859 lines
32 KiB
Python
859 lines
32 KiB
Python
import copy
|
||
import multiprocessing as mp
|
||
from functools import partial
|
||
|
||
import numpy as np
|
||
from scipy import ndimage,spatial
|
||
|
||
from . import environment
|
||
from . import Rotation
|
||
from . import VTK
|
||
from . import util
|
||
from . import grid_filters
|
||
|
||
|
||
class Geom:
|
||
"""Geometry definition for grid solvers."""
|
||
|
||
def __init__(self,microstructure,size,origin=[0.0,0.0,0.0],homogenization=1,comments=[]):
|
||
"""
|
||
New geometry definition from array of microstructures and size.
|
||
|
||
Parameters
|
||
----------
|
||
microstructure : numpy.ndarray
|
||
Microstructure array (3D)
|
||
size : list or numpy.ndarray
|
||
Physical size of the microstructure in meter.
|
||
origin : list or numpy.ndarray, optional
|
||
Physical origin of the microstructure in meter.
|
||
homogenization : int, optional
|
||
Homogenization index.
|
||
comments : list of str, optional
|
||
Comment lines.
|
||
|
||
"""
|
||
self.set_microstructure(microstructure)
|
||
self.set_size(size)
|
||
self.set_origin(origin)
|
||
self.set_homogenization(homogenization)
|
||
self.set_comments(comments)
|
||
|
||
|
||
def __repr__(self):
|
||
"""Basic information on geometry definition."""
|
||
return util.srepr([
|
||
f'grid a b c: {util.srepr(self.get_grid ()," x ")}',
|
||
f'size x y z: {util.srepr(self.get_size ()," x ")}',
|
||
f'origin x y z: {util.srepr(self.get_origin()," ")}',
|
||
f'# materialpoints: {self.N_microstructure}',
|
||
f'max materialpoint: {np.nanmax(self.microstructure)}',
|
||
])
|
||
|
||
|
||
def __copy__(self):
|
||
"""Copy geometry."""
|
||
return copy.deepcopy(self)
|
||
|
||
|
||
def copy(self):
|
||
"""Copy geometry."""
|
||
return self.__copy__()
|
||
|
||
|
||
def duplicate(self,microstructure=None,size=None,origin=None,comments=None,autosize=False):
|
||
"""
|
||
Create a duplicate having updated microstructure, size, and origin.
|
||
|
||
Parameters
|
||
----------
|
||
microstructure : numpy.ndarray, optional
|
||
Microstructure array (3D).
|
||
size : list or numpy.ndarray, optional
|
||
Physical size of the microstructure in meter.
|
||
origin : list or numpy.ndarray, optional
|
||
Physical origin of the microstructure in meter.
|
||
comments : list of str, optional
|
||
Comment lines.
|
||
autosize : bool, optional
|
||
Ignore size parameter and rescale according to change of grid points.
|
||
|
||
"""
|
||
if size is not None and autosize:
|
||
raise ValueError('Auto-sizing conflicts with explicit size parameter.')
|
||
|
||
grid_old = self.get_grid()
|
||
dup = self.copy()
|
||
dup.set_microstructure(microstructure)
|
||
dup.set_origin(origin)
|
||
|
||
if comments is not None:
|
||
dup.set_comments(comments)
|
||
|
||
if size is not None:
|
||
dup.set_size(size)
|
||
elif autosize:
|
||
dup.set_size(dup.get_grid()/grid_old*self.get_size())
|
||
|
||
return dup
|
||
|
||
|
||
def diff(self,other):
|
||
"""
|
||
Report property differences of self relative to other.
|
||
|
||
Parameters
|
||
----------
|
||
other : Geom
|
||
Geometry to compare self against.
