = matmul(matmul(A,B), invFi_new)
call phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
Fe, Fi_new, ph, en)
call plastic_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
S, Fi_new, ph,en)
!* update current residuum and check for convergence of loop
atol_Lp = max(num%rtol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLp = Lpguess - Lp_constitutive
if (any(IEEE_is_NaN(residuumLp))) then
return ! error
elseif (norm2(residuumLp) < atol_Lp) then ! converged if below absolute tolerance
exit LpLoop
elseif (NiterationStressLp == 1 .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLp_old = residuumLp ! ...remember old values and...
Lpguess_old = Lpguess
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
Lpguess = Lpguess_old &
+ deltaLp * stepLengthLp
cycle LpLoop
endif
calculateJacobiLp: if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then
jacoCounterLp = jacoCounterLp + 1
do o=1,3; do p=1,3
dFe_dLp(o,1:3,p,1:3) = - Delta_t * A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -Delta_t * A(i,k) invFi(l,j)
enddo; enddo
dRLp_dLp = math_eye(9) &
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
temp_9 = math_33to9(residuumLp)
call dgesv(9,1,dRLp_dLp,9,devNull_9,temp_9,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
if (ierr /= 0) return ! error
deltaLp = - math_9to33(temp_9)
endif calculateJacobiLp
Lpguess = Lpguess &
+ deltaLp * steplengthLp
enddo LpLoop
call phase_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, &
S, Fi_new, ph,en)
!* update current residuum and check for convergence of loop
atol_Li = max(num%rtol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
num%atol_crystalliteStress) ! minimum lower cutoff
residuumLi = Liguess - Li_constitutive
if (any(IEEE_is_NaN(residuumLi))) then
return ! error
elseif (norm2(residuumLi) < atol_Li) then ! converged if below absolute tolerance
exit LiLoop
elseif (NiterationStressLi == 1 .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
residuumLi_old = residuumLi ! ...remember old values and...
Liguess_old = Liguess
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
else ! not converged and residuum not improved...
steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
Liguess = Liguess_old &
+ deltaLi * steplengthLi
cycle LiLoop
endif
calculateJacobiLi: if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
jacoCounterLi = jacoCounterLi + 1
temp_33 = matmul(matmul(A,B),invFi_current)
do o=1,3; do p=1,3
dFe_dLi(1:3,o,1:3,p) = -Delta_t*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -Delta_t * A(i,k) invFi(l,j)
dFi_dLi(1:3,o,1:3,p) = -Delta_t*math_I3(o,p)*invFi_current
enddo; enddo
do o=1,3; do p=1,3
dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new)
enddo; enddo
dRLi_dLi = math_eye(9) &
- math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) &
+ math_mul3333xx3333(dS_dFi, dFi_dLi))) &
- math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi))
temp_9 = math_33to9(residuumLi)
call dgesv(9,1,dRLi_dLi,9,devNull_9,temp_9,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
if (ierr /= 0) return ! error
deltaLi = - math_9to33(temp_9)
endif calculateJacobiLi
Liguess = Liguess &
+ deltaLi * steplengthLi
enddo LiLoop
invFp_new = matmul(invFp_current,B)
call math_invert33(Fp_new,devNull,error,invFp_new)
if (error) return ! error
phase_mechanical_P(ph)%data(1:3,1:3,en) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
phase_mechanical_S(ph)%data(1:3,1:3,en) = S
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = Lpguess
phase_mechanical_Li(ph)%data(1:3,1:3,en) = Liguess
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = Fi_new
phase_mechanical_Fe(ph)%data(1:3,1:3,en) = matmul(matmul(F,invFp_new),invFi_new)
broken = .false.
