591 lines
31 KiB
Fortran
591 lines
31 KiB
Fortran
! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
|
|
!
|
|
! This file is part of DAMASK,
|
|
! the Düsseldorf Advanced MAterial Simulation Kit.
|
|
!
|
|
! DAMASK is free software: you can redistribute it and/or modify
|
|
! it under the terms of the GNU General Public License as published by
|
|
! the Free Software Foundation, either version 3 of the License, or
|
|
! (at your option) any later version.
|
|
!
|
|
! DAMASK is distributed in the hope that it will be useful,
|
|
! but WITHOUT ANY WARRANTY; without even the implied warranty of
|
|
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
|
! GNU General Public License for more details.
|
|
!
|
|
! You should have received a copy of the GNU General Public License
|
|
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
|
|
!
|
|
!--------------------------------------------------------------------------------------------------
|
|
! $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief material subroutine for isotropic (J2) plasticity
|
|
!> @details Isotropic (J2) Plasticity which resembles the phenopowerlaw plasticity without
|
|
!! resolving the stress on the slip systems. Will give the response of phenopowerlaw for an
|
|
!! untextured polycrystal
|
|
!--------------------------------------------------------------------------------------------------
|
|
module constitutive_j2
|
|
use prec, only: &
|
|
pReal,&
|
|
pInt
|
|
|
|
implicit none
|
|
private
|
|
character (len=*), parameter, public :: &
|
|
CONSTITUTIVE_J2_label = 'j2' !< label for this constitutive model
|
|
|
|
integer(pInt), dimension(:), allocatable, public, protected :: &
|
|
constitutive_j2_sizeDotState, & !< number of dotStates
|
|
constitutive_j2_sizeState, & !< total number of microstructural variables
|
|
constitutive_j2_sizePostResults !< cumulative size of post results
|
|
|
|
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
|
constitutive_j2_sizePostResult !< size of each post result output
|
|
|
|
character(len=64), dimension(:,:), allocatable, target, public :: &
|
|
constitutive_j2_output !< name of each post result output
|
|
|
|
character(len=32), dimension(:), allocatable, private :: &
|
|
constitutive_j2_structureName !< name of the lattice structure
|
|
|
|
integer(pInt), dimension(:), allocatable, private :: &
|
|
constitutive_j2_Noutput !< number of outputs per instance
|
|
|
|
real(pReal), dimension(:), allocatable, private :: &
|
|
constitutive_j2_fTaylor, & !< Taylor factor
|
|
constitutive_j2_tau0, & !< initial plastic stress
|
|
constitutive_j2_gdot0, & !< reference velocity
|
|
constitutive_j2_n, & !< Visco-plastic parameter
|
|
!--------------------------------------------------------------------------------------------------
|
|
! h0 as function of h0 = A + B log (gammadot)
|
|
constitutive_j2_h0, &
|
|
constitutive_j2_h0_slopeLnRate, &
|
|
constitutive_j2_tausat, & !< final plastic stress
|
|
constitutive_j2_a, &
|
|
constitutive_j2_aTolResistance, &
|
|
!--------------------------------------------------------------------------------------------------
|
|
! tausat += (asinh((gammadot / SinhFitA)**(1 / SinhFitD)))**(1 / SinhFitC) / (SinhFitB * (gammadot / gammadot0)**(1/n))
|
|
constitutive_j2_tausat_SinhFitA, & !< fitting parameter for normalized strain rate vs. stress function
|
|
constitutive_j2_tausat_SinhFitB, & !< fitting parameter for normalized strain rate vs. stress function
|
|
constitutive_j2_tausat_SinhFitC, & !< fitting parameter for normalized strain rate vs. stress function
|
|
constitutive_j2_tausat_SinhFitD !< fitting parameter for normalized strain rate vs. stress function