|
||
|
||
"""
|
||
message = []
|
||
if np.any(other.get_grid() != self.get_grid()):
|
||
message.append(util.delete(f'grid a b c: {util.srepr(other.get_grid()," x ")}'))
|
||
message.append(util.emph( f'grid a b c: {util.srepr( self.get_grid()," x ")}'))
|
||
|
||
if np.any(other.get_size() != self.get_size()):
|
||
message.append(util.delete(f'size x y z: {util.srepr(other.get_size()," x ")}'))
|
||
message.append(util.emph( f'size x y z: {util.srepr( self.get_size()," x ")}'))
|
||
|
||
if np.any(other.get_origin() != self.get_origin()):
|
||
message.append(util.delete(f'origin x y z: {util.srepr(other.get_origin()," ")}'))
|
||
message.append(util.emph( f'origin x y z: {util.srepr( self.get_origin()," ")}'))
|
||
|
||
if other.N_microstructure != self.N_microstructure:
|
||
message.append(util.delete(f'# materialpoints: {other.N_microstructure}'))
|
||
message.append(util.emph( f'# materialpoints: { self.N_microstructure}'))
|
||
|
||
if np.nanmax(other.microstructure) != np.nanmax(self.microstructure):
|
||
message.append(util.delete(f'max materialpoint: {np.nanmax(other.microstructure)}'))
|
||
message.append(util.emph( f'max materialpoint: {np.nanmax( self.microstructure)}'))
|
||
|
||
return util.return_message(message)
|
||
|
||
|
||
def set_comments(self,comments):
|
||
"""
|
||
Replace all existing comments.
|
||
|
||
Parameters
|
||
----------
|
||
comments : list of str
|
||
All comments.
|
||
|
||
"""
|
||
self.comments = []
|
||
self.add_comments(comments)
|
||
|
||
|
||
def add_comments(self,comments):
|
||
"""
|
||
Append comments to existing comments.
|
||
|
||
Parameters
|
||
----------
|
||
comments : list of str
|
||
New comments.
|
||
|
||
"""
|
||
self.comments += [str(c) for c in comments] if isinstance(comments,list) else [str(comments)]
|
||
|
||
|
||
def set_microstructure(self,microstructure):
|
||
"""
|
||
Replace the existing microstructure representation.
|
||
|
||
The complete microstructure is replaced (indcluding grid definition),
|
||
unless a masked array is provided in which case the grid dimensions
|
||
need to match and masked entries are not replaced.
|
||
|
||
Parameters
|
||
----------
|
||
microstructure : numpy.ndarray or numpy.ma.core.MaskedArray of shape (:,:,:)
|
||
Microstructure indices.
|
||
|
||
"""
|
||
if microstructure is not None:
|
||
if isinstance(microstructure,np.ma.core.MaskedArray):
|
||
self.microstructure = np.where(microstructure.mask,
|
||
self.microstructure,microstructure.data)
|
||
else:
|
||
self.microstructure = np.copy(microstructure)
|
||
|
||
if self.microstructure.dtype in np.sctypes['float'] and \
|
||
np.all(self.microstructure == self.microstructure.astype(int).astype(float)):
|
||
self.microstructure = self.microstructure.astype(int)
|
||
|
||
if len(self.microstructure.shape) != 3:
|
||
raise ValueError(f'Invalid microstructure shape {microstructure.shape}')
|
||
elif self.microstructure.dtype not in np.sctypes['float'] + np.sctypes['int']:
|
||
raise TypeError(f'Invalid microstructure data type {microstructure.dtype}')
|
||
|
||
|
||
def set_size(self,size):
|
||
"""
|
||
Replace the existing size information.
|
||
|
||
Parameters
|
||
----------
|
||
size : list or numpy.ndarray
|
||
Physical size of the microstructure in meter.
|
||
|
||
"""
|
||
if size is not None:
|
||
if len(size) != 3 or any(np.array(size) <= 0):
|
||
raise ValueError(f'Invalid size {size}')
|
||
else:
|
||
self.size = np.array(size)
|
||
|
||
|
||
def set_origin(self,origin):
|
||
"""
|
||
Replace the existing origin information.
|
||
|
||
Parameters
|
||
----------
|
||
origin : list or numpy.ndarray
|
||
Physical origin of the microstructure in meter.
|
||
|
||
"""
|
||
if origin is not None:
|
||
if len(origin) != 3:
|
||
raise ValueError(f'Invalid origin {origin}')
|
||
else:
|
||
self.origin = np.array(origin)
|
||
|
||
|
||
def set_homogenization(self,homogenization):
|
||
"""
|
||
Replace the existing homogenization index.
|
||
|
||
Parameters
|
||
----------
|
||
homogenization : int
|
||
Homogenization index.
|
||
|
||
"""
|
||
if homogenization is not None:
|
||
if not isinstance(homogenization,int) or homogenization < 1:
|
||
raise TypeError(f'Invalid homogenization {homogenization}.')
