494 lines
24 KiB
Fortran
494 lines
24 KiB
Fortran
|
|
!***************************************
|
|
!* Module: HOMOGENIZATION *
|
|
!***************************************
|
|
!* contains: *
|
|
!* - _init *
|
|
!* - materialpoint_stressAndItsTangent *
|
|
!* - _partitionDeformation *
|
|
!* - _updateState *
|
|
!* - _averageStressAndItsTangent *
|
|
!* - _postResults *
|
|
!***************************************
|
|
|
|
MODULE homogenization
|
|
|
|
!*** Include other modules ***
|
|
use prec, only: pInt,pReal,p_vec
|
|
implicit none
|
|
|
|
! ****************************************************************
|
|
! *** General variables for the homogenization at a ***
|
|
! *** material point ***
|
|
! ****************************************************************
|
|
type(p_vec), dimension(:,:), allocatable :: homogenization_state0, & ! pointer array to homogenization state at start of FE increment
|
|
homogenization_subState0, & ! pointer array to homogenization state at start of homogenization increment
|
|
homogenization_state ! pointer array to current homogenization state (end of converged time step)
|
|
integer(pInt), dimension(:,:), allocatable :: homogenization_sizeState, & ! size of state array per grain
|
|
homogenization_sizePostResults ! size of postResults array per material point
|
|
|
|
real(pReal), dimension(:,:,:,:,:,:), allocatable :: materialpoint_dPdF ! tangent of first P--K stress at IP
|
|
real(pReal), dimension(:,:,:,:), allocatable :: materialpoint_F0, & ! def grad of IP at start of FE increment
|
|
materialpoint_F, & ! def grad of IP to be reached at end of FE increment
|
|
materialpoint_subF0, & ! def grad of IP at beginning of homogenization increment
|
|
materialpoint_subF, & ! def grad of IP to be reached at end of homog inc
|
|
materialpoint_P ! first P--K stress of IP
|
|
real(pReal), dimension(:,:), allocatable :: materialpoint_Temperature, & ! temperature at IP
|
|
materialpoint_subFrac, &
|
|
materialpoint_subStep, &
|
|
materialpoint_subdt
|
|
|
|
real(pReal), dimension(:,:,:), allocatable :: materialpoint_results ! results array of material point
|
|
|
|
logical, dimension(:,:), allocatable :: materialpoint_requested, &
|
|
materialpoint_converged
|
|
logical, dimension(:,:,:), allocatable :: materialpoint_doneAndHappy
|
|
integer(pInt) homogenization_maxSizeState,homogenization_maxSizePostResults
|
|
|
|
CONTAINS
|
|
|
|
!**************************************
|
|
!* Module initialization *
|
|
!**************************************
|
|
subroutine homogenization_init()
|
|
use prec, only: pReal,pInt
|
|
use math, only: math_I3
|
|
use IO, only: IO_error, IO_open_file
|
|
use mesh, only: mesh_maxNips,mesh_NcpElems,mesh_element,FE_Nips
|
|
use material
|
|
use constitutive, only: constitutive_maxSizePostResults
|
|
use crystallite, only: crystallite_Nresults
|
|
use homogenization_isostrain
|
|
! use homogenization_RGC
|
|
|
|
integer(pInt), parameter :: fileunit = 200
|
|
integer(pInt) e,i,g,myInstance
|
|
|
|
if(.not. IO_open_file(fileunit,material_configFile)) call IO_error (100) ! corrupt config file
|
|
|
|
call homogenization_isostrain_init(fileunit) ! parse all homogenizations of this type
|
|
|
|
close(fileunit)
|
|
|
|
allocate(homogenization_state0(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_subState0(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_state(mesh_maxNips,mesh_NcpElems))
|
|
allocate(homogenization_sizeState(mesh_maxNips,mesh_NcpElems)); homogenization_sizeState = 0_pInt
|
|
allocate(homogenization_sizePostResults(mesh_maxNips,mesh_NcpElems)); homogenization_sizePostResults = 0_pInt
|
|
|
|
allocate(materialpoint_dPdF(3,3,3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_dPdF = 0.0_pReal
|
|
allocate(materialpoint_F0(3,3,mesh_maxNips,mesh_NcpElems));
|
|
allocate(materialpoint_F(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_F = 0.0_pReal
|
|
allocate(materialpoint_subF0(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF0 = 0.0_pReal
|
|
allocate(materialpoint_subF(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_subF = 0.0_pReal
|
|
allocate(materialpoint_P(3,3,mesh_maxNips,mesh_NcpElems)); materialpoint_P = 0.0_pReal
|
|
allocate(materialpoint_Temperature(mesh_maxNips,mesh_NcpElems)); materialpoint_Temperature = 0.0_pReal
|
|
allocate(materialpoint_subFrac(mesh_maxNips,mesh_NcpElems)); materialpoint_subFrac = 0.0_pReal
|
|
allocate(materialpoint_subStep(mesh_maxNips,mesh_NcpElems)); materialpoint_subStep = 0.0_pReal
|
|
allocate(materialpoint_subdt(mesh_maxNips,mesh_NcpElems)); materialpoint_subdt = 0.0_pReal
|
|
allocate(materialpoint_requested(mesh_maxNips,mesh_NcpElems)); materialpoint_requested = .false.