end function integrateStress
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
!> using Fixed Point Iteration to adapt the stepsize
!--------------------------------------------------------------------------------------------------
function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
co !< grain index in grain loop
logical :: &
broken
integer :: &
NiterationState, & !< number of iterations in state loop
ph, &
en, &
sizeDotState
real(pReal) :: &
zeta
real(pReal), dimension(phase_plasticity_maxSizeDotState) :: &
r ! state residuum
real(pReal), dimension(phase_plasticity_maxSizeDotState,2) :: &
dotState
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
broken = plastic_dotState(Delta_t, co,ip,el,ph,en)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,en) * Delta_t
iteration: do NiterationState = 1, num%nState
dotState(1:sizeDotState,2) = merge(dotState(1:sizeDotState,1),0.0, nIterationState > 1)
dotState(1:sizeDotState,1) = plasticState(ph)%dotState(:,en)
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
if(broken) exit iteration
broken = plastic_dotState(Delta_t, co,ip,el,ph,en)
if(broken) exit iteration
zeta = damper(plasticState(ph)%dotState(:,en),dotState(1:sizeDotState,1),&
dotState(1:sizeDotState,2))
plasticState(ph)%dotState(:,en) = plasticState(ph)%dotState(:,en) * zeta &
+ dotState(1:sizeDotState,1) * (1.0_pReal - zeta)
r(1:sizeDotState) = plasticState(ph)%state(1:sizeDotState,en) &
- subState0 &
- plasticState(ph)%dotState(1:sizeDotState,en) * Delta_t
plasticState(ph)%state(1:sizeDotState,en) = plasticState(ph)%state(1:sizeDotState,en) &
- r(1:sizeDotState)
if (converged(r(1:sizeDotState),plasticState(ph)%state(1:sizeDotState,en),plasticState(ph)%atol(1:sizeDotState))) then
broken = plastic_deltaState(ph,en)
exit iteration
endif
enddo iteration
contains
!--------------------------------------------------------------------------------------------------
!> @brief calculate the damping for correction of state and dot state
!--------------------------------------------------------------------------------------------------
real(pReal) pure function damper(omega_0,omega_1,omega_2)
real(pReal), dimension(:), intent(in) :: &
omega_0, omega_1, omega_2
real(pReal) :: dot_prod12, dot_prod22
dot_prod12 = dot_product(omega_0-omega_1, omega_1-omega_2)
dot_prod22 = dot_product(omega_1-omega_2, omega_1-omega_2)
if (min(dot_product(omega_0,omega_1),dot_prod12) < 0.0_pReal .and. dot_prod22 > 0.0_pReal) then
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
else
damper = 1.0_pReal
endif
end function damper
end function integrateStateFPI
!--------------------------------------------------------------------------------------------------
!> @brief integrate state with 1st order explicit Euler method
!--------------------------------------------------------------------------------------------------
function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
co !< grain index in grain loop
logical :: &
broken
integer :: &
ph, &
en, &
sizeDotState
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
broken = plastic_dotState(Delta_t, co,ip,el,ph,en)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
+ plasticState(ph)%dotState(1:sizeDotState,en) * Delta_t
broken = plastic_deltaState(ph,en)
if(broken) return
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
end function integrateStateEuler
!--------------------------------------------------------------------------------------------------
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
!--------------------------------------------------------------------------------------------------
function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
co !< grain index in grain loop
logical :: &
broken
integer :: &
ph, &
en, &
sizeDotState
real(pReal), dimension(phase_plasticity_maxSizeDotState) :: residuum_plastic
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
broken = plastic_dotState(Delta_t, co,ip,el,ph,en)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
residuum_plastic(1:sizeDotState) = - plasticState(ph)%dotstate(1:sizeDotState,en) * 0.5_pReal * Delta_t
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
+ plasticState(ph)%dotstate(1:sizeDotState,en) * Delta_t
broken = plastic_deltaState(ph,en)
if(broken) return
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
if(broken) return
broken = plastic_dotState(Delta_t, co,ip,el,ph,en)
if(broken) return