|
||
else:
|
||
self.homogenization = homogenization
|
||
|
||
|
||
@property
|
||
def grid(self):
|
||
return self.get_grid()
|
||
|
||
|
||
@property
|
||
def N_microstructure(self):
|
||
return np.unique(self.microstructure).size
|
||
|
||
|
||
def get_microstructure(self):
|
||
"""Return the microstructure representation."""
|
||
return np.copy(self.microstructure)
|
||
|
||
|
||
def get_size(self):
|
||
"""Return the physical size in meter."""
|
||
return np.copy(self.size)
|
||
|
||
|
||
def get_origin(self):
|
||
"""Return the origin in meter."""
|
||
return np.copy(self.origin)
|
||
|
||
|
||
def get_grid(self):
|
||
"""Return the grid discretization."""
|
||
return np.asarray(self.microstructure.shape)
|
||
|
||
|
||
def get_homogenization(self):
|
||
"""Return the homogenization index."""
|
||
return self.homogenization
|
||
|
||
|
||
def get_comments(self):
|
||
"""Return the comments."""
|
||
return self.comments[:]
|
||
|
||
|
||
@staticmethod
|
||
def load_ASCII(fname):
|
||
"""
|
||
Read a geom file.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or file handle
|
||
Geometry file to read.
|
||
|
||
"""
|
||
try:
|
||
f = open(fname)
|
||
except TypeError:
|
||
f = fname
|
||
|
||
f.seek(0)
|
||
try:
|
||
header_length,keyword = f.readline().split()[:2]
|
||
header_length = int(header_length)
|
||
except ValueError:
|
||
header_length,keyword = (-1, 'invalid')
|
||
if not keyword.startswith('head') or header_length < 3:
|
||
raise TypeError('Header length information missing or invalid')
|
||
|
||
content = f.readlines()
|
||
|
||
comments = []
|
||
for i,line in enumerate(content[:header_length]):
|
||
items = line.split('#')[0].lower().strip().split()
|
||
key = items[0] if items else ''
|
||
if key == 'grid':
|
||
grid = np.array([ int(dict(zip(items[1::2],items[2::2]))[i]) for i in ['a','b','c']])
|
||
elif key == 'size':
|
||
size = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
|
||
elif key == 'origin':
|
||
origin = np.array([float(dict(zip(items[1::2],items[2::2]))[i]) for i in ['x','y','z']])
|
||
elif key == 'homogenization':
|
||
homogenization = int(items[1])
|
||
else:
|
||
comments.append(line.strip())
|
||
|
||
microstructure = np.empty(grid.prod()) # initialize as flat array
|
||
i = 0
|
||
for line in content[header_length:]:
|
||
items = line.split('#')[0].split()
|
||
if len(items) == 3:
|
||
if items[1].lower() == 'of':
|
||
items = np.ones(int(items[0]))*float(items[2])
|
||
elif items[1].lower() == 'to':
|
||
items = np.linspace(int(items[0]),int(items[2]),
|
||
abs(int(items[2])-int(items[0]))+1,dtype=float)
|
||
else: items = list(map(float,items))
|
||
else: items = list(map(float,items))
|
||
microstructure[i:i+len(items)] = items
|
||
i += len(items)
|
||
|
||
if i != grid.prod():
|
||
raise TypeError(f'Invalid file: expected {grid.prod()} entries, found {i}')
|
||
|
||
if not np.any(np.mod(microstructure,1) != 0.0): # no float present
|
||
microstructure = microstructure.astype('int')
|
||
|
||
return Geom(microstructure.reshape(grid,order='F'),size,origin,homogenization,comments)
|
||
|
||
|
||
@staticmethod
|
||
def load(fname):
|
||
"""
|
||
Read a VTK rectilinear grid.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or or pathlib.Path
|
||
Geometry file to read.
|
||
Valid extension is .vtr, it will be appended if not given.