|
|
allocate(materialpoint_converged(mesh_maxNips,mesh_NcpElems)); materialpoint_converged = .true.
|
|
allocate(materialpoint_doneAndHappy(2,mesh_maxNips,mesh_NcpElems)); materialpoint_doneAndHappy = .true.
|
|
|
|
forall (i = 1:mesh_maxNips,e = 1:mesh_NcpElems)
|
|
materialpoint_F0(:,:,i,e) = math_I3
|
|
materialpoint_F(:,:,i,e) = math_I3
|
|
end forall
|
|
|
|
do e = 1,mesh_NcpElems ! loop over elements
|
|
myInstance = homogenization_typeInstance(mesh_element(3,e))
|
|
do i = 1,FE_Nips(mesh_element(2,e)) ! loop over IPs
|
|
select case(homogenization_type(mesh_element(3,e)))
|
|
case (homogenization_isostrain_label)
|
|
if (homogenization_isostrain_sizeState(myInstance) > 0_pInt) then
|
|
allocate(homogenization_state0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
allocate(homogenization_subState0(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
allocate(homogenization_state(i,e)%p(homogenization_isostrain_sizeState(myInstance)))
|
|
homogenization_state0(i,e)%p = homogenization_isostrain_stateInit(myInstance)
|
|
homogenization_sizeState(i,e) = homogenization_isostrain_sizeState(myInstance)
|
|
endif
|
|
homogenization_sizePostResults(i,e) = homogenization_isostrain_sizePostResults(myInstance)
|
|
case default
|
|
call IO_error(200,ext_msg=homogenization_type(mesh_element(3,e))) ! unknown type 200 is phase!
|
|
end select
|
|
enddo
|
|
enddo
|
|
|
|
homogenization_maxSizeState = maxval(homogenization_sizeState)
|
|
homogenization_maxSizePostResults = maxval(homogenization_sizePostResults)
|
|
|
|
allocate(materialpoint_results( 1+homogenization_maxSizePostResults + &
|
|
homogenization_maxNgrains*(1+crystallite_Nresults+constitutive_maxSizePostResults), mesh_maxNips,mesh_NcpElems))
|
|
|
|
|
|
! *** Output to MARC output file ***
|
|
!$OMP CRITICAL (write2out)
|
|
write(6,*)
|
|
write(6,*) '<<<+- homogenization init -+>>>'
|
|
write(6,*)
|
|
write(6,'(a32,x,7(i5,x))') 'homogenization_state0: ', shape(homogenization_state0)
|
|
write(6,'(a32,x,7(i5,x))') 'homogenization_subState0: ', shape(homogenization_subState0)
|
|
write(6,'(a32,x,7(i5,x))') 'homogenization_state: ', shape(homogenization_state)
|
|
write(6,'(a32,x,7(i5,x))') 'homogenization_sizeState: ', shape(homogenization_sizeState)
|
|
write(6,'(a32,x,7(i5,x))') 'homogenization_sizePostResults: ', shape(homogenization_sizePostResults)
|
|
write(6,*)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_dPdF: ', shape(materialpoint_dPdF)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_F0: ', shape(materialpoint_F0)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_F: ', shape(materialpoint_F)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_subF0: ', shape(materialpoint_subF0)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_subF: ', shape(materialpoint_subF)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_P: ', shape(materialpoint_P)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_Temperature: ', shape(materialpoint_Temperature)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_subFrac: ', shape(materialpoint_subFrac)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_subStep: ', shape(materialpoint_subStep)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_subdt: ', shape(materialpoint_subdt)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_requested: ', shape(materialpoint_requested)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_converged: ', shape(materialpoint_converged)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_doneAndHappy: ', shape(materialpoint_doneAndHappy)
|
|
write(6,*)
|
|
write(6,'(a32,x,7(i5,x))') 'materialpoint_results: ', shape(materialpoint_results)
|
|
write(6,*)
|
|