broken = .not. converged(residuum_plastic(1:sizeDotState) + 0.5_pReal * plasticState(ph)%dotState(:,en) * Delta_t, &
plasticState(ph)%state(1:sizeDotState,en), &
plasticState(ph)%atol(1:sizeDotState))
end function integrateStateAdaptiveEuler
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
!---------------------------------------------------------------------------------------------------
function integrateStateRK4(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
logical :: broken
real(pReal), dimension(3,3), parameter :: &
A = reshape([&
0.5_pReal, 0.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal],&
shape(A))
real(pReal), dimension(3), parameter :: &
C = [0.5_pReal, 0.5_pReal, 1.0_pReal]
real(pReal), dimension(4), parameter :: &
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C)
end function integrateStateRK4
!---------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with the Cash-Carp method
!---------------------------------------------------------------------------------------------------
function integrateStateRKCK45(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: co,ip,el
logical :: broken
real(pReal), dimension(5,5), parameter :: &
A = reshape([&
1._pReal/5._pReal, .0_pReal, .0_pReal, .0_pReal, .0_pReal, &
3._pReal/40._pReal, 9._pReal/40._pReal, .0_pReal, .0_pReal, .0_pReal, &
3_pReal/10._pReal, -9._pReal/10._pReal, 6._pReal/5._pReal, .0_pReal, .0_pReal, &
-11._pReal/54._pReal, 5._pReal/2._pReal, -70.0_pReal/27.0_pReal, 35.0_pReal/27.0_pReal, .0_pReal, &
1631._pReal/55296._pReal,175._pReal/512._pReal,575._pReal/13824._pReal,44275._pReal/110592._pReal,253._pReal/4096._pReal],&
shape(A))
real(pReal), dimension(5), parameter :: &
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal]
real(pReal), dimension(6), parameter :: &
B = &
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], &
DB = B - &
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C,DB)
end function integrateStateRKCK45
!--------------------------------------------------------------------------------------------------
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
!! embedded explicit Runge-Kutta method
!--------------------------------------------------------------------------------------------------
function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,co,ip,el,A,B,C,DB) result(broken)
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
real(pReal), intent(in),dimension(:) :: subState0
real(pReal), intent(in) :: Delta_t
real(pReal), dimension(:,:), intent(in) :: A
real(pReal), dimension(:), intent(in) :: B, C
real(pReal), dimension(:), intent(in), optional :: DB
integer, intent(in) :: &
el, & !< element index in element loop
ip, & !< integration point index in ip loop
co !< grain index in grain loop
logical :: broken
integer :: &
stage, & ! stage index in integration stage loop
n, &
ph, &
en, &
sizeDotState
real(pReal), dimension(phase_plasticity_maxSizeDotState,size(B)) :: plastic_RKdotState
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
broken = plastic_dotState(Delta_t,co,ip,el,ph,en)
if(broken) return
sizeDotState = plasticState(ph)%sizeDotState
do stage = 1, size(A,1)
plastic_RKdotState(1:sizeDotState,stage) = plasticState(ph)%dotState(:,en)
plasticState(ph)%dotState(:,en) = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
do n = 2, stage
plasticState(ph)%dotState(:,en) = plasticState(ph)%dotState(:,en) &
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n)
enddo
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,en) * Delta_t
broken = integrateStress(F_0 + (F - F_0) * Delta_t * C(stage),subFp0,subFi0,Delta_t * C(stage),co,ip,el)
if(broken) exit
broken = plastic_dotState(Delta_t*C(stage),co,ip,el,ph,en)
if(broken) exit
enddo
if(broken) return
plastic_RKdotState(1:sizeDotState,size(B)) = plasticState (ph)%dotState(:,en)
plasticState(ph)%dotState(:,en) = matmul(plastic_RKdotState(1:sizeDotState,1:size(B)),B)
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
+ plasticState(ph)%dotState (1:sizeDotState,en) * Delta_t
if(present(DB)) &
broken = .not. converged(matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) * Delta_t, &
plasticState(ph)%state(1:sizeDotState,en), &
plasticState(ph)%atol(1:sizeDotState))
if(broken) return
broken = plastic_deltaState(ph,en)
if(broken) return
broken = integrateStress(F,subFp0,subFi0,Delta_t,co,ip,el)
end function integrateStateRK
!--------------------------------------------------------------------------------------------------
