298 lines
15 KiB
Python
Executable File
298 lines
15 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import threading,time,os,subprocess,shlex,string,sys,random
|
|
import numpy as np
|
|
from optparse import OptionParser
|
|
from operator import mul
|
|
from cStringIO import StringIO
|
|
import damask
|
|
|
|
scriptID = string.replace('$Id$','\n','\\n')
|
|
scriptName = os.path.splitext(scriptID.split()[1])[0]
|
|
|
|
mismatch = None
|
|
currentSeedsName = None
|
|
|
|
def execute(cmd,streamIn=None,dir='./'):
|
|
'''
|
|
executes a command in given directory and returns stdout and stderr for optional stdin
|
|
'''
|
|
initialPath=os.getcwd()
|
|
os.chdir(dir)
|
|
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.PIPE,stdin=subprocess.PIPE)
|
|
if streamIn != None:
|
|
out,error = process.communicate(streamIn.read())
|
|
else:
|
|
out,error = process.communicate()
|
|
os.chdir(initialPath)
|
|
|
|
return out,error
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class myThread (threading.Thread):
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
perturbes seed in seed file, performes Voronoi tessellation, evaluates, and updates best match
|
|
'''
|
|
def __init__(self, threadID):
|
|
threading.Thread.__init__(self)
|
|
self.threadID = threadID
|
|
|
|
def run(self):
|
|
global bestSeedsUpdate
|
|
global bestSeedsVFile
|
|
global nMicrostructures
|
|
global delta
|
|
global points
|
|
global target
|
|
global match
|
|
global baseFile
|
|
global maxSeeds
|
|
|
|
s.acquire()
|
|
bestMatch = match
|
|
s.release()
|
|
|
|
random.seed(options.randomSeed+self.threadID) # initializes to given seeds
|
|
knownSeedsUpdate = bestSeedsUpdate -1.0 # trigger update of local best seeds (time when the best seed file was found known to thread)
|
|
randReset = True # aquire new direction
|
|
|
|
myBestSeedsVFile = StringIO() # in-memory file to store local copy of best seeds file
|
|
perturbedSeedsVFile = StringIO() # in-memory file for perturbed best seeds file
|
|
perturbedGeomVFile = StringIO() # in-memory file for tessellated geom file
|
|
|
|
#--- still not matching desired bin class ----------------------------------------------------------
|
|
while bestMatch < options.threshold:
|
|
s.acquire() # accessing global data, ensure only one thread does it per time
|
|
if bestSeedsUpdate > knownSeedsUpdate: # if a newer best seed file exist, read it into a virtual file
|
|
knownSeedsUpdate = bestSeedsUpdate
|
|
bestSeedsVFile.reset()
|
|
myBestSeedsVFile.close()
|
|
myBestSeedsVFile = StringIO()
|
|
i=0
|
|
for line in bestSeedsVFile:
|
|
myBestSeedsVFile.write(line)
|
|
s.release()
|
|
|
|
if randReset: # new direction because current one led to worse fit
|
|
selectedMs = random.randrange(1,maxSeeds)
|
|
direction = np.array(((random.random()-0.5)*delta[0],
|
|
(random.random()-0.5)*delta[1],
|
|
(random.random()-0.5)*delta[2]))
|
|
randReset = False
|
|
|
|
perturbedSeedsVFile.close() # reset virtual file
|
|
perturbedSeedsVFile = StringIO()
|
|
myBestSeedsVFile.reset()
|
|
|
|
perturbedSeedsTable = damask.ASCIItable(myBestSeedsVFile,perturbedSeedsVFile,labels=True) # read current best fitting seed file and to perturbed seed file
|
|
perturbedSeedsTable.head_read()
|
|
perturbedSeedsTable.head_write()
|
|
outputAlive=True
|
|
ms = 1
|
|
while outputAlive and perturbedSeedsTable.data_read(): # perturbe selected microstructure
|
|
if ms == selectedMs:
|
|
direction+=direction
|
|
newCoords=np.array(tuple(map(float,perturbedSeedsTable.data[0:3]))+direction)
|
|
newCoords=np.where(newCoords>=1.0,newCoords-1.0,newCoords) # ensure that the seeds remain in the box (move one side out, other side in)
|
|
newCoords=np.where(newCoords <0.0,newCoords+1.0,newCoords)
|
|
perturbedSeedsTable.data[0:3]=[format(f, '8.6f') for f in newCoords]
|
|
ms+=1
|
|