write(6,'(a32,x,7(i5,x))') 'maxSizeState: ', homogenization_maxSizeState
|
|
write(6,'(a32,x,7(i5,x))') 'maxSizePostResults: ', homogenization_maxSizePostResults
|
|
call flush(6)
|
|
!$OMP END CRITICAL (write2out)
|
|
|
|
return
|
|
|
|
end subroutine
|
|
|
|
|
|
!********************************************************************
|
|
!* parallelized calculation of
|
|
!* stress and corresponding tangent
|
|
!* at material points
|
|
!********************************************************************
|
|
subroutine materialpoint_stressAndItsTangent(&
|
|
updateJaco,& ! flag to initiate Jacobian updating
|
|
dt & ! time increment
|
|
)
|
|
|
|
use prec, only: pInt,pReal, subStepMin,nHomog
|
|
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_state0, constitutive_partionedState0, constitutive_state
|
|
use crystallite
|
|
implicit none
|
|
|
|
real(pReal), intent(in) :: dt
|
|
logical, intent(in) :: updateJaco
|
|
integer(pInt) homogenization_Niteration
|
|
integer(pInt) g,i,e,myNgrains
|
|
|
|
! ------ initialize to starting condition ------
|
|
|
|
write (6,*)
|
|
write (6,*) 'Material Point start'
|
|
write (6,'(a,/,3(3(f12.7,x)/))') 'F0 of 8 1',materialpoint_F0(1:3,:,8,1)
|
|
write (6,'(a,/,3(3(f12.7,x)/))') 'F of 8 1',materialpoint_F(1:3,:,8,1)
|
|
write (6,'(a,/,3(3(f12.7,x)/))') 'Fp0 of 1 8 1',crystallite_Fp0(1:3,:,1,8,1)
|
|
write (6,'(a,/,3(3(f12.7,x)/))') 'Lp0 of 1 8 1',crystallite_Lp0(1:3,:,1,8,1)
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
! initialize restoration points of grain...
|
|
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state0(g,i,e)%p ! ...microstructures
|
|
crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp0(:,:,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_F0(:,:,1:myNgrains,i,e) ! ...def grads
|
|
! initialize restoration points of ...
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_subState0(i,e)%p = homogenization_state0(i,e)%p ! ...internal homogenizaiton state
|
|
materialpoint_subF0(:,:,i,e) = materialpoint_F0(:,:,i,e) ! ...def grad
|
|
|
|
materialpoint_subFrac(i,e) = 0.0_pReal
|
|
materialpoint_subStep(i,e) = 2.0_pReal
|
|
materialpoint_converged(i,e) = .false. ! pretend failed step of twice the required size
|
|
materialpoint_requested(i,e) = .true. ! everybody requires calculation
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! ------ cutback loop ------
|
|
|
|
do while (any(materialpoint_subStep(:,FEsolving_execELem(1):FEsolving_execElem(2)) > subStepMin)) ! cutback loop for material points
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
if (materialpoint_converged(i,e)) then
|
|
materialpoint_subFrac(i,e) = materialpoint_subFrac(i,e) + materialpoint_subStep(i,e)
|
|
materialpoint_subStep(i,e) = min(1.0_pReal-materialpoint_subFrac(i,e), 2.0_pReal * materialpoint_subStep(i,e))
|
|
if (materialpoint_subStep(i,e) > subStepMin) then ! still stepping needed
|
|
! wind forward grain starting point of...
|
|
crystallite_partionedF0(:,:,1:myNgrains,i,e) = crystallite_partionedF(:,:,1:myNgrains,i,e) ! ...def grads
|
|
crystallite_partionedFp0(:,:,1:myNgrains,i,e) = crystallite_Fp(:,:,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_partionedLp0(:,:,1:myNgrains,i,e) = crystallite_Lp(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
forall (g = 1:myNgrains) constitutive_partionedState0(g,i,e)%p = constitutive_state(g,i,e)%p ! ...microstructures
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_subState0(i,e)%p = homogenization_state(i,e)%p ! ...internal state of homog scheme
|
|
materialpoint_subF0(:,:,i,e) = materialpoint_subF(:,:,i,e) ! ...def grad
|
|
endif
|
|
else
|
|
materialpoint_subStep(i,e) = 0.5_pReal * materialpoint_subStep(i,e) ! cut step in half and restore...