!> @brief writes crystallite results to HDF5 output file
!--------------------------------------------------------------------------------------------------
subroutine crystallite_results(group,ph)
character(len=*), intent(in) :: group
integer, intent(in) :: ph
integer :: ou
call results_closeGroup(results_addGroup(group//'/mechanical'))
do ou = 1, size(output_constituent(ph)%label)
select case (output_constituent(ph)%label(ou))
case('F')
call results_writeDataset(phase_mechanical_F(ph)%data,group//'/mechanical/','F',&
'deformation gradient','1')
case('F_e')
call results_writeDataset(phase_mechanical_Fe(ph)%data,group//'/mechanical/','F_e',&
'elastic deformation gradient','1')
case('F_p')
call results_writeDataset(phase_mechanical_Fp(ph)%data,group//'/mechanical/','F_p', &
'plastic deformation gradient','1')
case('F_i')
call results_writeDataset(phase_mechanical_Fi(ph)%data,group//'/mechanical/','F_i', &
'inelastic deformation gradient','1')
case('L_p')
call results_writeDataset(phase_mechanical_Lp(ph)%data,group//'/mechanical/','L_p', &
'plastic velocity gradient','1/s')
case('L_i')
call results_writeDataset(phase_mechanical_Li(ph)%data,group//'/mechanical/','L_i', &
'inelastic velocity gradient','1/s')
case('P')
call results_writeDataset(phase_mechanical_P(ph)%data,group//'/mechanical/','P', &
'first Piola-Kirchhoff stress','Pa')
case('S')
call results_writeDataset(phase_mechanical_S(ph)%data,group//'/mechanical/','S', &
'second Piola-Kirchhoff stress','Pa')
case('O')
call results_writeDataset(to_quaternion(phase_O(ph)%data),group//'/mechanical',output_constituent(ph)%label(ou),&
'crystal orientation as quaternion','q_0 (q_1 q_2 q_3)')
call results_addAttribute('lattice',phase_lattice(ph),group//'/mechanical/'//output_constituent(ph)%label(ou))
if (any(phase_lattice(ph) == ['hP', 'tI'])) &
call results_addAttribute('c/a',phase_cOverA(ph),group//'/mechanical/'//output_constituent(ph)%label(ou))
end select
enddo
contains
!--------------------------------------------------------------------------------------------------
!> @brief Convert orientation array to quaternion array
!--------------------------------------------------------------------------------------------------
function to_quaternion(dataset)
type(rotation), dimension(:), intent(in) :: dataset
real(pReal), dimension(4,size(dataset,1)) :: to_quaternion
integer :: i
do i = 1, size(dataset,1)
to_quaternion(:,i) = dataset(i)%asQuaternion()
enddo
end function to_quaternion
end subroutine crystallite_results
!--------------------------------------------------------------------------------------------------
!> @brief Forward data after successful increment.
! ToDo: Any guessing for the current states possible?
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_forward()
integer :: ph
do ph = 1, size(plasticState)
phase_mechanical_Fi0(ph) = phase_mechanical_Fi(ph)
phase_mechanical_Fp0(ph) = phase_mechanical_Fp(ph)
phase_mechanical_F0(ph) = phase_mechanical_F(ph)
phase_mechanical_Li0(ph) = phase_mechanical_Li(ph)
phase_mechanical_Lp0(ph) = phase_mechanical_Lp(ph)
phase_mechanical_S0(ph) = phase_mechanical_S(ph)
plasticState(ph)%state0 = plasticState(ph)%state
enddo
end subroutine mechanical_forward
!--------------------------------------------------------------------------------------------------
!> @brief calculate stress (P)
!--------------------------------------------------------------------------------------------------
module function phase_mechanical_constitutive(Delta_t,co,ip,el) result(converged_)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
co, &
ip, &
el
logical :: converged_
real(pReal) :: &
formerSubStep
integer :: &
ph, en, sizeDotState
logical :: todo
real(pReal) :: subFrac,subStep
real(pReal), dimension(3,3) :: &
subFp0, &
subFi0, &
subLp0, &
subLi0, &
subF0, &
subF
real(pReal), dimension(:), allocatable :: subState0
ph = material_phaseID(co,(el-1)*discretization_nIPs + ip)
en = material_phaseEntry(co,(el-1)*discretization_nIPs + ip)
sizeDotState = plasticState(ph)%sizeDotState
subLi0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
subLp0 = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
allocate(subState0,source=plasticState(ph)%State0(:,en))
subFp0 = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
subFi0 = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
subF0 = phase_mechanical_F0(ph)%data(1:3,1:3,en)
subFrac = 0.0_pReal
todo = .true.
