DAMASK_EICMD/code/lattice.f90

1322 lines
73 KiB
Fortran
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Martin Diehl, Max-Planck-Institut für Eisenforschung GmbH
!> @brief defines lattice structure definitions, slip and twin system definitions, Schimd matrix
!> calculation and non-Schmid behavior
!--------------------------------------------------------------------------------------------------
module lattice
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), parameter, public :: &
LATTICE_maxNslipFamily = 6_pInt, & !< max # of slip system families over lattice structures
LATTICE_maxNtwinFamily = 4_pInt, & !< max # of twin system families over lattice structures
LATTICE_maxNslip = 33_pInt, & !< max # of slip systems over lattice structures
LATTICE_maxNtwin = 24_pInt, & !< max # of twin systems over lattice structures
LATTICE_maxNinteraction = 42_pInt, & !< max # of interaction types (in hardening matrix part)
LATTICE_maxNnonSchmid = 6_pInt !< max # of non schmid contributions over lattice structures
integer(pInt), allocatable, dimension(:,:), protected, public :: &
lattice_NslipSystem, & !< total # of slip systems in each family
lattice_NtwinSystem !< total # of twin systems in each family
integer(pInt), allocatable, dimension(:,:,:), protected, public :: &
lattice_interactionSlipSlip, & !< Slip--slip interaction type
lattice_interactionSlipTwin, & !< Slip--twin interaction type
lattice_interactionTwinSlip, & !< Twin--slip interaction type
lattice_interactionTwinTwin !< Twin--twin interaction type
real(pReal), allocatable, dimension(:,:,:,:,:), protected, public :: &
lattice_Sslip !< Schmid and non-Schmid matrices
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
lattice_Sslip_v !< Mandel notation of lattice_Sslip
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
lattice_sn, & !< normal direction of slip system
lattice_sd, & !< slip direction of slip system
lattice_st !< sd x sn
! rotation and Schmid matrices, normal, shear direction and d x n of twin systems
real(pReal), allocatable, dimension(:,:,:,:), protected, public :: &
lattice_Stwin, &
lattice_Qtwin
real(pReal), allocatable, dimension(:,:,:), protected, public :: &
lattice_Stwin_v, &
lattice_tn, &
lattice_td, &
lattice_tt
real(pReal), allocatable, dimension(:,:), protected, public :: &
lattice_shearTwin !< characteristic twin shear
integer(pInt), allocatable, dimension(:), protected, public :: &
lattice_NnonSchmid !< total # of non-Schmid contributions for each structure
!--------------------------------------------------------------------------------------------------
! fcc
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
LATTICE_fcc_NslipSystem = int([12, 0, 0, 0, 0, 0],pInt) !< total # of slip systems per family for fcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_fcc_NtwinSystem = int([12, 0, 0, 0],pInt) !< total # of twin systems per family for fcc
integer(pInt), parameter, private :: &
lattice_fcc_Nslip = 12_pInt, & ! sum(lattice_fcc_NslipSystem), & !< total # of slip systems for fcc
lattice_fcc_Ntwin = 12_pInt, & ! sum(lattice_fcc_NtwinSystem) !< total # of twin systems for fcc
lattice_fcc_NnonSchmid = 0_pInt !< total # of non-Schmid contributions for fcc
real(pReal), dimension(3+3,lattice_fcc_Nslip), parameter, private :: &
lattice_fcc_systemSlip = reshape(real([&
