DAMASK_EICMD/code/DAMASK_spectral_SolverAL.f90

575 lines
23 KiB
Fortran

module DAMASK_spectral_SolverAL
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran >4.6 at the moment)
use DAMASK_spectral_Utilities
use math
use mesh, only : &
mesh_spectral_getResolution, &
mesh_spectral_getDimension
implicit none
#include <finclude/petsc.h>
#include <finclude/petscvec.h90>
character (len=*), parameter, public :: &
DAMASK_spectral_SolverAL_label = 'AL'
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES snes
KSP ksp
DM da
Vec x,r
PetscErrorCode ierr_psc
PetscMPIInt rank
PetscObject dummy
PetscInt xs,xm,gxs,gxm
PetscInt ys,ym,gys,gym
PetscInt zs,zm,gzs,gzm
character(len=1024) :: PetSc_options = '-snes_type ngmres -snes_ngmres_anderson -snes_monitor -snes_view'
external FormFunctionLocal, SNESConverged_Interactive
!--------------------------------------------------------------------------------------------------
! common pointwise data
real(pReal), dimension(:,:,:,:,:), allocatable :: F, F_lastInc, F_lambda, F_lambda_lastInc, P
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
real(pReal), dimension(:,:,:), allocatable :: temperature
!--------------------------------------------------------------------------------------------------
! stress, stiffness and compliance average etc.
real(pReal), dimension(3,3) :: &
F_aim = math_I3, &
F_aim_lastInc = math_I3, &
P_av
real(pReal), dimension(3,3,3,3) :: &
C_ref = 0.0_pReal, &
C = 0.0_pReal
integer(pInt) :: iter
real(pReal) :: err_div, err_stress
contains
subroutine AL_init()
use IO, only: &
IO_read_JobBinaryFile, &
IO_write_JobBinaryFile
use FEsolving, only: &
restartInc
use DAMASK_interface, only: &
getSolverJobName
implicit none
integer(pInt) :: i,j,k
call Utilities_init()
allocate (F ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lastInc ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lambda ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (F_lambda_lastInc(res(1),res(2),res(3),3,3), source = 0.0_pReal)
allocate (P ( res(1), res(2),res(3),3,3), source = 0.0_pReal)
allocate (coordinates( res(1), res(2),res(3),3), source = 0.0_pReal)
allocate (temperature( res(1), res(2),res(3)), source = 0.0_pReal)
!--------------------------------------------------------------------------------------------------
! init fields
if (restartInc == 1_pInt) then ! no deformation (no restart)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = math_I3
F_lastInc(i,j,k,1:3,1:3) = math_I3
F_lambda(i,j,k,1:3,1:3) = math_I3
F_lambda_lastInc(i,j,k,1:3,1:3) = math_I3
coordinates(i,j,k,1:3) = geomdim/real(res,pReal)*real([i,j,k],pReal) &
- geomdim/real(2_pInt*res,pReal)
enddo; enddo; enddo
elseif (restartInc > 1_pInt) then ! using old values from file
if (debugRestart) write(6,'(a,i6,a)') 'Reading values of increment ',&
restartInc - 1_pInt,' from file'
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',&
trim(getSolverJobName()),size(F))
read (777,rec=1) F
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgrad_lastInc',&
trim(getSolverJobName()),size(F_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda',&
trim(getSolverJobName()),size(F_lambda))
read (777,rec=1) F
close (777)
call IO_read_jobBinaryFile(777,'convergedSpectralDefgradLambda_lastInc',&
trim(getSolverJobName()),size(F_lambda_lastInc))
read (777,rec=1) F_lastInc
close (777)
call IO_read_jobBinaryFile(777,'F_aim',trim(getSolverJobName()),size(F_aim))
read (777,rec=1) F_aim
close (777)
call IO_read_jobBinaryFile(777,'F_aim_lastInc',trim(getSolverJobName()),size(F_aim_lastInc))
read (777,rec=1) F_aim_lastInc
close (777)
coordinates = 0.0 ! change it later!!!
