DAMASK_EICMD/code/plastic_isotropic.f90

687 lines
36 KiB
Fortran

!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine for isotropic (ISOTROPIC) plasticity
!> @details Isotropic (ISOTROPIC) Plasticity which resembles the phenopowerlaw plasticity without
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
!! untextured polycrystal
!--------------------------------------------------------------------------------------------------
module plastic_isotropic
#ifdef HDF
use hdf5, only: &
HID_T
#endif
use prec, only: &
pReal,&
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
plastic_isotropic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
plastic_isotropic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
plastic_isotropic_Noutput !< number of outputs per instance
logical, dimension(:), allocatable, private :: &
plastic_isotropic_dilatation !< flag to indicate dilatation contribution of plasticity
real(pReal), dimension(:), allocatable, private :: &
plastic_isotropic_fTaylor, & !< Taylor factor
plastic_isotropic_tau0, & !< initial plastic stress
plastic_isotropic_gdot0, & !< reference velocity
plastic_isotropic_n, & !< Visco-plastic parameter
!--------------------------------------------------------------------------------------------------
! h0 as function of h0 = A + B log (gammadot)
plastic_isotropic_h0, &
plastic_isotropic_h0_slopeLnRate, &
plastic_isotropic_tausat, & !< final plastic stress
plastic_isotropic_a, &
plastic_isotropic_aTolResistance, &
plastic_isotropic_aTolShear, &
!--------------------------------------------------------------------------------------------------
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
plastic_isotropic_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
plastic_isotropic_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
enum, bind(c)
enumerator :: undefined_ID, &
flowstress_ID, &
strainrate_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
plastic_isotropic_outputID !< ID of each post result output
#ifdef HDF
type plastic_isotropic_tOutput
real(pReal), dimension(:), allocatable, private :: &
flowstress, &
strainrate
logical :: flowstressActive = .false., strainrateActive = .false. ! if we can write the output block wise, this is not needed anymore because we can do an if(allocated(xxx))
end type plastic_isotropic_tOutput
type(plastic_isotropic_tOutput), allocatable, dimension(:) :: plastic_isotropic_Output2
integer(HID_T), allocatable, dimension(:) :: outID
#endif
public :: &
plastic_isotropic_init, &
plastic_isotropic_LpAndItsTangent, &
plastic_isotropic_LiAndItsTangent, &
plastic_isotropic_dotState, &
plastic_isotropic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_init(fileUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
#ifdef HDF
use hdf5
#endif
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic
use numerics, only: &
analyticJaco, &
worldrank, &
numerics_integrator
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_error, &
IO_timeStamp, &
#ifdef HDF
tempResults, &
HDF5_addGroup, &
HDF5_addScalarDataset,&
#endif
IO_EOF
use material, only: &
phase_plasticity, &
phase_plasticityInstance, &
phase_Noutput, &
PLASTICITY_ISOTROPIC_label, &
PLASTICITY_ISOTROPIC_ID, &
material_phase, &
plasticState, &
MATERIAL_partPhase
use lattice
implicit none
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: &
o, &
phase, &
maxNinstance, &
instance, &
mySize, &
sizeDotState, &
sizeState, &
sizeDeltaState
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt) :: NofMyPhase
#ifdef HDF
character(len=5) :: &
str1
integer(HID_T) :: ID,ID2,ID4
#endif
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_ISOTROPIC_label//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_plasticity == PLASTICITY_ISOTROPIC_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
#ifdef HDF
allocate(plastic_isotropic_Output2(maxNinstance))
allocate(outID(maxNinstance))
#endif
allocate(plastic_isotropic_sizePostResults(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_sizePostResult(maxval(phase_Noutput), maxNinstance),source=0_pInt)
allocate(plastic_isotropic_output(maxval(phase_Noutput), maxNinstance))
plastic_isotropic_output = ''
allocate(plastic_isotropic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(plastic_isotropic_Noutput(maxNinstance), source=0_pInt)
allocate(plastic_isotropic_fTaylor(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tau0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_gdot0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_n(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_h0_slopeLnRate(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_a(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolResistance(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_aTolShear (maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitA(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitB(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitC(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_tausat_SinhFitD(maxNinstance), source=0.0_pReal)
allocate(plastic_isotropic_dilatation(maxNinstance), source=.false.)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
phase = phase + 1_pInt ! advance section counter
if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then
instance = phase_plasticityInstance(phase)
#ifdef HDF
outID(instance)=HDF5_addGroup(str1,tempResults)
#endif
endif
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_ISOTROPIC_ID) then ! one of my phases. Do not short-circuit here (.and. between if-statements), it's not safe in Fortran
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case ('flowstress')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = flowstress_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'flowstress','MPa')
allocate(plastic_isotropic_Output2(instance)%flowstress(myConstituents))
plastic_isotropic_Output2(instance)%flowstressActive = .true.