! Slip direction Plane normal
0, 1,-1, 1, 1, 1, &
-1, 0, 1, 1, 1, 1, &
1,-1, 0, 1, 1, 1, &
0,-1,-1, -1,-1, 1, &
1, 0, 1, -1,-1, 1, &
-1, 1, 0, -1,-1, 1, &
0,-1, 1, 1,-1,-1, &
-1, 0,-1, 1,-1,-1, &
1, 1, 0, 1,-1,-1, &
0, 1, 1, -1, 1,-1, &
1, 0,-1, -1, 1,-1, &
-1,-1, 0, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt,lattice_fcc_Nslip]) !< Slip system <110>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(3+3,lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_systemTwin = reshape(real( [&
-2, 1, 1, 1, 1, 1, &
1,-2, 1, 1, 1, 1, &
1, 1,-2, 1, 1, 1, &
2,-1, 1, -1,-1, 1, &
-1, 2, 1, -1,-1, 1, &
-1,-1,-2, -1,-1, 1, &
-2,-1,-1, 1,-1,-1, &
1, 2,-1, 1,-1,-1, &
1,-1, 2, 1,-1,-1, &
2, 1,-1, -1, 1,-1, &
-1,-2,-1, -1, 1,-1, &
-1, 1, 2, -1, 1,-1 &
],pReal),[ 3_pInt + 3_pInt ,lattice_fcc_Ntwin]) !< Twin system <112>{111} directions. Sorted according to Eisenlohr & Hantcherli
real(pReal), dimension(lattice_fcc_Ntwin), parameter, private :: &
lattice_fcc_shearTwin = 0.5_pReal*sqrt(2.0_pReal) !< Twin system <112>{111} ??? Sorted according to Eisenlohr & Hantcherli
integer(pInt), dimension(2_pInt,lattice_fcc_Ntwin), parameter, public :: &
lattice_fcc_twinNucleationSlipPair = reshape(int( [&
2,3, &
1,3, &
1,2, &
5,6, &
4,6, &
4,5, &
8,9, &
7,9, &
7,8, &
11,12, &
10,12, &
10,11 &
],pInt),[2_pInt,lattice_fcc_Ntwin])
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Nslip), parameter, public :: &
lattice_fcc_interactionSlipSlip = reshape(int( [&
1,2,2,4,6,5,3,5,5,4,5,6, & ! ---> slip
2,1,2,6,4,5,5,4,6,5,3,5, & ! |
2,2,1,5,5,3,5,6,4,6,5,4, & ! |
4,6,5,1,2,2,4,5,6,3,5,5, & ! v slip
6,4,5,2,1,2,5,3,5,5,4,6, &
5,5,3,2,2,1,6,5,4,5,6,4, &
3,5,5,4,5,6,1,2,2,4,6,5, &
5,4,6,5,3,5,2,1,2,6,4,5, &
5,6,4,6,5,4,2,2,1,5,5,3, &
4,5,6,3,5,5,4,6,5,1,2,2, &
5,3,5,5,4,6,6,4,5,2,1,2, &
6,5,4,5,6,4,5,5,3,2,2,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Nslip],order=[2,1]) !< Slip--slip interaction types for fcc
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: Hirth locks
!< 5: glissile junctions
!< 6: Lomer locks
integer(pInt), dimension(lattice_fcc_Nslip,lattice_fcc_Ntwin), parameter, public :: &
lattice_fcc_interactionSlipTwin = reshape(int( [&
1,1,1,3,3,3,2,2,2,3,3,3, & ! ---> twin
1,1,1,3,3,3,3,3,3,2,2,2, & ! |
1,1,1,2,2,2,3,3,3,3,3,3, & ! |
3,3,3,1,1,1,3,3,3,2,2,2, & ! v slip
3,3,3,1,1,1,2,2,2,3,3,3, &
2,2,2,1,1,1,3,3,3,3,3,3, &
2,2,2,3,3,3,1,1,1,3,3,3, &
3,3,3,2,2,2,1,1,1,3,3,3, &
3,3,3,3,3,3,1,1,1,2,2,2, &
3,3,3,2,2,2,3,3,3,1,1,1, &
2,2,2,3,3,3,3,3,3,1,1,1, &
3,3,3,3,3,3,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Nslip,lattice_fcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for fcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Nslip), parameter, public :: &
lattice_fcc_interactionTwinSlip = 1_pInt !< Twin--Slip interaction types for fcc
integer(pInt), dimension(lattice_fcc_Ntwin,lattice_fcc_Ntwin), parameter,public :: &
lattice_fcc_interactionTwinTwin = reshape(int( [&
1,1,1,2,2,2,2,2,2,2,2,2, & ! ---> twin
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
1,1,1,2,2,2,2,2,2,2,2,2, & ! |
2,2,2,1,1,1,2,2,2,2,2,2, & ! v twin
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,1,1,1,2,2,2,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,1,1,1,2,2,2, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1, &
2,2,2,2,2,2,2,2,2,1,1,1 &
