75 lines
2.6 KiB
Python
Executable File
75 lines
2.6 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import os
|
|
import sys
|
|
from optparse import OptionParser
|
|
|
|
import numpy as np
|
|
|
|
import damask
|
|
|
|
|
|
scriptName = os.path.splitext(os.path.basename(__file__))[0]
|
|
scriptID = ' '.join([scriptName,damask.version])
|
|
|
|
# definition of element-wise p-norms for matrices
|
|
# ToDo: better use numpy.linalg.norm
|
|
|
|
def norm(which,object):
|
|
|
|
if which == 'Abs': # p = 1
|
|
return sum(map(abs, object))
|
|
elif which == 'Frobenius': # p = 2
|
|
return np.sqrt(sum([x*x for x in object]))
|
|
elif which == 'Max': # p = inf
|
|
return max(map(abs, object))
|
|
else:
|
|
return -1
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
|
|
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [ASCIItable(s)]', description = """
|
|
Add column(s) containing norm of requested column(s) being either vectors or tensors.
|
|
|
|
""", version = scriptID)
|
|
|
|
normChoices = ['abs','frobenius','max']
|
|
parser.add_option('-n','--norm',
|
|
dest = 'norm',
|
|
type = 'choice', choices = normChoices, metavar='string',
|
|
help = 'type of element-wise p-norm [frobenius] {%s}'%(','.join(map(str,normChoices))))
|
|
parser.add_option('-l','--label',
|
|
dest = 'labels',
|
|
action = 'extend', metavar = '<string LIST>',
|
|
help = 'heading of column(s) to calculate norm of')
|
|
|
|
parser.set_defaults(norm = 'frobenius',
|
|
)
|
|
|
|
(options,filenames) = parser.parse_args()
|
|
if filenames == []: filenames = [None]
|
|
|
|
if options.norm.lower() not in normChoices:
|
|
parser.error('invalid norm ({}) specified.'.format(options.norm))
|
|
if options.labels is None:
|
|
parser.error('no data column specified.')
|
|
|
|
for name in filenames:
|
|
damask.util.report(scriptName,name)
|
|
|
|
table = damask.Table.from_ASCII(StringIO(''.join(sys.stdin.read())) if name is None else name)
|
|
for label in options.labels:
|
|
data = table.get(label)
|
|
data_norm = np.empty((data.shape[0],1))
|
|
for i,d in enumerate(data):
|
|
data_norm[i] = norm(options.norm.capitalize(),d)
|
|
|
|
table.add('norm{}({})'.format(options.norm.capitalize(),label),
|
|
data_norm,
|
|
scriptID+' '+' '.join(sys.argv[1:]))
|
|
|
|
table.to_ASCII(sys.stdout if name is None else name)
|