endif
call constitutiveResponse(coordinates,F,F_lastInc,temperature,0.0_pReal,&
P,C,P_av,.false.,math_I3)
!--------------------------------------------------------------------------------------------------
! reference stiffness
if (restartInc == 1_pInt) then
call IO_write_jobBinaryFile(777,'C_ref',size(C))
write (777,rec=1) C
close(777)
elseif (restartInc > 1_pInt) then
call IO_read_jobBinaryFile(777,'C_ref',trim(getSolverJobName()),size(C))
read (777,rec=1) C
close (777)
endif
call Utilities_updateGamma(C_ref)
!--------------------------------------------------------------------------------------------------
! PETSc Init
call PetscInitialize(PETSC_NULL_CHARACTER,ierr_psc)
call MPI_Comm_rank(PETSC_COMM_WORLD,rank,ierr_psc)
call SNESCreate(PETSC_COMM_WORLD,snes,ierr_psc)
call DMDACreate3d(PETSC_COMM_WORLD, &
DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, DMDA_BOUNDARY_NONE, &
DMDA_STENCIL_BOX,res(1),res(2),res(3),PETSC_DECIDE,PETSC_DECIDE,PETSC_DECIDE, &
18,1,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,PETSC_NULL_INTEGER,da,ierr_psc)
call DMCreateGlobalVector(da,x,ierr_psc)
call VecDuplicate(x,r,ierr_psc)
call DMDASetLocalFunction(da,FormFunctionLocal,ierr_psc)
call SNESSetDM(snes,da,ierr_psc)
call SNESSetFunction(snes,r,SNESDMDAComputeFunction,da,ierr_psc)
call SNESSetConvergenceTest(snes,SNESConverged_Interactive,dummy,PETSC_NULL_FUNCTION,ierr_psc)
call PetscOptionsInsertString(PetSc_options,ierr_psc)
call SNESSetFromOptions(snes,ierr_psc)
call DMDAGetCorners(da,xs,ys,zs,xm,ym,zm,ierr_psc)
call DMDAGetCorners(da,gxs,gys,gzs,gxm,gym,gzm,ierr_psc)
xs = xs+1; gxs = gxs+1; xm = xm-1; gxm = gxm-1
ys = ys+1; gys = gys+1; ym = ym-1; gym = gym-1
zs = zs+1; gzs = gzs+1; zm = zm-1; gzm = gzm-1
end subroutine AL_init
type(solutionState) function AL_solution(guessmode,timeinc,timeinc_old,P_BC,F_BC,mask_stressVector,velgrad,rotation_BC)
use numerics, only: &
itmax, &
itmin, &
update_gamma
use IO, only: &
IO_write_JobBinaryFile
use FEsolving, only: &
restartWrite
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: timeinc, timeinc_old
real(pReal), intent(in) :: guessmode
logical, intent(in) :: velgrad
real(pReal), dimension(3,3), intent(in) :: P_BC,F_BC,rotation_BC
logical, dimension(9), intent(in) :: mask_stressVector
!--------------------------------------------------------------------------------------------------
! loop variables, convergence etc.
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
real(pReal), dimension(3,3) :: temp33_Real
real(pReal), dimension(3,3,3,3) :: S
real(pReal), dimension(3,3) :: mask_stress, &
mask_defgrad, &
deltaF_aim, &
F_aim_lab, &
F_aim_lab_lastIter
integer(pInt) :: i, j, k
logical :: ForwardData
real(pReal) :: defgradDet
real(pReal) :: defgradDetMax, defgradDetMin
PetscScalar, pointer :: xx_psc(:)
mask_stress = merge(ones,zeroes,reshape(mask_stressVector,[3,3]))
mask_defgrad = merge(zeroes,ones,reshape(mask_stressVector,[3,3]))
if (restartWrite) then
write(6,'(a)') 'writing converged results for restart'
call IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(F_lastInc)) ! writing deformation gradient field to file
write (777,rec=1) F_LastInc
close (777)
call IO_write_jobBinaryFile(777,'C',size(C))
write (777,rec=1) C
close(777)
endif
ForwardData = .True.