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
constitutive_j2_Cslip_66
|
|
|
|
public :: &
|
|
constitutive_j2_init, &
|
|
constitutive_j2_stateInit, &
|
|
constitutive_j2_aTolState, &
|
|
constitutive_j2_homogenizedC, &
|
|
constitutive_j2_LpAndItsTangent, &
|
|
constitutive_j2_dotState, &
|
|
constitutive_j2_postResults
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief module initialization
|
|
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine constitutive_j2_init(myFile)
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use math, only: &
|
|
math_Mandel3333to66, &
|
|
math_Voigt66to3333
|
|
use IO, only: &
|
|
IO_read, &
|
|
IO_lc, &
|
|
IO_getTag, &
|
|
IO_isBlank, &
|
|
IO_stringPos, &
|
|
IO_stringValue, &
|
|
IO_floatValue, &
|
|
IO_error, &
|
|
IO_timeStamp
|
|
use material
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_constitutive, &
|
|
debug_levelBasic
|
|
use lattice, only: &
|
|
lattice_symmetrizeC66
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: myFile
|
|
|
|
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
|
|
|
|
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
|
|
integer(pInt) :: section = 0_pInt, maxNinstance, i,o, mySize
|
|
character(len=65536) :: &
|
|
tag = '', &
|
|
line = '' ! to start initialized
|
|
|
|
write(6,'(/,a)') ' <<<+- constitutive_'//CONSTITUTIVE_J2_label//' init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
|
|
maxNinstance = int(count(phase_plasticity == CONSTITUTIVE_J2_label),pInt)
|
|
if (maxNinstance == 0_pInt) return
|
|
|
|
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
|
|
|
allocate(constitutive_j2_sizeDotState(maxNinstance))
|
|
constitutive_j2_sizeDotState = 0_pInt
|
|
allocate(constitutive_j2_sizeState(maxNinstance))
|
|
constitutive_j2_sizeState = 0_pInt
|
|
allocate(constitutive_j2_sizePostResults(maxNinstance))
|
|
constitutive_j2_sizePostResults = 0_pInt
|
|
allocate(constitutive_j2_sizePostResult(maxval(phase_Noutput), maxNinstance))
|
|
constitutive_j2_sizePostResult = 0_pInt
|
|
allocate(constitutive_j2_output(maxval(phase_Noutput), maxNinstance))
|
|
constitutive_j2_output = ''
|
|
allocate(constitutive_j2_Noutput(maxNinstance))
|
|
constitutive_j2_Noutput = 0_pInt
|
|
allocate(constitutive_j2_structureName(maxNinstance))
|
|
constitutive_j2_structureName = ''
|
|
allocate(constitutive_j2_Cslip_66(6,6,maxNinstance))
|
|
constitutive_j2_Cslip_66 = 0.0_pReal
|
|
allocate(constitutive_j2_fTaylor(maxNinstance))
|
|
constitutive_j2_fTaylor = 0.0_pReal
|
|
allocate(constitutive_j2_tau0(maxNinstance))
|
|
constitutive_j2_tau0 = 0.0_pReal
|
|
allocate(constitutive_j2_gdot0(maxNinstance))
|
|
constitutive_j2_gdot0 = 0.0_pReal
|
|
allocate(constitutive_j2_n(maxNinstance))
|
|
constitutive_j2_n = 0.0_pReal
|
|
allocate(constitutive_j2_h0(maxNinstance))
|
|
constitutive_j2_h0 = 0.0_pReal
|
|
allocate(constitutive_j2_h0_slopeLnRate(maxNinstance))
|
|
constitutive_j2_h0_slopeLnRate = 0.0_pReal
|
|
allocate(constitutive_j2_tausat(maxNinstance))
|
|
constitutive_j2_tausat = 0.0_pReal
|
|
allocate(constitutive_j2_a(maxNinstance))
|
|
constitutive_j2_a = 0.0_pReal
|
|
allocate(constitutive_j2_aTolResistance(maxNinstance))
|
|
constitutive_j2_aTolResistance = 0.0_pReal
|
|
allocate(constitutive_j2_tausat_SinhFitA(maxNinstance))
|
|
constitutive_j2_tausat_SinhFitA = 0.0_pReal
|
|
allocate(constitutive_j2_tausat_SinhFitB(maxNinstance))
|
|
constitutive_j2_tausat_SinhFitB = 0.0_pReal
|
|
allocate(constitutive_j2_tausat_SinhFitC(maxNinstance))
|
|
constitutive_j2_tausat_SinhFitC = 0.0_pReal
|
|