|
|
|
|
! ####### why not resetting F0 ?!?!?
|
|
|
|
crystallite_Fp(:,:,1:myNgrains,i,e) = crystallite_partionedFp0(:,:,1:myNgrains,i,e) ! ...plastic def grads
|
|
crystallite_Lp(:,:,1:myNgrains,i,e) = crystallite_partionedLp0(:,:,1:myNgrains,i,e) ! ...plastic velocity grads
|
|
forall (g = 1:myNgrains) constitutive_state(g,i,e)%p = constitutive_partionedState0(g,i,e)%p ! ...microstructures
|
|
if (homogenization_sizeState(i,e) > 0_pInt) &
|
|
homogenization_state(i,e)%p = homogenization_subState0(i,e)%p ! ...internal state of homog scheme
|
|
endif
|
|
|
|
materialpoint_requested(i,e) = materialpoint_subStep(i,e) > subStepMin
|
|
if (materialpoint_requested(i,e)) then
|
|
materialpoint_subF(:,:,i,e) = materialpoint_subF0(:,:,i,e) + &
|
|
materialpoint_subStep(i,e) * (materialpoint_F(:,:,i,e) - materialpoint_F0(:,:,i,e))
|
|
materialpoint_subdt(i,e) = materialpoint_subStep(i,e) * dt
|
|
materialpoint_doneAndHappy(:,i,e) = (/.false.,.true./)
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
! ------ convergence loop material point homogenization ------
|
|
|
|
homogenization_Niteration = 0_pInt
|
|
|
|
do while (any( materialpoint_requested(:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
.and. .not. materialpoint_doneAndHappy(1,:,FEsolving_execELem(1):FEsolving_execElem(2)) &
|
|
) .and. homogenization_Niteration < nHomog) ! convergence loop for materialpoint
|
|
homogenization_Niteration = homogenization_Niteration + 1
|
|
|
|
! --+>> deformation partitioning <<+--
|
|
!
|
|
! based on materialpoint_subF0,.._subF,
|
|
! crystallite_partionedF0,
|
|
! homogenization_state
|
|
! results in crystallite_partionedF
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
if ( materialpoint_requested(i,e) .and. & ! process requested but...
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then ! ...not yet done material points
|
|
call homogenization_partitionDeformation(i,e) ! partition deformation onto constituents
|
|
crystallite_dt(1:myNgrains,i,e) = materialpoint_subdt(i,e) ! propagate materialpoint dt to grains
|
|
crystallite_requested(1:myNgrains,i,e) = .true. ! request calculation for constituents
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
|
|
! --+>> crystallite integration <<+--
|
|
!
|
|
! based on crystallite_partionedF0,.._partionedF
|
|
! incrementing by crystallite_dt
|
|
|
|
call crystallite_stressAndItsTangent(updateJaco) ! request stress and tangent calculation for constituent grains
|
|
|
|
! --+>> state update <<+--
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
if ( materialpoint_requested(i,e) .and. &
|
|
.not. materialpoint_doneAndHappy(1,i,e)) then
|
|
materialpoint_doneAndHappy(:,i,e) = homogenization_updateState(i,e)
|
|
materialpoint_converged(i,e) = all(materialpoint_doneAndHappy(:,i,e)) ! converged if done and happy
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
enddo ! homogenization convergence loop
|
|
|
|
enddo ! cutback loop
|
|
|
|
! check for non-performer: any(.not. converged)
|
|
! replace with elastic response ?
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
call homogenization_averageStressAndItsTangent(i,e)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
write (6,*) 'Material Point finished'
|
|
write (6,'(a,/,3(3(f12.7,x)/))') 'Lp of 1 8 1',crystallite_Lp(1:3,:,1,8,1)
|
|
|
|
! how to deal with stiffness?
|
|
return
|
|
|
|
end subroutine
|
|
|
|
|
|
!********************************************************************
|
|
!* parallelized calculation of
|
|
!* result array at material points
|
|
!********************************************************************
|
|
subroutine materialpoint_postResults(dt)
|
|
|
|
use FEsolving, only: FEsolving_execElem, FEsolving_execIP
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_Ngrains
|
|
use constitutive, only: constitutive_sizePostResults, constitutive_postResults
|
|
use crystallite
|
|
implicit none
|
|
|
|
real(pReal), intent(in) :: dt
|
|
integer(pInt) g,i,e,c,d,myNgrains
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over elements to be processed
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
c = 0_pInt
|
|
d = homogenization_sizePostResults(i,e)
|
|
materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of homogenization results
|
|
if (d > 0_pInt) then ! any homogenization results to mention?