|
||
|
||
"""
|
||
v = VTK.load(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr')
|
||
comments = v.get_comments()
|
||
grid = np.array(v.vtk_data.GetDimensions())-1
|
||
bbox = np.array(v.vtk_data.GetBounds()).reshape(3,2).T
|
||
size = bbox[1] - bbox[0]
|
||
|
||
return Geom(v.get('materialpoint').reshape(grid,order='F'),size,bbox[0],comments=comments)
|
||
|
||
|
||
@staticmethod
|
||
def _find_closest_seed(seeds, weights, point):
|
||
return np.argmin(np.sum((np.broadcast_to(point,(len(seeds),3))-seeds)**2,axis=1) - weights)
|
||
|
||
@staticmethod
|
||
def from_Laguerre_tessellation(grid,size,seeds,weights,periodic=True):
|
||
"""
|
||
Generate geometry from Laguerre tessellation.
|
||
|
||
Parameters
|
||
----------
|
||
grid : int numpy.ndarray of shape (3)
|
||
Number of grid points in x,y,z direction.
|
||
size : list or numpy.ndarray of shape (3)
|
||
Physical size of the microstructure in meter.
|
||
seeds : numpy.ndarray of shape (:,3)
|
||
Position of the seed points in meter. All points need to lay within the box.
|
||
weights : numpy.ndarray of shape (seeds.shape[0])
|
||
Weights of the seeds. Setting all weights to 1.0 gives a standard Voronoi tessellation.
|
||
periodic : Boolean, optional
|
||
Perform a periodic tessellation. Defaults to True.
|
||
|
||
"""
|
||
if periodic:
|
||
weights_p = np.tile(weights,27) # Laguerre weights (1,2,3,1,2,3,...,1,2,3)
|
||
seeds_p = np.vstack((seeds -np.array([size[0],0.,0.]),seeds, seeds +np.array([size[0],0.,0.])))
|
||
seeds_p = np.vstack((seeds_p-np.array([0.,size[1],0.]),seeds_p,seeds_p+np.array([0.,size[1],0.])))
|
||
seeds_p = np.vstack((seeds_p-np.array([0.,0.,size[2]]),seeds_p,seeds_p+np.array([0.,0.,size[2]])))
|
||
coords = grid_filters.cell_coord0(grid*3,size*3,-size).reshape(-1,3)
|
||
else:
|
||
weights_p = weights
|
||
seeds_p = seeds
|
||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||
|
||
pool = mp.Pool(processes = int(environment.options['DAMASK_NUM_THREADS']))
|
||
result = pool.map_async(partial(Geom._find_closest_seed,seeds_p,weights_p), [coord for coord in coords])
|
||
pool.close()
|
||
pool.join()
|
||
microstructure = np.array(result.get())
|
||
|
||
if periodic:
|
||
microstructure = microstructure.reshape(grid*3)
|
||
microstructure = microstructure[grid[0]:grid[0]*2,grid[1]:grid[1]*2,grid[2]:grid[2]*2]%seeds.shape[0]
|
||
else:
|
||
microstructure = microstructure.reshape(grid)
|
||
|
||
return Geom(microstructure+1,size,homogenization=1,
|
||
comments=util.execution_stamp('Geom','from_Laguerre_tessellation'),
|
||
)
|
||
|
||
|
||
@staticmethod
|
||
def from_Voronoi_tessellation(grid,size,seeds,periodic=True):
|
||
"""
|
||
Generate geometry from Voronoi tessellation.
|
||
|
||
Parameters
|
||
----------
|
||
grid : int numpy.ndarray of shape (3)
|
||
Number of grid points in x,y,z direction.
|
||
size : list or numpy.ndarray of shape (3)
|
||
Physical size of the microstructure in meter.
|
||
seeds : numpy.ndarray of shape (:,3)
|
||
Position of the seed points in meter. All points need to lay within the box.
|
||
periodic : Boolean, optional
|
||
Perform a periodic tessellation. Defaults to True.
|
||
|
||
"""
|
||
coords = grid_filters.cell_coord0(grid,size).reshape(-1,3)
|
||
KDTree = spatial.cKDTree(seeds,boxsize=size) if periodic else spatial.cKDTree(seeds)
|
||
devNull,microstructure = KDTree.query(coords)
|
||
|
||
return Geom(microstructure.reshape(grid)+1,size,homogenization=1,
|
||
comments=util.execution_stamp('Geom','from_Voronoi_tessellation'),
|
||
)
|
||
|
||
|
||
def save_ASCII(self,fname,compress=None):
|
||
"""
|
||
Writes a geom file.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str or file handle
|
||
Geometry file to write with extension '.geom'.