#endif
case ('strainrate')
plastic_isotropic_Noutput(instance) = plastic_isotropic_Noutput(instance) + 1_pInt
plastic_isotropic_outputID(plastic_isotropic_Noutput(instance),instance) = strainrate_ID
plastic_isotropic_output(plastic_isotropic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
#ifdef HDF
call HDF5_addScalarDataset(outID(instance),myConstituents,'strainrate','1/s')
allocate(plastic_isotropic_Output2(instance)%strainrate(myConstituents))
plastic_isotropic_Output2(instance)%strainrateActive = .true.
#endif
case default
end select
case ('/dilatation/')
plastic_isotropic_dilatation(instance) = .true.
case ('tau0')
plastic_isotropic_tau0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tau0(instance) < 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('gdot0')
plastic_isotropic_gdot0(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_gdot0(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('n')
plastic_isotropic_n(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_n(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('h0')
plastic_isotropic_h0(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('h0_slope','slopelnrate')
plastic_isotropic_h0_slopeLnRate(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat')
plastic_isotropic_tausat(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_tausat(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('tausat_sinhfita')
plastic_isotropic_tausat_SinhFitA(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitb')
plastic_isotropic_tausat_SinhFitB(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitc')
plastic_isotropic_tausat_SinhFitC(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('tausat_sinhfitd')
plastic_isotropic_tausat_SinhFitD(instance) = IO_floatValue(line,chunkPos,2_pInt)
case ('a', 'w0')
plastic_isotropic_a(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_a(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('taylorfactor')
plastic_isotropic_fTaylor(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_fTaylor(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_resistance')
plastic_isotropic_aTolResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
if (plastic_isotropic_aTolResistance(instance) <= 0.0_pReal) &
call IO_error(211_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_ISOTROPIC_label//')')
case ('atol_shear')
plastic_isotropic_aTolShear(instance) = IO_floatValue(line,chunkPos,2_pInt)
case default
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
myPhase: if (phase_plasticity(phase) == PLASTICITY_isotropic_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_plasticityInstance(phase)
!--------------------------------------------------------------------------------------------------
! sanity checks
if (plastic_isotropic_aTolShear(instance) <= 0.0_pReal) &
plastic_isotropic_aTolShear(instance) = 1.0e-6_pReal ! default absolute tolerance 1e-6
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(plastic_isotropic_outputID(o,instance))
case(flowstress_ID,strainrate_ID)
mySize = 1_pInt
case default
end select
outputFound: if (mySize > 0_pInt) then
plastic_isotropic_sizePostResult(o,instance) = mySize
plastic_isotropic_sizePostResults(instance) = &
plastic_isotropic_sizePostResults(instance) + mySize
endif outputFound
enddo outputsLoop
!--------------------------------------------------------------------------------------------------
! allocate state arrays
sizeState = 2_pInt
sizeDotState = sizeState
sizeDeltaState = 0_pInt
plasticState(phase)%sizeState = sizeState
plasticState(phase)%sizeDotState = sizeDotState
plasticState(phase)%sizeDeltaState = sizeDeltaState
plasticState(phase)%sizePostResults = plastic_isotropic_sizePostResults(instance)
plasticState(phase)%nSlip = 1
plasticState(phase)%nTwin = 0
plasticState(phase)%nTrans= 0
allocate(plasticState(phase)%aTolState ( sizeState))
plasticState(phase)%aTolState(1) = plastic_isotropic_aTolResistance(instance)
plasticState(phase)%aTolState(2) = plastic_isotropic_aTolShear(instance)
allocate(plasticState(phase)%state0 ( sizeState,NofMyPhase))
plasticState(phase)%state0(1,1:NofMyPhase) = plastic_isotropic_tau0(instance)
plasticState(phase)%state0(2,1:NofMyPhase) = 0.0_pReal
allocate(plasticState(phase)%partionedState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%subState0 ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%state ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase),source=0.0_pReal)
if (.not. analyticJaco) then
