196 lines
8.0 KiB
Python
Executable File
196 lines
8.0 KiB
Python
Executable File
#!/usr/bin/python
|
|
|
|
import os,re,sys,math,string,numpy,postprocessingMath
|
|
from optparse import OptionParser, Option
|
|
|
|
# -----------------------------
|
|
class extendableOption(Option):
|
|
# -----------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
def location(idx,res):
|
|
|
|
return ( idx % res[0], \
|
|
(idx // res[0]) % res[1], \
|
|
(idx // res[0] // res[1]) % res[2] )
|
|
|
|
def index(location,res):
|
|
|
|
return ( location[0] % res[0] + \
|
|
(location[1] % res[1]) * res[0] + \
|
|
(location[2] % res[2]) * res[0] * res[1] )
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=extendableOption, usage='%prog options file[s]', description = """
|
|
Add column containing debug information
|
|
Operates on periodic ordered three-dimensional data sets.
|
|
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
|
|
parser.add_option('--no-shape','-s', dest='shape', action='store_false', \
|
|
help='do not calcuate shape mismatch [%default]')
|
|
parser.add_option('--no-volume','-v', dest='volume', action='store_false', \
|
|
help='do not calculate volume mismatch [%default]')
|
|
parser.add_option('-d','--dimension', dest='dim', type='float', nargs=3, \
|
|
help='physical dimension of data set in x (fast) y z (slow) [%default]')
|
|
parser.add_option('-r','--resolution', dest='res', type='int', nargs=3, \
|
|
help='resolution of data set in x (fast) y z (slow)')
|
|
parser.add_option('-f','--deformation', dest='defgrad', action='extend', type='string', \
|
|
help='heading(s) of columns containing deformation tensor values %default')
|
|
|
|
parser.set_defaults(volume = True)
|
|
parser.set_defaults(shape = True)
|
|
parser.set_defaults(defgrad = ['f'])
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
|
|
if not options.res or len(options.res) < 3:
|
|
parser.error('improper resolution specification...')
|
|
if not options.dim or len(options.dim) < 3:
|
|
parser.error('improper dimension specification...')
|
|
|
|
defgrad = {}
|
|
defgrad_av = {}
|
|
centroids = {}
|
|
nodes = {}
|
|
shape_mismatch = {}
|
|
volume_mismatch= {}
|
|
|
|
datainfo = { # list of requested labels per datatype
|
|
'defgrad': {'len':9,
|
|
'label':[]},
|
|
}
|
|
|
|
if options.defgrad != None: datainfo['defgrad']['label'] += options.defgrad
|
|
|
|
# ------------------------------------------ setup file handles ---------------------------------------
|
|
|
|
files = []
|
|
if filenames == []:
|
|
parser.error('no data file specified')
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name, 'input':open(name), 'output':open(name+'_tmp','w')})
|
|
|
|
# ------------------------------------------ loop over input files ---------------------------------------
|
|
|
|
for file in files:
|
|
print file['name']
|
|
|
|
# get labels by either read the first row, or - if keyword header is present - the last line of the header
|
|
|
|
firstline = file['input'].readline()
|
|
m = re.search('(\d+)\s*head', firstline.lower())
|
|
if m:
|
|
headerlines = int(m.group(1))
|
|
passOn = [file['input'].readline() for i in range(1,headerlines)]
|
|
headers = file['input'].readline().split()
|
|
else:
|
|
headerlines = 1
|
|
passOn = []
|
|
headers = firstline.split()
|
|
|
|
data = file['input'].readlines()
|
|
|
|
for i,l in enumerate(headers):
|
|
if l.startswith('1_'):
|
|
if re.match('\d+_',l[2:]) or i == len(headers)-1 or not headers[i+1].endswith(l[2:]):
|
|
headers[i] = l[2:]
|
|
|
|
active = {}
|
|
column = {}
|
|
head = []
|
|
|
|
for datatype,info in datainfo.items():
|
|
for label in info['label']:
|
|
key = {True :'1_%s',
|
|
False:'%s' }[info['len']>1]%label
|
|
if key not in headers:
|
|
sys.stderr.write('column %s not found...\n'%key)
|
|
else:
|
|
if datatype not in active: active[datatype] = []
|
|
if datatype not in column: column[datatype] = {}
|
|
active[datatype].append(label)
|
|
column[datatype][label] = headers.index(key)
|
|
if options.shape: head += ['mismatch_shape(%s)'%label]
|
|
if options.volume: head += ['mismatch_volume(%s)'%label]
|
|
|
|
# ------------------------------------------ assemble header ---------------------------------------
|
|
|
|
output = '%i\theader'%(headerlines+1) + '\n' + \
|
|
''.join(passOn) + \
|
|
string.replace('$Id$','\n','\\n')+ '\t' + \
|
|
' '.join(sys.argv[1:]) + '\n' + \
|
|
'\t'.join(headers + head) + '\n' # build extended header
|
|
|
|
|
|
# ------------------------------------------ read deformation tensors ---------------------------------------
|
|
|
|
for datatype,labels in active.items():
|
|
for label in labels:
|
|
defgrad[label] = numpy.array([0.0 for i in xrange(9*options.res[0]*options.res[1]*options.res[2])],'d').\
|
|
reshape((options.res[0],options.res[1],options.res[2],3,3))
|
|
|
|
idx = 0
|
|
for line in data:
|
|
items = line.split()[:len(headers)] # take only valid first items
|
|
if len(items) < len(headers): # too short lines get dropped
|
|
continue
|
|
|
|
defgrad[label][location(idx,options.res)[0]]\
|
|
[location(idx,options.res)[1]]\
|
|
[location(idx,options.res)[2]]\
|
|
= numpy.array(map(float,items[column[datatype][label]:
|
|
column[datatype][label]+datainfo[datatype]['len']]),'d').reshape(3,3)
|
|
idx += 1
|
|
defgrad_av[label] = postprocessingMath.tensor_avg(options.res[0],options.res[1],options.res[2],defgrad[label])
|
|
centroids[label] = postprocessingMath.deformed_fft(options.res[0],options.res[1],options.res[2],options.dim,defgrad[label],defgrad_av[label],1.0)
|
|
nodes[label] = postprocessingMath.mesh(options.res[0],options.res[1],options.res[2],options.dim,defgrad_av[label],centroids[label])
|
|
if options.shape: shape_mismatch[label] = postprocessingMath.shape_compare( options.res[0],options.res[1],options.res[2],options.dim,nodes[label],centroids[label],defgrad[label])
|
|
if options.volume: volume_mismatch[label] = postprocessingMath.volume_compare(options.res[0],options.res[1],options.res[2],options.dim,nodes[label], defgrad[label])
|
|
|
|
# ------------------------------------------ read file ---------------------------------------
|
|
|
|
idx = 0
|
|
for line in data:
|
|
items = line.split()[:len(headers)]
|
|
if len(items) < len(headers):
|
|
continue
|
|
|
|
output += '\t'.join(items)
|
|
|
|
for datatype,labels in active.items():
|
|
for label in labels:
|
|
|
|
if options.shape: output += '\t%f'%shape_mismatch[label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]]
|
|
if options.volume: output += '\t%f'%volume_mismatch[label][location(idx,options.res)[0]][location(idx,options.res)[1]][location(idx,options.res)[2]]
|
|
|
|
output += '\n'
|
|
idx += 1
|
|
|
|
file['input'].close()
|
|
|
|
# ------------------------------------------ output result ---------------------------------------
|
|
|
|
file['output'].write(output)
|
|
file['output'].close
|
|
os.rename(file['name']+'_tmp',file['name'])
|