|
||
compress : bool, optional
|
||
Compress geometry with 'x of y' and 'a to b'.
|
||
|
||
"""
|
||
header = [f'{len(self.comments)+4} header'] + self.comments
|
||
header.append('grid a {} b {} c {}'.format(*self.get_grid()))
|
||
header.append('size x {} y {} z {}'.format(*self.get_size()))
|
||
header.append('origin x {} y {} z {}'.format(*self.get_origin()))
|
||
header.append(f'homogenization {self.get_homogenization()}')
|
||
|
||
grid = self.get_grid()
|
||
|
||
if compress is None:
|
||
plain = grid.prod()/self.N_microstructure < 250
|
||
else:
|
||
plain = not compress
|
||
|
||
if plain:
|
||
format_string = '%g' if self.microstructure.dtype in np.sctypes['float'] else \
|
||
'%{}i'.format(1+int(np.floor(np.log10(np.nanmax(self.microstructure)))))
|
||
np.savetxt(fname,
|
||
self.microstructure.reshape([grid[0],np.prod(grid[1:])],order='F').T,
|
||
header='\n'.join(header), fmt=format_string, comments='')
|
||
else:
|
||
try:
|
||
f = open(fname,'w')
|
||
except TypeError:
|
||
f = fname
|
||
|
||
compressType = None
|
||
former = start = -1
|
||
reps = 0
|
||
for current in self.microstructure.flatten('F'):
|
||
if abs(current - former) == 1 and (start - current) == reps*(former - current):
|
||
compressType = 'to'
|
||
reps += 1
|
||
elif current == former and start == former:
|
||
compressType = 'of'
|
||
reps += 1
|
||
else:
|
||
if compressType is None:
|
||
f.write('\n'.join(header)+'\n')
|
||
elif compressType == '.':
|
||
f.write(f'{former}\n')
|
||
elif compressType == 'to':
|
||
f.write(f'{start} to {former}\n')
|
||
elif compressType == 'of':
|
||
f.write(f'{reps} of {former}\n')
|
||
|
||
compressType = '.'
|
||
start = current
|
||
reps = 1
|
||
|
||
former = current
|
||
|
||
if compressType == '.':
|
||
f.write(f'{former}\n')
|
||
elif compressType == 'to':
|
||
f.write(f'{start} to {former}\n')
|
||
elif compressType == 'of':
|
||
f.write(f'{reps} of {former}\n')
|
||
|
||
|
||
def save(self,fname,compress=True):
|
||
"""
|
||
Generates vtk rectilinear grid.
|
||
|
||
Parameters
|
||
----------
|
||
fname : str, optional
|
||
Filename to write. If no file is given, a string is returned.
|
||
Valid extension is .vtr, it will be appended if not given.
|
||
compress : bool, optional
|
||
Compress with zlib algorithm. Defaults to True.
|
||
|
||
"""
|
||
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
|
||
v.add(self.microstructure.flatten(order='F'),'materialpoint')
|
||
v.add_comments(self.comments)
|
||
|
||
v.save(fname if str(fname).endswith('.vtr') else str(fname)+'.vtr',parallel=False,compress=compress)
|
||
|
||
|
||
def show(self):
|
||
"""Show on screen."""
|
||
v = VTK.from_rectilinearGrid(self.grid,self.size,self.origin)
|
||
v.show()
|
||
|
||
|
||
def add_primitive(self,dimension,center,exponent,
|
||
fill=None,R=Rotation(),inverse=False,periodic=True):
|
||
"""
|
||
Inserts a primitive geometric object at a given position.
|
||
|
||
Parameters
|
||
----------
|
||
dimension : int or float numpy.ndarray of shape(3)
|
||
Dimension (diameter/side length) of the primitive. If given as
|
||
integers, grid point locations (cell centers) are addressed.
|
||
If given as floats, coordinates are addressed.
|
||
center : int or float numpy.ndarray of shape(3)
|
||
Center of the primitive. If given as integers, grid point
|
||
locations (cell centers) are addressed.
|
||
If given as floats, coordinates are addressed.
|
||
exponent : numpy.ndarray of shape(3) or float
|
||
Exponents for the three axis.