subStep = 1.0_pReal/num%subStepSizeCryst
converged_ = .false. ! pretend failed step of 1/subStepSizeCryst
todo = .true.
cutbackLooping: do while (todo)
if (converged_) then
formerSubStep = subStep
subFrac = subFrac + subStep
subStep = min(1.0_pReal - subFrac, num%stepIncreaseCryst * subStep)
todo = subStep > 0.0_pReal ! still time left to integrate on?
if (todo) then
subF0 = subF
subLp0 = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
subLi0 = phase_mechanical_Li(ph)%data(1:3,1:3,en)
subFp0 = phase_mechanical_Fp(ph)%data(1:3,1:3,en)
subFi0 = phase_mechanical_Fi(ph)%data(1:3,1:3,en)
subState0 = plasticState(ph)%state(:,en)
endif
!--------------------------------------------------------------------------------------------------
! cut back (reduced time and restore)
else
subStep = num%subStepSizeCryst * subStep
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = subFp0
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = subFi0
phase_mechanical_S(ph)%data(1:3,1:3,en) = phase_mechanical_S0(ph)%data(1:3,1:3,en) ! why no subS0 ? is S0 of any use?
if (subStep < 1.0_pReal) then ! actual (not initial) cutback
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = subLp0
phase_mechanical_Li(ph)%data(1:3,1:3,en) = subLi0
endif
plasticState(ph)%state(:,en) = subState0
todo = subStep > num%subStepMinCryst ! still on track or already done (beyond repair)
endif
!--------------------------------------------------------------------------------------------------
! prepare for integration
if (todo) then
subF = subF0 &
+ subStep * (phase_mechanical_F(ph)%data(1:3,1:3,en) - phase_mechanical_F0(ph)%data(1:3,1:3,en))
converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),subStep * Delta_t,co,ip,el)
endif
enddo cutbackLooping
end function phase_mechanical_constitutive
!--------------------------------------------------------------------------------------------------
!> @brief Restore data after homog cutback.
!--------------------------------------------------------------------------------------------------
module subroutine mechanical_restore(ce,includeL)
integer, intent(in) :: ce
logical, intent(in) :: &
includeL !< protect agains fake cutback
integer :: &
co, ph, en
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
ph = material_phaseID(co,ce)
en = material_phaseEntry(co,ce)
if (includeL) then
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
phase_mechanical_Li(ph)%data(1:3,1:3,en) = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
endif ! maybe protecting everything from overwriting makes more sense
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
phase_mechanical_S(ph)%data(1:3,1:3,en) = phase_mechanical_S0(ph)%data(1:3,1:3,en)
plasticState(ph)%state(:,en) = plasticState(ph)%State0(:,en)
enddo
end subroutine mechanical_restore
!--------------------------------------------------------------------------------------------------
!> @brief Calculate tangent (dPdF).
