195 lines
8.0 KiB
Python
Executable File
195 lines
8.0 KiB
Python
Executable File
#!/usr/bin/env python
|
|
# -*- coding: UTF-8 no BOM -*-
|
|
|
|
import os,sys,string,re,math,numpy
|
|
import damask
|
|
from optparse import OptionParser, OptionGroup, Option, SUPPRESS_HELP
|
|
from scipy import ndimage
|
|
|
|
#--------------------------------------------------------------------------------------------------
|
|
class extendedOption(Option):
|
|
#--------------------------------------------------------------------------------------------------
|
|
# used for definition of new option parser action 'extend', which enables to take multiple option arguments
|
|
# taken from online tutorial http://docs.python.org/library/optparse.html
|
|
|
|
ACTIONS = Option.ACTIONS + ("extend",)
|
|
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
|
|
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
|
|
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
|
|
|
|
def take_action(self, action, dest, opt, value, values, parser):
|
|
if action == "extend":
|
|
lvalue = value.split(",")
|
|
values.ensure_value(dest, []).extend(lvalue)
|
|
else:
|
|
Option.take_action(self, action, dest, opt, value, values, parser)
|
|
|
|
|
|
#--------------------------------------------------------------------------------------------------
|
|
# MAIN
|
|
#--------------------------------------------------------------------------------------------------
|
|
|
|
synonyms = {
|
|
'grid': ['resolution'],
|
|
'size': ['dimension'],
|
|
}
|
|
identifiers = {
|
|
'grid': ['a','b','c'],
|
|
'size': ['x','y','z'],
|
|
'origin': ['x','y','z'],
|
|
}
|
|
mappings = {
|
|
'grid': lambda x: int(x),
|
|
'size': lambda x: float(x),
|
|
'origin': lambda x: float(x),
|
|
'homogenization': lambda x: int(x),
|
|
'microstructures': lambda x: int(x),
|
|
}
|
|
|
|
parser = OptionParser(option_class=extendedOption, usage='%prog options [file[s]]', description = """
|
|
Smoothens out interface roughness by simulated curvature flow.
|
|
This is achieved by the diffusion of each initially sharply bounded grain volume within the periodic domain
|
|
up to a given distance 'd' voxels.
|
|
The final geometry is assembled by selecting at each voxel that grain index for which the concentration remains largest.
|
|
""" + string.replace('$Id$','\n','\\n')
|
|
)
|
|
|
|
parser.add_option('-d', '--distance', dest='d', type='float', \
|
|
help='diffusion distance in voxels [%default]', metavar='float')
|
|
parser.add_option('-b', '--black', dest='black', action='extend', type='string', \
|
|
help='indices of stationary microstructures', metavar='<LIST>')
|
|
|
|
parser.set_defaults(t = 1)
|
|
parser.set_defaults(black = [])
|
|
|
|
(options, filenames) = parser.parse_args()
|
|
|
|
options.black = map(int,options.black)
|
|
|
|
#--- setup file handles --------------------------------------------------------------------------
|
|
files = []
|
|
if filenames == []:
|
|
files.append({'name':'STDIN',
|
|
'input':sys.stdin,
|
|
'output':sys.stdout,
|
|
'croak':sys.stderr,
|
|
})
|
|
else:
|
|
for name in filenames:
|
|
if os.path.exists(name):
|
|
files.append({'name':name,
|
|
'input':open(name),
|
|
'output':open(name+'_tmp','w'),
|
|
'croak':sys.stdout,
|
|
})
|
|
|
|
#--- loop over input files ------------------------------------------------------------------------
|
|
for file in files:
|
|
if file['name'] != 'STDIN': file['croak'].write(file['name']+'\n')
|
|
|
|
theTable = damask.ASCIItable(file['input'],file['output'],labels=False)
|
|
theTable.head_read()
|
|
|
|
#--- interpret header ----------------------------------------------------------------------------
|
|
info = {
|
|
'grid': numpy.zeros(3,'i'),
|
|
'size': numpy.zeros(3,'d'),
|
|
'origin': numpy.zeros(3,'d'),
|
|
'homogenization': 0,
|
|
'microstructures': 0,
|
|
}
|
|
newInfo = {
|
|
'microstructures': 0,
|
|
}
|
|
extra_header = []
|
|
|
|
for header in theTable.info:
|
|
headitems = map(str.lower,header.split())