allocate(constitutive_j2_tausat_SinhFitD(maxNinstance))
|
|
constitutive_j2_tausat_SinhFitD = 0.0_pReal
|
|
|
|
rewind(myFile)
|
|
do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
|
|
line = IO_read(myFile)
|
|
enddo
|
|
|
|
do while (trim(line) /= '#EOF#') ! read through sections of phase part
|
|
line = IO_read(myFile)
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1_pInt ! advance section counter
|
|
cycle ! skip to next line
|
|
endif
|
|
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
|
|
if (trim(phase_plasticity(section)) == CONSTITUTIVE_J2_label) then ! one of my sections
|
|
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
|
|
positions = IO_stringPos(line,MAXNCHUNKS)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('plasticity','elasticity')
|
|
cycle
|
|
case ('(output)')
|
|
constitutive_j2_Noutput(i) = constitutive_j2_Noutput(i) + 1_pInt
|
|
constitutive_j2_output(constitutive_j2_Noutput(i),i) = &
|
|
IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('lattice_structure')
|
|
constitutive_j2_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
case ('c11')
|
|
constitutive_j2_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c12')
|
|
constitutive_j2_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c13')
|
|
constitutive_j2_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c22')
|
|
constitutive_j2_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c23')
|
|
constitutive_j2_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c33')
|
|
constitutive_j2_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c44')
|
|
constitutive_j2_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c55')
|
|
constitutive_j2_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('c66')
|
|
constitutive_j2_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tau0')
|
|
constitutive_j2_tau0(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('gdot0')
|
|
constitutive_j2_gdot0(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('n')
|
|
constitutive_j2_n(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('h0')
|
|
constitutive_j2_h0(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('h0_slope','slopelnrate')
|
|
constitutive_j2_h0_slopeLnRate(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tausat')
|
|
constitutive_j2_tausat(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tausat_sinhfita')
|
|
constitutive_j2_tausat_SinhFitA(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tausat_sinhfitb')
|
|
constitutive_j2_tausat_SinhFitB(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tausat_sinhfitc')
|
|
constitutive_j2_tausat_SinhFitC(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('tausat_sinhfitd')
|
|
constitutive_j2_tausat_SinhFitD(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('a', 'w0')
|
|
constitutive_j2_a(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('taylorfactor')
|
|
constitutive_j2_fTaylor(i) = IO_floatValue(line,positions,2_pInt)
|
|
case ('atol_resistance')
|
|
constitutive_j2_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
|
|
case default
|
|
call IO_error(210_pInt,ext_msg=trim(tag)//' ('//CONSTITUTIVE_J2_label//')')
|
|
end select
|
|
endif
|
|
endif
|
|
enddo
|
|
|
|
sanityChecks: do i = 1_pInt,maxNinstance
|
|
if (constitutive_j2_structureName(i) == '') call IO_error(205_pInt,el=i)
|
|