allocate(plasticState(phase)%state_backup ( sizeState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%dotState_backup (sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 1_pInt)) then
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase),source=0.0_pReal)
allocate(plasticState(phase)%previousDotState2(sizeDotState,NofMyPhase),source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase),source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
plasticState(phase)%slipRate => plasticState(phase)%dotState(2:2,1:NofMyPhase)
plasticState(phase)%accumulatedSlip => plasticState(phase)%state (2:2,1:NofMyPhase)
endif myPhase
enddo initializeInstances
end subroutine plastic_isotropic_init
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,ipc,ip,el)
use debug, only: &
debug_level, &
debug_constitutive, &
debug_levelBasic, &
debug_levelExtensive, &
debug_levelSelective, &
debug_e, &
debug_i, &
debug_g
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_deviatoric33, &
math_mul33xx33, &
math_transpose33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Lp !< plastic velocity gradient
real(pReal), dimension(9,9), intent(out) :: &
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3) :: &
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
Lp = 0.0_pReal
dLp_dTstar99 = 0.0_pReal
else
gamma_dot = plastic_isotropic_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_dev / (plastic_isotropic_fTaylor(instance) * &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
**plastic_isotropic_n(instance)
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/plastic_isotropic_fTaylor(instance)
if (iand(debug_level(debug_constitutive), debug_levelExtensive) /= 0_pInt &
.and. ((el == debug_e .and. ip == debug_i .and. ipc == debug_g) &
.or. .not. iand(debug_level(debug_constitutive),debug_levelSelective) /= 0_pInt)) then
write(6,'(a,i8,1x,i2,1x,i3)') '<< CONST isotropic >> at el ip g ',el,ip,ipc
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CONST isotropic >> Tstar (dev) / MPa', &
math_transpose33(Tstar_dev_33(1:3,1:3))*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> norm Tstar / MPa', norm_Tstar_dev*1.0e-6_pReal
write(6,'(/,a,/,f12.5)') '<< CONST isotropic >> gdot', gamma_dot
end if
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
forall (k=1_pInt:3_pInt,m=1_pInt:3_pInt) &
dLp_dTstar_3333(k,k,m,m) = dLp_dTstar_3333(k,k,m,m) - 1.0_pReal/3.0_pReal
dLp_dTstar99 = math_Plain3333to99(gamma_dot / plastic_isotropic_fTaylor(instance) * &
dLp_dTstar_3333 / norm_Tstar_dev)
end if
end subroutine plastic_isotropic_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dTstar_3333,Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6, &
math_Mandel6to33, &
math_Plain3333to99, &
math_spherical33, &
math_mul33xx33
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(3,3), intent(out) :: &
Li !< plastic velocity gradient
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(3,3) :: &
Tstar_sph_33 !< sphiatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
real(pReal), dimension(3,3,3,3), intent(out) :: &
dLi_dTstar_3333 !< derivative of Li with respect to Tstar as 4th order tensor
real(pReal) :: &
gamma_dot, & !< strainrate
norm_Tstar_sph, & !< euclidean norm of Tstar_sph
squarenorm_Tstar_sph !< square of the euclidean norm of Tstar_sph
integer(pInt) :: &
instance, &
k, l, m, n
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
Tstar_sph_33 = math_spherical33(math_Mandel6to33(Tstar_v)) ! spherical part of 2nd Piola-Kirchhoff stress
squarenorm_Tstar_sph = math_mul33xx33(Tstar_sph_33,Tstar_sph_33)
norm_Tstar_sph = sqrt(squarenorm_Tstar_sph)
if (plastic_isotropic_dilatation(instance)) then
if (norm_Tstar_sph <= 0.0_pReal) then ! Tstar == 0 --> both Li and dLi_dTstar are zero
Li = 0.0_pReal
dLi_dTstar_3333 = 0.0_pReal
else
gamma_dot = plastic_isotropic_gdot0(instance) &
* (sqrt(1.5_pReal) * norm_Tstar_sph / (plastic_isotropic_fTaylor(instance) * &
plasticState(phaseAt(ipc,ip,el))%state(1,phasememberAt(ipc,ip,el)))) &
**plastic_isotropic_n(instance)
Li = Tstar_sph_33/norm_Tstar_sph * gamma_dot/plastic_isotropic_fTaylor(instance)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Li
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,m,n) = (plastic_isotropic_n(instance)-1.0_pReal) * &
Tstar_sph_33(k,l)*Tstar_sph_33(m,n) / squarenorm_Tstar_sph
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLi_dTstar_3333(k,l,k,l) = dLi_dTstar_3333(k,l,k,l) + 1.0_pReal
dLi_dTstar_3333 = gamma_dot / plastic_isotropic_fTaylor(instance) * &