perturbedSeedsTable.data_write()
|
|
|
|
#--- do tesselation with perturbed seed file ----------------------------------------------------------
|
|
perturbedGeomVFile.close()
|
|
perturbedGeomVFile = StringIO()
|
|
perturbedSeedsVFile.reset()
|
|
perturbedGeomVFile.write(execute('geom_fromVoronoiTessellation '+
|
|
' -g '+' '.join(map(str, options.grid)),streamIn=perturbedSeedsVFile)[0])
|
|
perturbedGeomVFile.reset()
|
|
#--- evaluate current seeds file ----------------------------------------------------------------------
|
|
perturbedGeomTable = damask.ASCIItable(perturbedGeomVFile,labels=False)
|
|
perturbedGeomTable.head_read()
|
|
for i in perturbedGeomTable.info:
|
|
if i.startswith('microstructures'): myNmicrostructures = int(i.split('\t')[1])
|
|
perturbedGeomTable.data_readArray()
|
|
perturbedGeomTable.output_flush()
|
|
currentData=np.bincount(perturbedGeomTable.data.astype(int).ravel())[1:]/points
|
|
currentError=[]
|
|
currentHist=[]
|
|
for i in xrange(nMicrostructures): # calculate the deviation in all bins per histogram
|
|
currentHist.append(np.histogram(currentData,bins=target[i]['bins'])[0])
|
|
currentError.append(np.sqrt(np.square(np.array(target[i]['histogram']-currentHist[i])).sum()))
|
|
|
|
if currentError[0]>0.0: # as long as not all grains are within the range of the target, use the deviation to left and right as error
|
|
currentError[0] =((target[0]['bins'][0]-np.min(currentData))**2.0+
|
|
(target[0]['bins'][1]-np.max(currentData))**2.0)**0.5
|
|
s.acquire() # do the evaluation serially
|
|
bestMatch = match
|
|
#--- count bin classes with no mismatch ----------------------------------------------------------------------
|
|
myMatch=0
|
|
for i in xrange(nMicrostructures):
|
|
if currentError[i] > 0.0: break
|
|
myMatch = i+1
|
|
|
|
if myNmicrostructures == nMicrostructures:
|
|
for i in xrange(min(nMicrostructures,myMatch+options.bins)):
|
|
if currentError[i] > target[i]['error']: # worse fitting, next try
|
|
randReset = True
|
|
break
|
|
elif currentError[i] < target[i]['error']: # better fit
|
|
bestSeedsUpdate = time.time() # save time of better fit
|
|
print 'Thread %i: Better match (%i bins, %6.4f --> %6.4f)'%(self.threadID,i+1,target[i]['error'],currentError[i])
|
|
print ' target: ',target[i]['histogram']
|
|
print ' best: ',currentHist[i]
|
|
currentSeedsName = baseFile+'_'+str(bestSeedsUpdate).replace('.','-') # name of new seed file (use time as unique identifier)
|
|
perturbedSeedsVFile.reset()
|
|
bestSeedsVFile.close()
|
|
bestSeedsVFile = StringIO()
|
|
sys.stdout.flush()
|
|
with open(currentSeedsName+'.seeds','w') as currentSeedsFile: # write to new file
|
|
for line in perturbedSeedsVFile:
|
|
currentSeedsFile.write(line)
|
|
bestSeedsVFile.write(line)
|
|
for j in xrange(nMicrostructures): # save new errors for all bins
|
|
target[j]['error'] = currentError[j]
|
|
if myMatch > match: # one or more new bins have no deviation
|
|
print 'Stage %i cleared'%(myMatch)
|
|
match=myMatch
|
|
sys.stdout.flush()
|
|
break
|
|
if i == min(nMicrostructures,myMatch+options.bins)-1: # same quality as before (for the considered bins): take it to keep on moving
|
|
bestSeedsUpdate = time.time()
|
|
perturbedSeedsVFile.reset()
|
|
bestSeedsVFile.close()
|
|
bestSeedsVFile = StringIO()
|
|
for line in perturbedSeedsVFile:
|
|
bestSeedsVFile.write(line)
|
|
for j in xrange(nMicrostructures):
|
|
target[j]['error'] = currentError[j]
|
|
randReset = True
|
|
else: #--- not all grains are tessellated
|
|
print 'Thread %i: Microstructure mismatch (%i microstructures mapped)'%(self.threadID,myNmicrostructures)
|
|
randReset = True
|
|
|
|
|
|
s.release()
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
|
|
Monte Carlo simulation to produce seed file that gives same size distribution like given geometry file.