|
||
0 gives octahedron (ǀxǀ^(2^0) + ǀyǀ^(2^0) + ǀzǀ^(2^0) < 1)
|
||
1 gives a sphere (ǀxǀ^(2^1) + ǀyǀ^(2^1) + ǀzǀ^(2^1) < 1)
|
||
fill : int, optional
|
||
Fill value for primitive. Defaults to microstructure.max() + 1.
|
||
R : damask.Rotation, optional
|
||
Rotation of primitive. Defaults to no rotation.
|
||
inverse : Boolean, optional
|
||
Retain original microstructure within primitive and fill outside.
|
||
Defaults to False.
|
||
periodic : Boolean, optional
|
||
Repeat primitive over boundaries. Defaults to True.
|
||
|
||
"""
|
||
# normalized 'radius' and center
|
||
r = np.array(dimension)/self.grid/2.0 if np.array(dimension).dtype in np.sctypes['int'] else \
|
||
np.array(dimension)/self.size/2.0
|
||
c = (np.array(center) + .5)/self.grid if np.array(center).dtype in np.sctypes['int'] else \
|
||
(np.array(center) - self.origin)/self.size
|
||
|
||
coords = grid_filters.cell_coord0(self.grid,np.ones(3)) \
|
||
- ((np.ones(3)-(1./self.grid if np.array(center).dtype in np.sctypes['int'] else 0))*0.5 if periodic else c) # periodic center is always at CoG
|
||
coords_rot = R.broadcast_to(tuple(self.grid))@coords
|
||
|
||
with np.errstate(all='ignore'):
|
||
mask = np.where(np.sum(np.power(coords_rot/r,2.0**exponent),axis=-1) > 1.0,True,False)
|
||
|
||
if periodic: # translate back to center
|
||
mask = np.roll(mask,((c-np.ones(3)*.5)*self.grid).astype(int),(0,1,2))
|
||
|
||
fill_ = np.full_like(self.microstructure,np.nanmax(self.microstructure)+1 if fill is None else fill)
|
||
ms = np.ma.MaskedArray(fill_,np.logical_not(mask) if inverse else mask)
|
||
|
||
return self.duplicate(ms,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','add_primitive')],
|
||
)
|
||
|
||
|
||
def mirror(self,directions,reflect=False):
|
||
"""
|
||
Mirror microstructure along given directions.
|
||
|
||
Parameters
|
||
----------
|
||
directions : iterable containing str
|
||
Direction(s) along which the microstructure is mirrored.
|
||
Valid entries are 'x', 'y', 'z'.
|
||
reflect : bool, optional
|
||
Reflect (include) outermost layers. Defaults to False.
|
||
|
||
"""
|
||
valid = ['x','y','z']
|
||
if not set(directions).issubset(valid):
|
||
raise ValueError(f'Invalid direction {set(directions).difference(valid)} specified.')
|
||
|
||
limits = [None,None] if reflect else [-2,0]
|
||
ms = self.get_microstructure()
|
||
|
||
if 'z' in directions:
|
||
ms = np.concatenate([ms,ms[:,:,limits[0]:limits[1]:-1]],2)
|
||
if 'y' in directions:
|
||
ms = np.concatenate([ms,ms[:,limits[0]:limits[1]:-1,:]],1)
|
||
if 'x' in directions:
|
||
ms = np.concatenate([ms,ms[limits[0]:limits[1]:-1,:,:]],0)
|
||
|
||
return self.duplicate(ms,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','mirror')],
|
||
autosize=True)
|
||
|
||
|
||
def flip(self,directions):
|
||
"""
|
||
Flip microstructure along given directions.
|
||
|
||
Parameters
|
||
----------
|
||
directions : iterable containing str
|
||
Direction(s) along which the microstructure is flipped.
|
||
Valid entries are 'x', 'y', 'z'.
|
||
|
||
"""
|
||
valid = ['x','y','z']
|
||
if not set(directions).issubset(valid):
|
||
raise ValueError(f'Invalid direction {set(directions).difference(valid)} specified.')
|
||
|
||
ms = np.flip(self.microstructure, (valid.index(d) for d in directions if d in valid))
|
||
|
||
return self.duplicate(ms,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','flip')],
|
||
)
|
||
|
||
|
||
def scale(self,grid,periodic=True):
|
||
"""
|
||
Scale microstructure to new grid.
|
||
|
||
Parameters
|
||
----------
|
||
grid : numpy.ndarray of shape (3)
|
||
Number of grid points in x,y,z direction.