],pInt),[lattice_fcc_Ntwin,lattice_fcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for fcc
!--------------------------------------------------------------------------------------------------
! bcc
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_bcc_NslipSystem = int([ 12, 12, 0, 0, 0, 0], pInt) !< total # of slip systems per family for bcc
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_bcc_NtwinSystem = int([ 12, 0, 0, 0], pInt) !< total # of twin systems per family for bcc
integer(pInt), parameter, private :: &
lattice_bcc_Nslip = 24_pInt, & ! sum(lattice_bcc_NslipSystem), & !< total # of slip systems for bcc
lattice_bcc_Ntwin = 12_pInt, & ! sum(lattice_bcc_NtwinSystem) !< total # of twin systems for bcc
lattice_bcc_NnonSchmid = 6_pInt !< # of non-Schmid contributions for bcc. 6 known non schmid contributions for BCC (A. Koester, A. Ma, A. Hartmaier 2012)
real(pReal), dimension(3+3,lattice_bcc_Nslip), parameter, private :: &
lattice_bcc_systemSlip = reshape(real([&
! Slip direction Plane normal
! Slip system <111>{110}
1,-1, 1, 0, 1, 1, &
-1,-1, 1, 0, 1, 1, &
1, 1, 1, 0,-1, 1, &
-1, 1, 1, 0,-1, 1, &
-1, 1, 1, 1, 0, 1, &
-1,-1, 1, 1, 0, 1, &
1, 1, 1, -1, 0, 1, &
1,-1, 1, -1, 0, 1, &
-1, 1, 1, 1, 1, 0, &
-1, 1,-1, 1, 1, 0, &
1, 1, 1, -1, 1, 0, &
1, 1,-1, -1, 1, 0, &
! Slip system <111>{112}
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
! Slip system <111>{123}
! 1, 1,-1, 1, 2, 3, &
! 1,-1, 1, -1, 2, 3, &
! -1, 1, 1, 1,-2, 3, &
! 1, 1, 1, 1, 2,-3, &
! 1,-1, 1, 1, 3, 2, &
! 1, 1,-1, -1, 3, 2, &
! 1, 1, 1, 1,-3, 2, &
! -1, 1, 1, 1, 3,-2, &
! 1, 1,-1, 2, 1, 3, &
! 1,-1, 1, -2, 1, 3, &
! -1, 1, 1, 2,-1, 3, &
! 1, 1, 1, 2, 1,-3, &
! 1,-1, 1, 2, 3, 1, &
! 1, 1,-1, -2, 3, 1, &
! 1, 1, 1, 2,-3, 1, &
! -1, 1, 1, 2, 3,-1, &
! -1, 1, 1, 3, 1, 2, &
! 1, 1, 1, -3, 1, 2, &
! 1, 1,-1, 3,-1, 2, &
! 1,-1, 1, 3, 1,-2, &
! -1, 1, 1, 3, 2, 1, &
! 1, 1, 1, -3, 2, 1, &
! 1, 1,-1, 3,-2, 1, &
! 1,-1, 1, 3, 2,-1 &
],pReal),[ 3_pInt + 3_pInt ,lattice_bcc_Nslip])
real(pReal), dimension(3+3,lattice_bcc_Ntwin), parameter, private :: &
lattice_bcc_systemTwin = reshape(real([&
! Twin system <111>{112}
-1, 1, 1, 2, 1, 1, &
1, 1, 1, -2, 1, 1, &
1, 1,-1, 2,-1, 1, &
1,-1, 1, 2, 1,-1, &
1,-1, 1, 1, 2, 1, &
1, 1,-1, -1, 2, 1, &
1, 1, 1, 1,-2, 1, &
-1, 1, 1, 1, 2,-1, &
1, 1,-1, 1, 1, 2, &
1,-1, 1, -1, 1, 2, &
-1, 1, 1, 1,-1, 2, &
1, 1, 1, 1, 1,-2 &
],pReal),[ 3_pInt + 3_pInt,lattice_bcc_Ntwin])
real(pReal), dimension(lattice_bcc_Ntwin), parameter, private :: &
lattice_bcc_shearTwin = 0.5_pReal*sqrt(2.0_pReal)
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Nslip), parameter, public :: &
lattice_bcc_interactionSlipSlip = reshape(int( [&
1,2,6,6,5,4,4,3,4,3,5,4, 6,6,4,3,3,4,6,6,4,3,6,6, & ! ---> slip
2,1,6,6,4,3,5,4,5,4,4,3, 6,6,3,4,4,3,6,6,3,4,6,6, & ! |
6,6,1,2,4,5,3,4,4,5,3,4, 4,3,6,6,6,6,3,4,6,6,4,3, & ! |
6,6,2,1,3,4,4,5,3,4,4,5, 3,4,6,6,6,6,4,3,6,6,3,4, & ! v slip
5,4,4,3,1,2,6,6,3,4,5,4, 3,6,4,6,6,4,6,3,4,6,3,6, &
4,3,5,4,2,1,6,6,4,5,4,3, 4,6,3,6,6,3,6,4,3,6,4,6, &
4,5,3,4,6,6,1,2,5,4,3,4, 6,3,6,4,4,6,3,6,6,4,6,3, &
3,4,4,5,6,6,2,1,4,3,4,5, 6,4,6,3,3,6,4,6,6,3,6,4, &
4,5,4,3,3,4,5,4,1,2,6,6, 3,6,6,4,4,6,6,3,6,4,3,6, &
3,4,5,4,4,5,4,3,2,1,6,6, 4,6,6,3,3,6,6,4,6,3,4,6, &
5,4,3,4,5,4,3,4,6,6,1,2, 6,3,4,6,6,4,3,6,4,6,6,3, &
4,3,4,5,4,3,4,5,6,6,2,1, 6,4,3,6,6,3,4,6,3,6,6,4, &
!