|
|
|
|
""", version = scriptID)
|
|
|
|
parser.add_option('-s','--seeds', dest='seedFile', metavar='string',
|
|
help='name of the intial seed file. If not found, a new one is created [%default]')
|
|
parser.add_option('-g','--grid', dest='grid', type='int', nargs=3, metavar='int int int',
|
|
help='a,b,c grid of hexahedral box [%default]')
|
|
parser.add_option('-t','--threads', dest='threads', type='int', metavar='int',
|
|
help='number of parallel executions [%default]')
|
|
parser.add_option('-r', '--rnd', dest='randomSeed', type='int', metavar='int',
|
|
help='seed of random number generator [%default]')
|
|
parser.add_option('--target', dest='target', metavar='string',
|
|
help='name of the geom file with target distribution [%default]')
|
|
parser.add_option('--tolerance', dest='threshold', type='int', metavar='int',
|
|
help='stopping criterion (bin number) [%default]')
|
|
parser.add_option('--scale', dest='scale',type='float', metavar='float',
|
|
help='maximum moving distance of perturbed seed in pixel [%default]')
|
|
parser.add_option('--bins', dest='bins', type='int', metavar='int',
|
|
help='bins to sort beyond current best fit [%default]')
|
|
parser.add_option('--maxseeds', dest='maxseeds', type='int', metavar='int',
|
|
help='maximum number of seeds to move simulateneously [number of seeds]')
|
|
|
|
parser.set_defaults(seedFile = 'seeds')
|
|
parser.set_defaults(grid = (64,64,64))
|
|
parser.set_defaults(threads = 2)
|
|
parser.set_defaults(randomSeed = None)
|
|
parser.set_defaults(target = 'geom')
|
|
parser.set_defaults(threshold = 20)
|
|
parser.set_defaults(bins = 15)
|
|
parser.set_defaults(scale = 1.0)
|
|
parser.set_defaults(maxseeds = 0)
|
|
|
|
options = parser.parse_args()[0]
|
|
|
|
if options.randomSeed == None:
|
|
options.randomSeed = int(os.urandom(4).encode('hex'), 16)
|
|
print 'random seed', options.randomSeed
|
|
delta = (options.scale/options.grid[0],options.scale/options.grid[1],options.scale/options.grid[2])
|
|
baseFile=os.path.splitext(os.path.basename(options.seedFile))[0]
|
|
points = float(reduce(mul,options.grid))
|
|
|
|
|
|
# ----------- calculate target distribution and bin edges
|
|
with open(os.path.splitext(os.path.basename(options.target))[0]+'.geom') as targetGeomFile:
|
|
targetGeomTable = damask.ASCIItable(targetGeomFile,labels=False)
|
|
targetGeomTable.head_read()
|
|
for i in targetGeomTable.info:
|
|
if i.startswith('microstructures'): nMicrostructures = int(i.split()[1])
|
|
if i.startswith('grid'): targetPoints = np.array(map(float,i.split()[2:7:2])).prod()
|
|
|
|
targetGeomTable.data_readArray()
|
|
targetVolFrac = np.bincount(targetGeomTable.data.astype(int).ravel())[1:nMicrostructures+1]/targetPoints
|
|
target=[]
|
|
for i in xrange(1,nMicrostructures+1):
|
|
targetHist,targetBins = np.histogram(targetVolFrac,bins=i) #bin boundaries
|
|
target.append({'histogram':targetHist,'bins':targetBins})
|
|
|
|
# ----------- create initial seed file or open existing one
|
|
bestSeedsVFile = StringIO()
|
|
if os.path.isfile(os.path.splitext(options.seedFile)[0]+'.seeds'):
|
|
with open(os.path.splitext(options.seedFile)[0]+'.seeds') as initialSeedFile:
|
|
for line in initialSeedFile: bestSeedsVFile.write(line)
|
|
else:
|
|
bestSeedsVFile.write(execute('seeds_fromRandom'+\
|
|
' -g '+' '.join(map(str, options.grid))+\
|
|
' -r %i'%options.randomSeed+\
|
|
' -N '+str(nMicrostructures))[0])
|
|
bestSeedsUpdate = time.time()
|
|
|
|
# ----------- tessellate initial seed file to get and evaluate geom file
|
|
bestSeedsVFile.reset()
|
|
initialGeomVFile = StringIO()
|
|
initialGeomVFile.write(execute('geom_fromVoronoiTessellation '+
|
|
' -g '+' '.join(map(str, options.grid)),bestSeedsVFile)[0])
|
|
initialGeomVFile.reset()
|
|
initialGeomTable = damask.ASCIItable(initialGeomVFile,labels=False)
|
|
initialGeomTable.head_read()
|
|
for i in initialGeomTable.info:
|
|
if i.startswith('microstructures'): initialMicrostructures = int(i.split('\t')[1])
|
|
if initialMicrostructures != nMicrostructures: print 'error. Microstructure count mismatch'
|
|
initialGeomTable.data_readArray()
|
|
initialData = np.bincount(initialGeomTable.data.astype(int).ravel())[1:]/points
|
|
for i in xrange(nMicrostructures):
|
|
initialHist = np.histogram(initialData,bins=target[i]['bins'])[0]
|
|
target[i]['error']=np.sqrt(np.square(np.array(target[i]['histogram']-initialHist)).sum())
|
|
|
|
# as long as not all grain sizes are within the range, the error is the deviation to left and right
|
|
if target[0]['error'] > 0.0:
|
|
target[0]['error'] =((target[0]['bins'][0]-np.min(initialData))**2.0+
|
|
(target[0]['bins'][1]-np.max(initialData))**2.0)**0.5
|
|
match=0
|
|
for i in xrange(nMicrostructures):
|
|
if target[i]['error'] > 0.0: break
|
|
match = i+1
|
|
|
|
|
|
if options.maxseeds < 1: maxSeeds = initialMicrostructures
|
|
|
|
if match >0: print 'Stage %i cleared'%match
|
|
sys.stdout.flush()
|
|
initialGeomVFile.close()
|
|
|
|
|
|
# start mulithreaded monte carlo simulation
|
|
threads=[]
|
|
s=threading.Semaphore(1)
|
|
|
|
for i in range(options.threads):
|
|
threads.append(myThread(i))
|
|
threads[i].start()
|
|
for i in range(options.threads):
|
|
threads[i].join()
|