!--------------------------------------------------------------------------------------------------
module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
real(pReal), intent(in) :: Delta_t
integer, intent(in) :: &
co, & !< counter in constituent loop
ce
real(pReal), dimension(3,3,3,3) :: dPdF
integer :: &
o, &
p, ph, en
real(pReal), dimension(3,3) :: devNull, &
invSubFp0,invSubFi0,invFp,invFi, &
temp_33_1, temp_33_2, temp_33_3
real(pReal), dimension(3,3,3,3) :: dSdFe, &
dSdF, &
dSdFi, &
dLidS, & ! tangent in lattice configuration
dLidFi, &
dLpdS, &
dLpdFi, &
dFidS, &
dFpinvdF, &
rhs_3333, &
lhs_3333, &
temp_3333
real(pReal), dimension(9,9):: temp_99
logical :: error
ph = material_phaseID(co,ce)
en = material_phaseEntry(co,ce)
call phase_hooke_SandItsTangents(devNull,dSdFe,dSdFi, &
phase_mechanical_Fe(ph)%data(1:3,1:3,en), &
phase_mechanical_Fi(ph)%data(1:3,1:3,en),ph,en)
call phase_LiAndItsTangents(devNull,dLidS,dLidFi, &
phase_mechanical_S(ph)%data(1:3,1:3,en), &
phase_mechanical_Fi(ph)%data(1:3,1:3,en), &
ph,en)
invFp = math_inv33(phase_mechanical_Fp(ph)%data(1:3,1:3,en))
invFi = math_inv33(phase_mechanical_Fi(ph)%data(1:3,1:3,en))
invSubFp0 = math_inv33(phase_mechanical_Fp0(ph)%data(1:3,1:3,en))
invSubFi0 = math_inv33(phase_mechanical_Fi0(ph)%data(1:3,1:3,en))
if (sum(abs(dLidS)) < tol_math_check) then
dFidS = 0.0_pReal
else
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
do o=1,3; do p=1,3
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) &
+ matmul(invSubFi0,dLidFi(1:3,1:3,o,p)) * Delta_t
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) &
+ invFi*invFi(p,o)
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) &
- matmul(invSubFi0,dLidS(1:3,1:3,o,p)) * Delta_t
enddo; enddo
call math_invert(temp_99,error,math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600, &
ext_msg='inversion error in analytic tangent calculation')
dFidS = 0.0_pReal
else
dFidS = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
endif
call plastic_LpAndItsTangents(devNull,dLpdS,dLpdFi, &
phase_mechanical_S(ph)%data(1:3,1:3,en), &
phase_mechanical_Fi(ph)%data(1:3,1:3,en),ph,en)
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
!--------------------------------------------------------------------------------------------------
! calculate dSdF
temp_33_1 = transpose(matmul(invFp,invFi))
temp_33_2 = matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invSubFp0)
temp_33_3 = matmul(matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invFp), invSubFi0)
do o=1,3; do p=1,3
rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1)
temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) &
+ matmul(temp_33_3,dLidS(1:3,1:3,p,o))
enddo; enddo
lhs_3333 = math_mul3333xx3333(dSdFe,temp_3333) * Delta_t &
+ math_mul3333xx3333(dSdFi,dFidS)
call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333))
if (error) then
call IO_warning(warning_ID=600, &
ext_msg='inversion error in analytic tangent calculation')
dSdF = rhs_3333
else
dSdF = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
endif
!--------------------------------------------------------------------------------------------------
! calculate dFpinvdF
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
do o=1,3; do p=1,3
dFpinvdF(1:3,1:3,p,o) = - matmul(invSubFp0, matmul(temp_3333(1:3,1:3,p,o),invFi)) * Delta_t
enddo; enddo
!--------------------------------------------------------------------------------------------------
! assemble dPdF
temp_33_1 = matmul(phase_mechanical_S(ph)%data(1:3,1:3,en),transpose(invFp))
temp_33_2 = matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invFp)
temp_33_3 = matmul(temp_33_2,phase_mechanical_S(ph)%data(1:3,1:3,en))
dPdF = 0.0_pReal
do p=1,3
dPdF(p,1:3,p,1:3) = transpose(matmul(invFp,temp_33_1))
enddo
do o=1,3; do p=1,3
dPdF(1:3,1:3,p,o) = dPdF(1:3,1:3,p,o) &
+ matmul(matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),dFpinvdF(1:3,1:3,p,o)),temp_33_1) &
+ matmul(matmul(temp_33_2,dSdF(1:3,1:3,p,o)),transpose(invFp)) &