if (velgrad) then ! calculate deltaF_aim from given L and current F
deltaF_aim = timeinc * mask_defgrad * math_mul33x33(F_BC, F_aim)
else ! deltaF_aim = fDot *timeinc where applicable
deltaF_aim = timeinc * mask_defgrad * F_BC
endif
!--------------------------------------------------------------------------------------------------
! winding forward of deformation aim in loadcase system
temp33_Real = F_aim
F_aim = F_aim &
+ guessmode * mask_stress * (F_aim - F_aim_lastInc)*timeinc/timeinc_old &
+ deltaF_aim
F_aim_lastInc = temp33_Real
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! update local deformation gradient and coordinates
deltaF_aim = math_rotate_backward33(deltaF_aim,rotation_BC)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = F(i,j,k,1:3,1:3)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F(i,j,k,1:3,1:3) - F_lastInc(i,j,k,1:3,1:3))* &
timeinc/timeinc_old + (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lastInc(i,j,k,1:3,1:3) = temp33_Real
temp33_Real = F_lambda(i,j,k,1:3,1:3)
F_lambda(i,j,k,1:3,1:3) = F_lambda(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (F_lambda(i,j,k,1:3,1:3) - F_lambda_lastInc(i,j,k,1:3,1:3))* &
timeinc/timeinc_old + (1.0_pReal-guessmode) * deltaF_aim ! if not guessing, use prescribed average deformation where applicable
F_lambda_lastInc(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
call deformed_fft(res,geomdim,math_rotate_backward33(F_aim,rotation_BC),& ! calculate current coordinates
1.0_pReal,F_lastInc,coordinates)
iter = 0_pInt
S = Utilities_stressBC(rotation_BC,mask_stressVector,C)
if (update_gamma) call Utilities_updateGamma(C)
call VecGetArrayF90(x,xx_psc,ierr_psc)
call FormInitialGuessLocal(xx_psc)
call VecRestoreArrayF90(x,xx_psc,ierr_psc)
call SNESSolve(snes,PETSC_NULL_OBJECT,x,ierr_psc)
convergenceLoop: do while((iter < itmax .and. (any([err_div ,err_stress] > 1.0_pReal)))&
.or. iter < itmin)
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
F_aim_lab_lastIter = math_rotate_backward33(F_aim,rotation_BC)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
P,C,P_av,ForwardData,rotation_BC)
ForwardData = .False.
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(any(mask_stressVector)) then ! calculate stress BC if applied
F_aim = F_aim - math_mul3333xx33(S, ((P_av - P_BC)))
err_stress = mask_stress * (P_av - P_BC)))
else
err_stress = 0.0_pReal
endif
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC) ! boundary conditions from load frame into lab (Fourier) frame
!--------------------------------------------------------------------------------------------------
! updated deformation gradient
field_real(1:res(1),1:res(2),1:res(3),1:3,1:3) = P
call FFT_forward()
err_div = calcDivergence()
call convolution_fourier(F_aim_lab_lastIter - F_aim_lab, C_ref)
call FFT_backward()
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
F(i,j,k,1:3,1:3) = F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3) ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! calculate some additional output
if(debugGeneral) then
maxCorrectionSkew = 0.0_pReal
maxCorrectionSym = 0.0_pReal
temp33_Real = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
maxCorrectionSym = max(maxCorrectionSym,&
maxval(math_symmetric33(field_real(i,j,k,1:3,1:3))))
maxCorrectionSkew = max(maxCorrectionSkew,&
maxval(math_skew33(field_real(i,j,k,1:3,1:3))))
temp33_Real = temp33_Real + field_real(i,j,k,1:3,1:3)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max symmetric correction of deformation =',&
maxCorrectionSym*wgt
write(6,'(a,1x,es11.4)') 'max skew correction of deformation =',&
maxCorrectionSkew*wgt
write(6,'(a,1x,es11.4)') 'max sym/skew of avg correction = ',&
maxval(math_symmetric33(temp33_real))/&
maxval(math_skew33(temp33_real))
endif
!--------------------------------------------------------------------------------------------------
! calculate bounds of det(F) and report
if(debugGeneral) then
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det33(F(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
write(6,'(a,1x,es11.4)') 'max determinant of deformation =', defgradDetMax
write(6,'(a,1x,es11.4)') 'min determinant of deformation =', defgradDetMin
endif
enddo convergenceLoop
end function AL_solution
subroutine AL_destroy()
implicit none
call VecDestroy(x,ierr_psc)
call VecDestroy(r,ierr_psc)
call SNESDestroy(snes,ierr_psc)
call DMDestroy(da,ierr_psc)
call PetscFinalize(ierr_psc)
call Utilities_destroy()
end subroutine AL_destroy
! -------------------------------------------------------------------
subroutine FormInitialGuessLocal(xx_psc)
implicit none
#include <finclude/petsc.h>
! Input/output variables:
PetscScalar xx_psc(0:17,gxs:(gxs+gxm),gys:(gys+gym),gxs:(gzs+gzm))
integer(pInt) :: i, j, k
! Compute function over the locally owned part of the grid
do k=gzs,gzs+gzm; do j=gys,gys+gym; do i=gxs,gxs+gxm
xx_psc(0,i,j,k) = F(i,j,k,1,1)
xx_psc(1,i,j,k) = F(i,j,k,1,2)
xx_psc(2,i,j,k) = F(i,j,k,1,3)
xx_psc(3,i,j,k) = F(i,j,k,2,1)
xx_psc(4,i,j,k) = F(i,j,k,2,2)
xx_psc(5,i,j,k) = F(i,j,k,2,3)
xx_psc(6,i,j,k) = F(i,j,k,3,1)
xx_psc(7,i,j,k) = F(i,j,k,3,2)
xx_psc(8,i,j,k) = F(i,j,k,3,3)
xx_psc(9,i,j,k) = F_lambda(i,j,k,1,1)
xx_psc(10,i,j,k) = F_lambda(i,j,k,1,2)
xx_psc(11,i,j,k) = F_lambda(i,j,k,1,3)
xx_psc(12,i,j,k) = F_lambda(i,j,k,2,1)
xx_psc(13,i,j,k) = F_lambda(i,j,k,2,2)
xx_psc(14,i,j,k) = F_lambda(i,j,k,2,3)
xx_psc(15,i,j,k) = F_lambda(i,j,k,3,1)
xx_psc(16,i,j,k) = F_lambda(i,j,k,3,2)
xx_psc(17,i,j,k) = F_lambda(i,j,k,3,3)
enddo; enddo; enddo
return
end subroutine FormInitialGuessLocal
! ---------------------------------------------------------------------
!