|
||
periodic : Boolean, optional
|
||
Assume geometry to be periodic. Defaults to True.
|
||
|
||
"""
|
||
return self.duplicate(ndimage.interpolation.zoom(
|
||
self.microstructure,
|
||
grid/self.get_grid(),
|
||
output=self.microstructure.dtype,
|
||
order=0,
|
||
mode=('wrap' if periodic else 'nearest'),
|
||
prefilter=False
|
||
),
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','scale')],
|
||
)
|
||
|
||
|
||
def clean(self,stencil=3,selection=None,periodic=True):
|
||
"""
|
||
Smooth microstructure by selecting most frequent index within given stencil at each location.
|
||
|
||
Parameters
|
||
----------
|
||
stencil : int, optional
|
||
Size of smoothing stencil.
|
||
selection : list, optional
|
||
Field values that can be altered. Defaults to all.
|
||
periodic : Boolean, optional
|
||
Assume geometry to be periodic. Defaults to True.
|
||
|
||
"""
|
||
def mostFrequent(arr,selection=None):
|
||
me = arr[arr.size//2]
|
||
if selection is None or me in selection:
|
||
unique, inverse = np.unique(arr, return_inverse=True)
|
||
return unique[np.argmax(np.bincount(inverse))]
|
||
else:
|
||
return me
|
||
|
||
return self.duplicate(ndimage.filters.generic_filter(
|
||
self.microstructure,
|
||
mostFrequent,
|
||
size=(stencil if selection is None else stencil//2*2+1,)*3,
|
||
mode=('wrap' if periodic else 'nearest'),
|
||
extra_keywords=dict(selection=selection),
|
||
).astype(self.microstructure.dtype),
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','clean')],
|
||
)
|
||
|
||
|
||
def renumber(self):
|
||
"""Renumber sorted microstructure indices to 1,...,N."""
|
||
renumbered = np.empty(self.get_grid(),dtype=self.microstructure.dtype)
|
||
for i, oldID in enumerate(np.unique(self.microstructure)):
|
||
renumbered = np.where(self.microstructure == oldID, i+1, renumbered)
|
||
|
||
return self.duplicate(renumbered,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','renumber')],
|
||
)
|
||
|
||
|
||
def rotate(self,R,fill=None):
|
||
"""
|
||
Rotate microstructure (pad if required).
|
||
|
||
Parameters
|
||
----------
|
||
R : damask.Rotation
|
||
Rotation to apply to the microstructure.
|
||
fill : int or float, optional
|
||
Microstructure index to fill the corners. Defaults to microstructure.max() + 1.
|
||
|
||
"""
|
||
if fill is None: fill = np.nanmax(self.microstructure) + 1
|
||
dtype = float if np.isnan(fill) or int(fill) != fill or self.microstructure.dtype==np.float else int
|
||
|
||
Eulers = R.as_Eulers(degrees=True)
|
||
microstructure_in = self.get_microstructure()
|
||
|
||
# These rotations are always applied in the reference coordinate system, i.e. (z,x,z) not (z,x',z'')
|
||
# see https://www.cs.utexas.edu/~theshark/courses/cs354/lectures/cs354-14.pdf
|
||
for angle,axes in zip(Eulers[::-1], [(0,1),(1,2),(0,1)]):
|
||
microstructure_out = ndimage.rotate(microstructure_in,angle,axes,order=0,
|
||
prefilter=False,output=dtype,cval=fill)
|
||
if np.prod(microstructure_in.shape) == np.prod(microstructure_out.shape):
|
||
# avoid scipy interpolation errors for rotations close to multiples of 90°
|
||
microstructure_in = np.rot90(microstructure_in,k=np.rint(angle/90.).astype(int),axes=axes)
|
||
else:
|
||
microstructure_in = microstructure_out
|
||
|
||
origin = self.origin-(np.asarray(microstructure_in.shape)-self.grid)*.5 * self.size/self.grid
|
||
|
||
return self.duplicate(microstructure_in,
|
||
origin=origin,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','rotate')],
|
||
autosize=True,
|
||
)
|
||
|
||
|
||
def canvas(self,grid=None,offset=None,fill=None):
|
||
"""
|
||
Crop or enlarge/pad microstructure.