|
|
if len(headitems) == 0: continue
|
|
for synonym,alternatives in synonyms.iteritems():
|
|
if headitems[0] in alternatives: headitems[0] = synonym
|
|
if headitems[0] in mappings.keys():
|
|
if headitems[0] in identifiers.keys():
|
|
for i in xrange(len(identifiers[headitems[0]])):
|
|
info[headitems[0]][i] = \
|
|
mappings[headitems[0]](headitems[headitems.index(identifiers[headitems[0]][i])+1])
|
|
else:
|
|
info[headitems[0]] = mappings[headitems[0]](headitems[1])
|
|
else:
|
|
extra_header.append(header)
|
|
|
|
file['croak'].write('grid a b c: %s\n'%(' x '.join(map(str,info['grid']))) + \
|
|
'size x y z: %s\n'%(' x '.join(map(str,info['size']))) + \
|
|
'origin x y z: %s\n'%(' : '.join(map(str,info['origin']))) + \
|
|
'homogenization: %i\n'%info['homogenization'] + \
|
|
'microstructures: %i\n'%info['microstructures'])
|
|
|
|
if numpy.any(info['grid'] < 1):
|
|
file['croak'].write('invalid grid a b c.\n')
|
|
continue
|
|
if numpy.any(info['size'] <= 0.0):
|
|
file['croak'].write('invalid size x y z.\n')
|
|
continue
|
|
|
|
#--- read data ------------------------------------------------------------------------------------
|
|
microstructure = numpy.zeros(info['grid'].prod(),'i')
|
|
i = 0
|
|
theTable.data_rewind()
|
|
while theTable.data_read():
|
|
items = theTable.data
|
|
if len(items) > 2:
|
|
if items[1].lower() == 'of': items = [int(items[2])]*int(items[0])
|
|
elif items[1].lower() == 'to': items = xrange(int(items[0]),1+int(items[2]))
|
|
else: items = map(int,items)
|
|
else: items = map(int,items)
|
|
|
|
s = len(items)
|
|
microstructure[i:i+s] = items
|
|
i += s
|
|
|
|
#--- do work ------------------------------------------------------------------------------------
|
|
microstructure = microstructure.reshape(info['grid'],order='F')
|
|
|
|
#--- initialize helper data -----------------------------------------------------------------------
|
|
winner = numpy.zeros(info['grid'],'i')
|
|
diffusedMax = numpy.zeros(info['grid'])
|
|
|
|
#--- diffuse each grain separately ----------------------------------------------------------------
|
|
for theGrain in xrange(1,1+numpy.amax(microstructure)):
|
|
diffused = ndimage.filters.gaussian_filter((microstructure == theGrain).astype(float),\
|
|
{True:0.0,False:options.d}[theGrain in options.black],\
|
|
mode='wrap')
|
|
winner = numpy.where(diffused > diffusedMax, theGrain, winner)
|
|
diffusedMax = numpy.where(diffused > diffusedMax, diffused, diffusedMax)
|
|
|
|
newInfo['microstructures'] = winner.max()
|
|
|
|
#--- report ---------------------------------------------------------------------------------------
|
|
if (newInfo['microstructures'] != info['microstructures']):
|
|
file['croak'].write('--> microstructures: %i\n'%newInfo['microstructures'])
|
|
|
|
#--- write header ---------------------------------------------------------------------------------
|
|
theTable.labels_clear()
|
|
theTable.info_clear()
|
|
theTable.info_append(extra_header+[
|
|
"$Id$",
|
|
"grid\ta %i\tb %i\tc %i"%(info['grid'][0],info['grid'][1],info['grid'][2],),
|
|
"size\tx %f\ty %f\tz %f"%(info['size'][0],info['size'][1],info['size'][2],),
|
|
"origin\tx %f\ty %f\tz %f"%(info['origin'][0],info['origin'][1],info['origin'][2],),
|
|
"homogenization\t%i"%info['homogenization'],
|
|
"microstructures\t%i"%(newInfo['microstructures']),
|
|
])
|
|
theTable.head_write()
|
|
theTable.output_flush()
|
|
|
|
# --- write microstructure information ------------------------------------------------------------
|
|
formatwidth = int(math.floor(math.log10(winner.max())+1))
|
|
theTable.data = winner.reshape((info['grid'][0],info['grid'][1]*info['grid'][2]),order='F').transpose()
|
|
theTable.data_writeArray('%%%ii'%(formatwidth))
|
|
|
|
#--- output finalization --------------------------------------------------------------------------
|
|
if file['name'] != 'STDIN':
|
|
file['input'].close()
|
|
file['output'].close()
|
|
os.rename(file['name']+'_tmp',file['name'])
|