dLi_dTstar_3333 / norm_Tstar_sph
endif
endif
end subroutine plastic_isotropic_LiAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of microstructure
!--------------------------------------------------------------------------------------------------
subroutine plastic_isotropic_dotState(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
phaseAt, phasememberAt, &
plasticState, &
material_phase, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in):: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
gamma_dot, & !< strainrate
hardening, & !< hardening coefficient
saturation, & !< saturation resistance
norm_Tstar_v !< euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
!--------------------------------------------------------------------------------------------------
! strain rate
gamma_dot = plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!-----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance)*plasticState(ph)%state(1,of)) )**plastic_isotropic_n(instance)
!--------------------------------------------------------------------------------------------------
! hardening coefficient
if (abs(gamma_dot) > 1e-12_pReal) then
if (abs(plastic_isotropic_tausat_SinhFitA(instance)) <= tiny(0.0_pReal)) then
saturation = plastic_isotropic_tausat(instance)
else
saturation = ( plastic_isotropic_tausat(instance) &
+ ( log( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance)&
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitD(instance))&
+ sqrt( ( gamma_dot / plastic_isotropic_tausat_SinhFitA(instance) &
)**(2.0_pReal / plastic_isotropic_tausat_SinhFitD(instance)) &
+ 1.0_pReal ) &
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
)**(1.0_pReal / plastic_isotropic_tausat_SinhFitC(instance)) &
/ ( plastic_isotropic_tausat_SinhFitB(instance) &
* (gamma_dot / plastic_isotropic_gdot0(instance))**(1.0_pReal / plastic_isotropic_n(instance)) &
) &
)
endif
hardening = ( plastic_isotropic_h0(instance) + plastic_isotropic_h0_slopeLnRate(instance) * log(gamma_dot) ) &
* abs( 1.0_pReal - plasticState(ph)%state(1,of)/saturation )**plastic_isotropic_a(instance) &
* sign(1.0_pReal, 1.0_pReal - plasticState(ph)%state(1,of)/saturation)
else
hardening = 0.0_pReal
endif
plasticState(ph)%dotState(1,of) = hardening * gamma_dot
plasticState(ph)%dotState(2,of) = gamma_dot
end subroutine plastic_isotropic_dotState
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function plastic_isotropic_postResults(Tstar_v,ipc,ip,el)
use math, only: &
math_mul6x6
use material, only: &
material_phase, &
plasticState, &
phaseAt, phasememberAt, &
phase_plasticityInstance
implicit none
real(pReal), dimension(6), intent(in) :: &
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(plastic_isotropic_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
plastic_isotropic_postResults
real(pReal), dimension(6) :: &
Tstar_dev_v !< deviatoric 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal) :: &
norm_Tstar_v ! euclidean norm of Tstar_dev
integer(pInt) :: &
instance, & !< instance of my instance (unique number of my constitutive model)
of, & !< shortcut notation for offset position in state array
ph, & !< shortcut notation for phase ID (unique number of all phases, regardless of constitutive model)
c, &
o
of = phasememberAt(ipc,ip,el)
ph = phaseAt(ipc,ip,el)
instance = phase_plasticityInstance(material_phase(ipc,ip,el))
!--------------------------------------------------------------------------------------------------
! norm of (deviatoric) 2nd Piola-Kirchhoff stress
if (plastic_isotropic_dilatation(instance)) then
norm_Tstar_v = sqrt(math_mul6x6(Tstar_v,Tstar_v))
else
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
Tstar_dev_v(4:6) = Tstar_v(4:6)
norm_Tstar_v = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
end if
c = 0_pInt
plastic_isotropic_postResults = 0.0_pReal
outputsLoop: do o = 1_pInt,plastic_isotropic_Noutput(instance)
select case(plastic_isotropic_outputID(o,instance))
case (flowstress_ID)
plastic_isotropic_postResults(c+1_pInt) = plasticState(ph)%state(1,of)
c = c + 1_pInt
case (strainrate_ID)
plastic_isotropic_postResults(c+1_pInt) = &
plastic_isotropic_gdot0(instance) * ( sqrt(1.5_pReal) * norm_Tstar_v &
/ &!----------------------------------------------------------------------------------
(plastic_isotropic_fTaylor(instance) * plasticState(ph)%state(1,of)) ) ** plastic_isotropic_n(instance)
c = c + 1_pInt
end select
enddo outputsLoop
end function plastic_isotropic_postResults
end module plastic_isotropic