if (constitutive_j2_tau0(i) < 0.0_pReal) call IO_error(211_pInt,ext_msg='tau0 (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_gdot0(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='gdot0 (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_n(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='n (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_tausat(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='tausat (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_a(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='a (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_fTaylor(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='taylorfactor (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
if (constitutive_j2_aTolResistance(i) <= 0.0_pReal) call IO_error(211_pInt,ext_msg='aTol_resistance (' &
|
|
//CONSTITUTIVE_J2_label//')')
|
|
enddo sanityChecks
|
|
|
|
instancesLoop: do i = 1_pInt,maxNinstance
|
|
outputsLoop: do o = 1_pInt,constitutive_j2_Noutput(i)
|
|
select case(constitutive_j2_output(o,i))
|
|
case('flowstress')
|
|
mySize = 1_pInt
|
|
case('strainrate')
|
|
mySize = 1_pInt
|
|
case default
|
|
call IO_error(212_pInt,ext_msg=constitutive_j2_output(o,i)//' ('//CONSTITUTIVE_J2_label//')')
|
|
end select
|
|
|
|
if (mySize > 0_pInt) then ! any meaningful output found
|
|
constitutive_j2_sizePostResult(o,i) = mySize
|
|
constitutive_j2_sizePostResults(i) = &
|
|
constitutive_j2_sizePostResults(i) + mySize
|
|
endif
|
|
enddo outputsLoop
|
|
|
|
constitutive_j2_sizeDotState(i) = 1_pInt
|
|
constitutive_j2_sizeState(i) = 1_pInt
|
|
|
|
constitutive_j2_Cslip_66(1:6,1:6,i) = lattice_symmetrizeC66(constitutive_j2_structureName(i),&
|
|
constitutive_j2_Cslip_66(1:6,1:6,i))
|
|
constitutive_j2_Cslip_66(1:6,1:6,i) = &
|
|
math_Mandel3333to66(math_Voigt66to3333(constitutive_j2_Cslip_66(1:6,1:6,i))) ! Literature data is Voigt, DAMASK uses Mandel
|
|
|
|
enddo instancesLoop
|
|
|
|
end subroutine constitutive_j2_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the initial microstructural state for a given instance of this plasticity
|
|
!> @details initial microstructural state is set to the value specified by tau0
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_j2_stateInit(matID)
|
|
|
|
implicit none
|
|
real(pReal), dimension(1) :: constitutive_j2_stateInit
|
|
integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity
|
|
|
|
constitutive_j2_stateInit = constitutive_j2_tau0(matID)
|
|
|
|
end function constitutive_j2_stateInit
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief sets the relevant state values for a given instance of this plasticity
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_j2_aTolState(matID)
|
|
|
|
implicit none
|
|
integer(pInt), intent(in) :: matID !< number specifying the instance of the plasticity
|
|
|
|
real(pReal), dimension(constitutive_j2_sizeState(matID)) :: &
|
|
constitutive_j2_aTolState
|
|
|
|
constitutive_j2_aTolState = constitutive_j2_aTolResistance(matID)
|
|
|
|
end function constitutive_j2_aTolState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief returns the homogenized elasticity matrix
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_j2_homogenizedC(ipc,ip,el)
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains,&
|
|
material_phase, &
|
|
phase_plasticityInstance
|
|
|
|
implicit none
|
|
real(pReal), dimension(6,6) :: &
|
|
constitutive_j2_homogenizedC
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
|
|
constitutive_j2_homogenizedC = constitutive_j2_Cslip_66(1:6,1:6,&
|
|
phase_plasticityInstance(material_phase(ipc,ip,el)))
|
|
|
|
end function constitutive_j2_homogenizedC
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates plastic velocity gradient and its tangent
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure subroutine constitutive_j2_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use math, only: &
|
|
math_mul6x6, &