! Input Parameter:
! x - local vector data
!
! Output Parameters:
! f - local vector data, f(x)
! ierr - error code
!
! Notes:
! This routine uses standard Fortran-style computations over a 3-dim array.
!
subroutine FormFunctionLocal(in,x_scal,f_scal,dummy,ierr_psc)
use numerics, only: &
itmax, &
itmin
implicit none
#include <finclude/petsc.h>
! Input/output variables:
DMDALocalInfo in(DMDA_LOCAL_INFO_SIZE)
PetscScalar x_scal(0:17,XG_RANGE,YG_RANGE,ZG_RANGE)
PetscScalar f_scal(0:17,X_RANGE,Y_RANGE,Z_RANGE)
real(pReal), dimension (3,3) :: temp
PetscObject dummy
! Compute function over the locally owned part of the grid
iter = iter + 1_pInt
!--------------------------------------------------------------------------------------------------
! report begin of new iteration
write(6,'(a)') ''
write(6,'(a)') '=================================================================='
write(6,'(3(a,i6.6))') ' @ Iter. ',itmin,' < ',iter,' < ',itmax
write(6,'(a,/,3(3(f12.7,1x)/))',advance='no') 'deformation gradient aim =',&
math_transpose33(F_aim)
F_star_av = 0.0
lambda_av = 0.0
do k=gzs,gze; do j=gys,gye; do i=gxs,gxe
F(i,j,k,1,1) = x_scal(0,i,j,k)
F(i,j,k,1,2) = x_scal(1,i,j,k)
F(i,j,k,1,3) = x_scal(2,i,j,k)
F(i,j,k,2,1) = x_scal(3,i,j,k)
F(i,j,k,2,2) = x_scal(4,i,j,k)
F(i,j,k,2,3) = x_scal(5,i,j,k)
F(i,j,k,3,1) = x_scal(6,i,j,k)
F(i,j,k,3,2) = x_scal(7,i,j,k)
F(i,j,k,3,3) = x_scal(8,i,j,k)
F_lambda(i,j,k,1,1) = x_scal(9,i,j,k)
F_lambda(i,j,k,1,2) = x_scal(10,i,j,k)
F_lambda(i,j,k,1,3) = x_scal(11,i,j,k)
F_lambda(i,j,k,2,1) = x_scal(12,i,j,k)
F_lambda(i,j,k,2,2) = x_scal(13,i,j,k)
F_lambda(i,j,k,2,3) = x_scal(14,i,j,k)
F_lambda(i,j,k,3,1) = x_scal(15,i,j,k)
F_lambda(i,j,k,3,2) = x_scal(16,i,j,k)
F_lambda(i,j,k,3,3) = x_scal(17,i,j,k)
F_star_av = F_star_av + F(i,j,k,1:3,1:3)
lambda_av = lambda_av + F_lambda(i,j,k,1:3,1:3)
enddo; enddo; enddo
F_star_av = F_star_av *wgt
lambda_av = math_mul3333xx33(C_inc0,lambda_av*wgt-math_I3)
!--------------------------------------------------------------------------------------------------
! evaluate constitutive response
call constitutiveResponse(coordinates,F,F_lastInc,temperature,timeinc,&
P,C,P_av,ForwardData,rotation_BC)
ForwardData = .False.
