194 lines
5.3 KiB
Python
Executable File
194 lines
5.3 KiB
Python
Executable File
#!/usr/bin/python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import numpy as np
|
|
from scipy.optimize import curve_fit
|
|
from scipy.linalg import svd
|
|
import threading,time,os,subprocess,shlex
|
|
import damask
|
|
|
|
def execute(cmd,dir='./'):
|
|
|
|
initialPath=os.getcwd()
|
|
out = ''
|
|
line = True
|
|
process = subprocess.Popen(shlex.split(cmd),stdout=subprocess.PIPE,stderr = subprocess.STDOUT)
|
|
while line:
|
|
line = process.stdout.readline()
|
|
out += line
|
|
os.chdir(initialPath)
|
|
|
|
def asFullTensor(voigt):
|
|
return np.array([[voigt[0],voigt[3],voigt[5]],\
|
|
[voigt[3],voigt[1],voigt[4]],\
|
|
[voigt[5],voigt[4],voigt[2]]])
|
|
|
|
def Hill48(x, F,G,H,L,M,N):
|
|
a= F*(x[1]-x[2])**2 + G*(x[2]-x[0])**2 + H*(x[0]-x[1])** + \
|
|
2*L*x[4]**2 + 2*M*x[5]**2 + 2*N*x[3]**2 -1.
|
|
return a.ravel()
|
|
|
|
def vonMises(x, S_y):
|
|
sv=np.zeros(0,'d')
|
|
for i in xrange(np.shape(x)[1]):
|
|
U, l, Vh = svd(np.array(x[:,i]).reshape(3,3))
|
|
sv = np.append(sv,l)
|
|
sv = sv.reshape(3,np.shape(x)[1])
|
|
ooo= (sv[2,:]-sv[1,:])**2+(sv[1,:]-sv[0,:])**2+(sv[0,:]-sv[2,:])**2-2*S_y**2
|
|
return ooo
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class Loadcase():
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Class for generating load cases for the spectral solver
|
|
'''
|
|
|
|
# ------------------------------------------------------------------
|
|
def __init__(self):
|
|
print('using the random load case generator')
|
|
|
|
def getNext(self,N=0):
|
|
defgrad=['*']*9
|
|
stress =[0]*9
|
|
values=(np.random.random_sample(9)-.5)*scale*2
|
|
|
|
main=np.array([0,4,8])
|
|
np.random.shuffle(main)
|
|
for i in main[:2]: # fill 2 out of 3 main entries
|
|
defgrad[i]=1.+values[i]
|
|
stress[i]='*'
|
|
for off in [[1,3,0],[2,6,0],[5,7,0]]: # fill 3 off-diagonal pairs of defgrad (1 or 2 entries)
|
|
off=np.array(off)
|
|
np.random.shuffle(off)
|
|
for i in off[0:2]:
|
|
if i != 0:
|
|
defgrad[i]=values[i]
|
|
stress[i]='*'
|
|
|
|
return 'f '+' '.join(str(c) for c in defgrad)+\
|
|
' p '+' '.join(str(c) for c in stress)+\
|
|
' incs %s'%incs+\
|
|
' time %s'%duration
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
class Criterion(object):
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Fitting to certain criterion
|
|
'''
|
|
def __init__(self,name):
|
|
self.name = name.lower()
|
|
if self.name not in ['hill48','vonmises']: print('Mist')
|
|
print('using the %s criterion'%self.name)
|
|
self.popt = 0.0
|
|
|
|
def fit(self,stress):
|
|
try:
|
|
popt, pcov = curve_fit(Hill48, stress, np.zeros(np.shape(stress)[1]))
|
|
print 'Hill 48', popt
|
|
except Exception as detail:
|
|
print detail
|
|
pass
|
|
popt, pcov = curve_fit(vonMises, stress, np.zeros(np.shape(stress)[1]))
|
|
print 'von Mises', popt
|
|
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
|
|
#---------------------------------------------------------------------------------------------------
|
|
'''
|
|
Runner class
|
|
'''
|
|
class myThread (threading.Thread):
|
|
def __init__(self, threadID):
|
|
threading.Thread.__init__(self)
|
|
self.threadID = threadID
|
|
def run(self):
|
|
s.acquire()
|
|
conv=converged()
|
|
s.release()
|
|
while not conv:
|
|
doSim(4.,self.name)
|
|
s.acquire()
|
|
conv=converged()
|
|
s.release()
|
|
|
|
def doSim(delay,thread):
|
|
|
|
s.acquire()
|
|
me=getLoadcase()
|
|
print('generating loadcase for sim %i from %s'%(me,thread))
|
|
f=open('%s.load'%me,'w')
|
|
f.write(myLoad.getNext(me))
|
|
f.close()
|
|
|
|
print('starting simulation %i from %s'%(me,thread))
|
|
s.release()
|
|
|
|
execute('DAMASK_spectral -l %i -g 20grains16x16x16'%me)
|
|
|
|
s.acquire()
|
|
print('startin post processing for sim %i from %s'%(me,thread))
|
|
s.release()
|
|
execute('postResults --cr f,p 20grains16x16x16_%i.spectralOut'%me)
|
|
execute('addCauchy ./postProc/20grains16x16x16_%i.txt'%me)
|
|
execute('addStrainTensors -l -v ./postProc/20grains16x16x16_%i.txt'%me)
|
|
execute('addMises -s Cauchy -e ln(V) ./postProc/20grains16x16x16_%i.txt'%me)
|
|
|
|
refFile = open('./postProc/20grains16x16x16_%i.txt'%me)
|
|
table = damask.ASCIItable(refFile)
|
|
table.head_read()
|
|
for l in ['Mises(ln(V))','1_Cauchy']:
|
|
if l not in table.labels: print '%s not found'%l
|
|
while table.data_read():
|
|
if float(table.data[table.labels.index('Mises(ln(V))')]) > 0.002:
|
|
yieldStress = np.array(table.data[table.labels.index('1_Cauchy'):table.labels.index('9_Cauchy')+1],'d').reshape(3,3)
|
|
|
|
s.acquire()
|
|
print('startin fitting for sim %i from %s'%(me,thread))
|
|
global stressAll
|
|
stressAll=np.append(stressAll,yieldStress.reshape(9))
|
|
stressAll=stressAll.reshape(9,len(stressAll)//9)
|
|
myFit.fit(stressAll)
|
|
s.release()
|
|
|
|
def getLoadcase():
|
|
global N_simulations
|
|
N_simulations+=1
|
|
return N_simulations
|
|
|
|
def converged():
|
|
global N_simulations
|
|
global maxN_simulations
|
|
if N_simulations < maxN_simulations:
|
|
return False
|
|
else:
|
|
return True
|
|
|
|
# main
|
|
|
|
minN_simulations=20
|
|
maxN_simulations=20
|
|
N_simulations=0
|
|
s=threading.Semaphore(1)
|
|
scale = 0.02
|
|
incs = 10
|
|
duration = 10
|
|
stressAll=np.zeros(0,'d')
|
|
|
|
myLoad = Loadcase()
|
|
myFit = Criterion('Hill48')
|
|
|
|
N_threads=3
|
|
t=[]
|
|
|
|
for i in range(N_threads):
|
|
t.append(myThread(i))
|
|
t[i].start()
|
|
|
|
for i in range(N_threads):
|
|
t[i].join()
|
|
|
|
print "Exiting Main Thread"
|