|
|
math_Mandel6to33, &
|
|
math_Plain3333to99, &
|
|
math_deviatoric33, &
|
|
math_mul33xx33
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance
|
|
|
|
implicit none
|
|
real(pReal), dimension(3,3), intent(out) :: &
|
|
Lp !< plastic velocity gradient
|
|
real(pReal), dimension(9,9), intent(out) :: &
|
|
dLp_dTstar99 !< derivative of Lp with respect to 2nd Piola Kirchhoff stress
|
|
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
|
state !< microstructure state
|
|
|
|
real(pReal), dimension(3,3) :: &
|
|
Tstar_dev_33 !< deviatoric part of the 2nd Piola Kirchhoff stress tensor as 2nd order tensor
|
|
real(pReal), dimension(3,3,3,3) :: &
|
|
dLp_dTstar_3333 !< derivative of Lp with respect to Tstar as 4th order tensor
|
|
real(pReal) :: &
|
|
gamma_dot, & !< strainrate
|
|
norm_Tstar_dev, & !< euclidean norm of Tstar_dev
|
|
squarenorm_Tstar_dev !< square of the euclidean norm of Tstar_dev
|
|
integer(pInt) :: &
|
|
matID, &
|
|
k, l, m, n
|
|
|
|
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
|
|
Tstar_dev_33 = math_deviatoric33(math_Mandel6to33(Tstar_v)) ! deviatoric part of 2nd Piola-Kirchhoff stress
|
|
squarenorm_Tstar_dev = math_mul33xx33(Tstar_dev_33,Tstar_dev_33)
|
|
norm_Tstar_dev = sqrt(squarenorm_Tstar_dev)
|
|
|
|
if (norm_Tstar_dev <= 0.0_pReal) then ! Tstar == 0 --> both Lp and dLp_dTstar are zero
|
|
Lp = 0.0_pReal
|
|
dLp_dTstar99 = 0.0_pReal
|
|
else
|
|
gamma_dot = constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
|
|
/ &!----------------------------------------------------------------------------------
|
|
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) **constitutive_j2_n(matID)
|
|
|
|
Lp = Tstar_dev_33/norm_Tstar_dev * gamma_dot/constitutive_j2_fTaylor(matID)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! Calculation of the tangent of Lp
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
|
dLp_dTstar_3333(k,l,m,n) = (constitutive_j2_n(matID)-1.0_pReal) * &
|
|
Tstar_dev_33(k,l)*Tstar_dev_33(m,n) / squarenorm_Tstar_dev
|
|
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
|
|
dLp_dTstar_3333(k,l,k,l) = dLp_dTstar_3333(k,l,k,l) + 1.0_pReal
|
|
dLp_dTstar99 = math_Plain3333to99(gamma_dot / constitutive_j2_fTaylor(matID) * &
|
|
dLp_dTstar_3333 / norm_Tstar_dev)
|
|
end if
|
|
|
|
end subroutine constitutive_j2_LpAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates the rate of change of microstructure
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_j2_dotState(Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use math, only: &
|
|
math_mul6x6
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance
|
|
|
|
implicit none
|
|
real(pReal), dimension(1) :: &
|
|
constitutive_j2_dotState
|
|
real(pReal), dimension(6), intent(in):: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
|
state !< microstructure state
|
|
|
|
real(pReal), dimension(6) :: &
|
|
Tstar_dev_v !< deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
real(pReal) :: &
|
|
gamma_dot, & !< strainrate
|
|
hardening, & !< hardening coefficient
|
|
saturation, & !< saturation resistance
|
|
norm_Tstar_dev !< euclidean norm of Tstar_dev
|
|
integer(pInt) :: &
|
|
matID
|
|
|
|
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
|
|
!--------------------------------------------------------------------------------------------------
|
|
! norm of deviatoric part of 2nd Piola-Kirchhoff stress
|
|
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
|
|
Tstar_dev_v(4:6) = Tstar_v(4:6)
|
|
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! strain rate
|
|
gamma_dot = constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