!--------------------------------------------------------------------------------------------------
! stress BC handling
if(any(mask_stressVector)) then ! calculate stress BC if applied
F_aim = F_aim - math_mul3333xx33(S, ((P_av - P_BC)))
err_stress = mask_stress * (P_av - P_BC)))
else
err_stress = 0.0_pReal
endif
F_aim_lab = math_rotate_backward33(F_aim,rotation_BC)
!--------------------------------------------------------------------------------------------------
! doing Fourier transform
field_real = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
field_real(i,j,k,1:3,1:3) = math_mul3333xx33(C_ref,F_lambda(i,j,k,1:3,1:3)-F(i,j,k,1:3,1:3))
enddo; enddo; enddo
call Utilities_forwardFFT()
call Utilities_fourierConvolution(F_aim_lab)
call Utilities_backwardFFT()
err_f = 0.0_pReal
err_f_point = 0.0_pReal
err_p = 0.0_pReal
err_p_point = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_real = field_real(i,j,k,1:3,1:3) - F(i,j,k,1:3,1:3)
err_f_point = max(err_f_point, maxval(abs(temp33_real)))
err_f = err_f + sum(temp33_real*temp33_real)
temp33_real = F_lambda(i,j,k,1:3,1:3) - &
math_mul3333xx33(S_inc0,P(i,j,k,1:3,1:3)) + math_I3
err_p_point = max(err_p_point, maxval(abs(temp33_real)))
err_p = err_p + sum(temp33_real*temp33_real)
enddo; enddo; enddo
err_f = wgt*sqrt(err_f/sum((F_aim-math_I3)*(F_aim-math_I3)))
err_p = wgt*sqrt(err_p/sum((F_aim-math_I3)*(F_aim-math_I3)))
write(6,'(a,es14.7,es14.7)') 'error stress = ',err_stress/err_stress_tol
write(6,*) ' '
write(6,'(a,es14.7)') 'max abs err F', err_f
write(6,'(a,es14.7)') 'max abs err P', err_p
do k=zs,ze; do j=ys,ye; do i=xs,xe
temp = math_mul3333xx33(S_inc0,P(i,j,k,1:3,1:3)) + math_I3 - F_lambda(i,j,k,1:3,1:3) &
+ F(i,j,k,1:3,1:3) - field_real(i,j,k,1:3,1:3)
f_scal(0,i,j,k) = temp(1,1)
f_scal(1,i,j,k) = temp(1,2)
f_scal(2,i,j,k) = temp(1,3)
f_scal(3,i,j,k) = temp(2,1)
f_scal(4,i,j,k) = temp(2,2)
f_scal(5,i,j,k) = temp(2,3)
f_scal(6,i,j,k) = temp(3,1)
f_scal(7,i,j,k) = temp(3,2)
f_scal(8,i,j,k) = temp(3,3)
f_scal(9,i,j,k) = F(i,j,k,1,1) - field_real(i,j,k,1,1)
f_scal(10,i,j,k) = F(i,j,k,1,2) - field_real(i,j,k,1,2)
f_scal(11,i,j,k) = F(i,j,k,1,3) - field_real(i,j,k,1,3)
f_scal(12,i,j,k) = F(i,j,k,2,1) - field_real(i,j,k,2,1)
f_scal(13,i,j,k) = F(i,j,k,2,2) - field_real(i,j,k,2,2)
f_scal(14,i,j,k) = F(i,j,k,2,3) - field_real(i,j,k,2,3)
f_scal(15,i,j,k) = F(i,j,k,3,1) - field_real(i,j,k,3,1)
f_scal(16,i,j,k) = F(i,j,k,3,2) - field_real(i,j,k,3,2)
f_scal(17,i,j,k) = F(i,j,k,3,3) - field_real(i,j,k,3,3)
enddo; enddo; enddo
return
end subroutine FormFunctionLocal
! ---------------------------------------------------------------------
! User defined convergence check
!
subroutine SNESConverged_Interactive(snes,it,xnorm,snorm,fnorm,reason,dummy,ierr_psc)
implicit none
#include <finclude/petsc.h>
! Input/output variables:
SNES snes
PetscInt it
PetscReal xnorm, snorm, fnorm
SNESConvergedReason reason
PetscObject dummy
PetscErrorCode ierr_psc
err_crit = max(err_stress/err_stress_tol, &
err_f/1e-6, err_p/1e-5)
!fnorm*wgt/sqrt(sum((F_star_av-math_I3)*(F_star_av-math_I3)))/err_div_tol)
if ((err_crit > 1.0_pReal .or. it < itmin) .and. it < itmax) then
reason = 0
else
reason = 1
endif
return
end subroutine SNESConverged_Interactive
end module DAMASK_spectral_SolverAL