|
|
materialpoint_results(c+1:c+d,i,e) = & ! tell homogenization results
|
|
homogenization_postResults(i,e); c = c+d
|
|
endif
|
|
do g = 1,myNgrains !
|
|
d = crystallite_Nresults+constitutive_sizePostResults(g,i,e)
|
|
materialpoint_results(c+1,i,e) = d; c = c+1_pInt ! tell size of crystallite results
|
|
materialpoint_results(c+1:c+d,i,e) = & ! tell crystallite results
|
|
crystallite_postResults(crystallite_Tstar_v(:,g,i,e),crystallite_Temperature(g,i,e),dt,g,i,e); c = c+d
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine
|
|
|
|
|
|
!********************************************************************
|
|
! partition material point def grad onto constituents
|
|
!********************************************************************
|
|
subroutine homogenization_partitionDeformation(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
|
|
use prec, only: pReal,pInt
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_partionedF0,crystallite_partionedF
|
|
use homogenization_isostrain
|
|
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
case (homogenization_isostrain_label)
|
|
call homogenization_isostrain_partitionDeformation(crystallite_partionedF(:,:,:,ip,el), &
|
|
crystallite_partionedF0(:,:,:,ip,el),&
|
|
materialpoint_subF(:,:,ip,el),&
|
|
homogenization_state(ip,el),ip,el)
|
|
end select
|
|
|
|
end subroutine
|
|
|
|
|
|
!********************************************************************
|
|
! update the internal state of the homogenization scheme
|
|
! and tell whether "done" and "happy" with result
|
|
!********************************************************************
|
|
function homogenization_updateState(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use prec, only: pReal,pInt
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_P,crystallite_dPdF
|
|
|
|
use homogenization_isostrain
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
logical, dimension(2) :: homogenization_updateState
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
case (homogenization_isostrain_label)
|
|
homogenization_updateState = &
|
|
homogenization_isostrain_updateState(homogenization_state(ip,el), &
|
|
crystallite_P(:,:,:,ip,el),crystallite_dPdF(:,:,:,:,:,ip,el),ip,el)
|
|
end select
|
|
|
|
return
|
|
|
|
end function
|
|
|
|
|
|
!********************************************************************
|
|
! derive average stress and stiffness from constituent quantities
|
|
!********************************************************************
|
|
subroutine homogenization_averageStressAndItsTangent(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use prec, only: pReal,pInt
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type, homogenization_maxNgrains
|
|
use crystallite, only: crystallite_P,crystallite_dPdF
|
|
|
|
use homogenization_isostrain
|
|
implicit none
|
|
|
|
integer(pInt), intent(in) :: ip,el
|
|
|
|
select case(homogenization_type(mesh_element(3,el)))
|
|
case (homogenization_isostrain_label)
|
|
call homogenization_isostrain_averageStressAndItsTangent(materialpoint_P(:,:,ip,el), materialpoint_dPdF(:,:,:,:,ip,el),&
|
|
crystallite_P(:,:,:,ip,el),crystallite_dPdF(:,:,:,:,:,ip,el),ip,el)
|
|
end select
|
|
|
|
return
|
|
|
|
end subroutine
|
|
|
|
|
|
!********************************************************************
|
|
! return array of homogenization results for post file inclusion
|
|
! call only, if homogenization_sizePostResults(ip,el) > 0 !!
|
|
!********************************************************************
|
|
function homogenization_postResults(&
|
|
ip, & ! integration point
|
|
el & ! element
|
|
)
|
|
use prec, only: pReal,pInt
|
|
use mesh, only: mesh_element
|
|
use material, only: homogenization_type
|
|
use homogenization_isostrain
|
|
implicit none
|
|
|
|
!* Definition of variables
|
|
integer(pInt), intent(in) :: ip,el
|
|
real(pReal), dimension(homogenization_sizePostResults(ip,el)) :: homogenization_postResults
|
|
|
|
homogenization_postResults = 0.0_pReal
|
|
select case (homogenization_type(mesh_element(3,el)))
|
|
case (homogenization_isostrain_label)
|
|
homogenization_postResults = homogenization_isostrain_postResults(homogenization_state(ip,el),ip,el)
|
|
|
|
end select
|
|
|
|
return
|
|
|
|
end function
|
|
|
|
END MODULE |