|
|
/ &!-----------------------------------------------------------------------------------
|
|
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! hardening coefficient
|
|
if (abs(gamma_dot) > 1e-12_pReal) then
|
|
if (constitutive_j2_tausat_SinhFitA(matID) == 0.0_pReal) then
|
|
saturation = constitutive_j2_tausat(matID)
|
|
else
|
|
saturation = ( constitutive_j2_tausat(matID) &
|
|
+ ( log( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID)&
|
|
)**(1.0_pReal / constitutive_j2_tausat_SinhFitD(matID))&
|
|
+ sqrt( ( gamma_dot / constitutive_j2_tausat_SinhFitA(matID) &
|
|
)**(2.0_pReal / constitutive_j2_tausat_SinhFitD(matID)) &
|
|
+ 1.0_pReal ) &
|
|
) & ! asinh(K) = ln(K + sqrt(K^2 +1))
|
|
)**(1.0_pReal / constitutive_j2_tausat_SinhFitC(matID)) &
|
|
/ ( constitutive_j2_tausat_SinhFitB(matID) &
|
|
* (gamma_dot / constitutive_j2_gdot0(matID))**(1.0_pReal / constitutive_j2_n(matID)) &
|
|
) &
|
|
)
|
|
endif
|
|
hardening = ( constitutive_j2_h0(matID) + constitutive_j2_h0_slopeLnRate(matID) * log(gamma_dot) ) &
|
|
* abs( 1.0_pReal - state(ipc,ip,el)%p(1)/saturation )**constitutive_j2_a(matID) &
|
|
* sign(1.0_pReal, 1.0_pReal - state(ipc,ip,el)%p(1)/saturation)
|
|
else
|
|
hardening = 0.0_pReal
|
|
endif
|
|
|
|
constitutive_j2_dotState = hardening * gamma_dot
|
|
|
|
end function constitutive_j2_dotState
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return array of constitutive results
|
|
!--------------------------------------------------------------------------------------------------
|
|
pure function constitutive_j2_postResults(Tstar_v,state,ipc,ip,el)
|
|
use prec, only: &
|
|
p_vec
|
|
use math, only: &
|
|
math_mul6x6
|
|
use mesh, only: &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_maxNgrains, &
|
|
material_phase, &
|
|
phase_plasticityInstance, &
|
|
phase_Noutput
|
|
|
|
implicit none
|
|
real(pReal), dimension(6), intent(in) :: &
|
|
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
integer(pInt), intent(in) :: &
|
|
ipc, & !< component-ID of integration point
|
|
ip, & !< integration point
|
|
el !< element
|
|
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
|
|
state !< microstructure state
|
|
|
|
real(pReal), dimension(constitutive_j2_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
|
constitutive_j2_postResults
|
|
|
|
real(pReal), dimension(6) :: &
|
|
Tstar_dev_v ! deviatoric part of the 2nd Piola Kirchhoff stress tensor in Mandel notation
|
|
real(pReal) :: &
|
|
norm_Tstar_dev ! euclidean norm of Tstar_dev
|
|
integer(pInt) :: &
|
|
matID, &
|
|
o, &
|
|
c
|
|
|
|
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate deviatoric part of 2nd Piola-Kirchhoff stress and its norm
|
|
Tstar_dev_v(1:3) = Tstar_v(1:3) - sum(Tstar_v(1:3))/3.0_pReal
|
|
Tstar_dev_v(4:6) = Tstar_v(4:6)
|
|
norm_Tstar_dev = sqrt(math_mul6x6(Tstar_dev_v,Tstar_dev_v))
|
|
|
|
c = 0_pInt
|
|
constitutive_j2_postResults = 0.0_pReal
|
|
|
|
outputsLoop: do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
|
|
select case(constitutive_j2_output(o,matID))
|
|
case ('flowstress')
|
|
constitutive_j2_postResults(c+1_pInt) = state(ipc,ip,el)%p(1)
|
|
c = c + 1_pInt
|
|
case ('strainrate')
|
|
constitutive_j2_postResults(c+1_pInt) = &
|
|
constitutive_j2_gdot0(matID) * ( sqrt(1.5_pReal) * norm_Tstar_dev &
|
|
/ &!----------------------------------------------------------------------------------
|
|
(constitutive_j2_fTaylor(matID) * state(ipc,ip,el)%p(1)) ) ** constitutive_j2_n(matID)
|
|
c = c + 1_pInt
|
|
end select
|
|
enddo outputsLoop
|
|
|
|
end function constitutive_j2_postResults
|
|
|
|
end module constitutive_j2
|