|
||
|
||
Parameters
|
||
----------
|
||
grid : numpy.ndarray of shape (3)
|
||
Number of grid points in x,y,z direction.
|
||
offset : numpy.ndarray of shape (3)
|
||
Offset (measured in grid points) from old to new microstructure[0,0,0].
|
||
fill : int or float, optional
|
||
Microstructure index to fill the background. Defaults to microstructure.max() + 1.
|
||
|
||
"""
|
||
if offset is None: offset = 0
|
||
if fill is None: fill = np.nanmax(self.microstructure) + 1
|
||
dtype = float if int(fill) != fill or self.microstructure.dtype in np.sctypes['float'] else int
|
||
|
||
canvas = np.full(self.grid if grid is None else grid,fill,dtype)
|
||
|
||
LL = np.clip( offset, 0,np.minimum(self.grid, grid+offset))
|
||
UR = np.clip( offset+grid, 0,np.minimum(self.grid, grid+offset))
|
||
ll = np.clip(-offset, 0,np.minimum( grid,self.grid-offset))
|
||
ur = np.clip(-offset+self.grid,0,np.minimum( grid,self.grid-offset))
|
||
|
||
canvas[ll[0]:ur[0],ll[1]:ur[1],ll[2]:ur[2]] = self.microstructure[LL[0]:UR[0],LL[1]:UR[1],LL[2]:UR[2]]
|
||
|
||
return self.duplicate(canvas,
|
||
origin=self.origin+offset*self.size/self.grid,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','canvas')],
|
||
autosize=True,
|
||
)
|
||
|
||
|
||
def substitute(self,from_microstructure,to_microstructure):
|
||
"""
|
||
Substitute microstructure indices.
|
||
|
||
Parameters
|
||
----------
|
||
from_microstructure : iterable of ints
|
||
Microstructure indices to be substituted.
|
||
to_microstructure : iterable of ints
|
||
New microstructure indices.
|
||
|
||
"""
|
||
substituted = self.get_microstructure()
|
||
for from_ms,to_ms in zip(from_microstructure,to_microstructure):
|
||
substituted[self.microstructure==from_ms] = to_ms
|
||
|
||
return self.duplicate(substituted,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','substitute')],
|
||
)
|
||
|
||
|
||
def vicinity_offset(self,vicinity=1,offset=None,trigger=[],periodic=True):
|
||
"""
|
||
Offset microstructure index of points in the vicinity of xxx.
|
||
|
||
Different from themselves (or listed as triggers) within a given (cubic) vicinity,
|
||
i.e. within the region close to a grain/phase boundary.
|
||
ToDo: use include/exclude as in seeds.from_geom
|
||
|
||
Parameters
|
||
----------
|
||
vicinity : int, optional
|
||
Voxel distance checked for presence of other microstructure.
|
||
Defaults to 1.
|
||
offset : int, optional
|
||
Offset (positive or negative) to tag microstructure indices,
|
||
defaults to microstructure.max() + 1.
|
||
trigger : list of ints, optional
|
||
List of microstructure indices triggering a change.
|
||
Defaults to [], meaning that different neigboors trigger a change.
|
||
periodic : Boolean, optional
|
||
Assume geometry to be periodic. Defaults to True.
|
||
|
||
"""
|
||
def tainted_neighborhood(stencil,trigger):
|
||
|
||
me = stencil[stencil.shape[0]//2]
|
||
if len(trigger) == 0:
|
||
return np.any(stencil != me)
|
||
if me in trigger:
|
||
trigger = set(trigger)
|
||
trigger.remove(me)
|
||
trigger = list(trigger)
|
||
return np.any(np.in1d(stencil,np.array(trigger)))
|
||
|
||
offset_ = np.nanmax(self.microstructure) if offset is None else offset
|
||
mask = ndimage.filters.generic_filter(self.microstructure,
|
||
tainted_neighborhood,
|
||
size=1+2*vicinity,
|
||
mode='wrap' if periodic else 'nearest',
|
||
extra_keywords={'trigger':trigger})
|
||
microstructure = np.ma.MaskedArray(self.microstructure + offset_, np.logical_not(mask))
|
||
|
||
return self.duplicate(microstructure,
|
||
comments=self.get_comments()+[util.execution_stamp('Geom','vicinity_offset')],
|
||
)
|