+ matmul(temp_33_3,transpose(dFpinvdF(1:3,1:3,p,o)))
enddo; enddo
end function phase_mechanical_dPdF
module subroutine mechanical_restartWrite(groupHandle,ph)
integer(HID_T), intent(in) :: groupHandle
integer, intent(in) :: ph
call HDF5_write(plasticState(ph)%state,groupHandle,'omega')
call HDF5_write(phase_mechanical_Fi(ph)%data,groupHandle,'F_i')
call HDF5_write(phase_mechanical_Li(ph)%data,groupHandle,'L_i')
call HDF5_write(phase_mechanical_Lp(ph)%data,groupHandle,'L_p')
call HDF5_write(phase_mechanical_Fp(ph)%data,groupHandle,'F_p')
call HDF5_write(phase_mechanical_S(ph)%data,groupHandle,'S')
call HDF5_write(phase_mechanical_F(ph)%data,groupHandle,'F')
end subroutine mechanical_restartWrite
module subroutine mechanical_restartRead(groupHandle,ph)
integer(HID_T), intent(in) :: groupHandle
integer, intent(in) :: ph
call HDF5_read(plasticState(ph)%state0,groupHandle,'omega')
call HDF5_read(phase_mechanical_Fi0(ph)%data,groupHandle,'F_i')
call HDF5_read(phase_mechanical_Li0(ph)%data,groupHandle,'L_i')
call HDF5_read(phase_mechanical_Lp0(ph)%data,groupHandle,'L_p')
call HDF5_read(phase_mechanical_Fp0(ph)%data,groupHandle,'F_p')
call HDF5_read(phase_mechanical_S0(ph)%data,groupHandle,'S')
call HDF5_read(phase_mechanical_F0(ph)%data,groupHandle,'F')
end subroutine mechanical_restartRead
!----------------------------------------------------------------------------------------------
!< @brief Get first Piola-Kichhoff stress (for use by non-mech physics)
!----------------------------------------------------------------------------------------------
module function mechanical_S(ph,en) result(S)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: S
S = phase_mechanical_S(ph)%data(1:3,1:3,en)
end function mechanical_S
!----------------------------------------------------------------------------------------------
!< @brief Get plastic velocity gradient (for use by non-mech physics)
!----------------------------------------------------------------------------------------------
module function mechanical_L_p(ph,en) result(L_p)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: L_p
L_p = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
end function mechanical_L_p
!----------------------------------------------------------------------------------------------
!< @brief Get elastic deformation gradient (for use by non-mech physics)
!----------------------------------------------------------------------------------------------
module function mechanical_F_e(ph,en) result(F_e)
integer, intent(in) :: ph,en
real(pReal), dimension(3,3) :: F_e
F_e = phase_mechanical_Fe(ph)%data(1:3,1:3,en)
end function mechanical_F_e
!----------------------------------------------------------------------------------------------
!< @brief Get second Piola-Kichhoff stress (for use by homogenization)
!----------------------------------------------------------------------------------------------
module function phase_P(co,ce) result(P)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: P
P = phase_mechanical_P(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce))
end function phase_P
!----------------------------------------------------------------------------------------------
!< @brief Get deformation gradient (for use by homogenization)
!----------------------------------------------------------------------------------------------
module function phase_F(co,ce) result(F)
integer, intent(in) :: co, ce
real(pReal), dimension(3,3) :: F
F = phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce))
end function phase_F
!----------------------------------------------------------------------------------------------
!< @brief Set deformation gradient (for use by homogenization)
!----------------------------------------------------------------------------------------------
module subroutine phase_set_F(F,co,ce)
real(pReal), dimension(3,3), intent(in) :: F
integer, intent(in) :: co, ce
phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce)) = F
end subroutine phase_set_F
end submodule mechanical