6,6,4,3,3,4,6,6,3,4,6,6, 1,5,6,6,5,6,6,3,5,6,3,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 5,1,6,6,6,5,3,6,6,5,6,3, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,6,1,5,6,3,5,6,3,6,5,6, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,6,5,1,3,6,6,5,6,3,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 5,6,6,3,1,6,5,6,5,3,6,6, &
4,3,6,6,4,3,6,6,6,6,4,3, 6,5,3,6,6,1,6,5,3,5,6,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,5,6,5,6,1,6,6,6,5,3, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,6,5,6,5,6,1,6,6,3,5, &
4,3,6,6,4,3,6,6,6,6,4,3, 5,6,3,6,5,3,6,6,1,6,6,5, &
3,4,6,6,6,6,4,3,4,3,6,6, 6,5,6,3,3,5,6,6,6,1,5,6, &
6,6,4,3,3,4,6,6,3,4,6,6, 3,6,5,6,6,6,5,3,6,5,1,6, &
6,6,3,4,6,6,3,4,6,6,3,4, 6,3,6,5,6,6,3,5,5,6,6,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Nslip],order=[2,1]) !< Slip--slip interaction types for bcc from Queyreau et al. Int J Plast 25 (2009) 361377
!< 1: self interaction
!< 2: coplanar interaction
!< 3: collinear interaction
!< 4: mixed-asymmetrical junction
!< 5: mixed-symmetrical junction
!< 6: edge junction
integer(pInt), dimension(lattice_bcc_Nslip,lattice_bcc_Ntwin), parameter, public :: &
lattice_bcc_interactionSlipTwin = reshape(int( [&
3,3,3,2,2,3,3,3,3,2,3,3, & ! ---> twin
3,3,2,3,3,2,3,3,2,3,3,3, & ! |
3,2,3,3,3,3,2,3,3,3,3,2, & ! |
2,3,3,3,3,3,3,2,3,3,2,3, & ! v slip
2,3,3,3,3,3,3,2,3,3,2,3, &
3,3,2,3,3,2,3,3,2,3,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,3,2,2,3,3,3,3,2,3,3, &
2,3,3,3,3,3,3,2,3,3,2,3, &
3,3,3,2,2,3,3,3,3,2,3,3, &
3,2,3,3,3,3,2,3,3,3,3,2, &
3,3,2,3,3,2,3,3,2,3,3,3, &
!
1,3,3,3,3,3,3,2,3,3,2,3, &
3,1,3,3,3,3,2,3,3,3,3,2, &
3,3,1,3,3,2,3,3,2,3,3,3, &
3,3,3,1,2,3,3,3,3,2,3,3, &
3,3,3,2,1,3,3,3,3,2,3,3, &
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Nslip,lattice_bcc_Ntwin],order=[2,1]) !< Slip--twin interaction types for bcc
!< 1: coplanar interaction
!< 2: screw trace between slip system and twin habit plane (easy cross slip)
!< 3: other interaction
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Nslip), parameter, public :: &
lattice_bcc_interactionTwinSlip = 1_pInt !< Twin--slip interaction types for bcc @todo not implemented yet
integer(pInt), dimension(lattice_bcc_Ntwin,lattice_bcc_Ntwin), parameter, public :: &
lattice_bcc_interactionTwinTwin = reshape(int( [&
1,3,3,3,3,3,3,2,3,3,2,3, & ! ---> twin
3,1,3,3,3,3,2,3,3,3,3,2, & ! |
3,3,1,3,3,2,3,3,2,3,3,3, & ! |
3,3,3,1,2,3,3,3,3,2,3,3, & ! v twin
3,3,3,2,1,3,3,3,3,2,3,3, &
3,3,2,3,3,1,3,3,2,3,3,3, &
3,2,3,3,3,3,1,3,3,3,3,2, &
2,3,3,3,3,3,3,1,3,3,2,3, &
3,3,2,3,3,2,3,3,1,3,3,3, &
3,3,3,2,2,3,3,3,3,1,3,3, &
2,3,3,3,3,3,3,2,3,3,1,3, &
3,2,3,3,3,3,2,3,3,3,3,1 &
],pInt),[lattice_bcc_Ntwin,lattice_bcc_Ntwin],order=[2,1]) !< Twin--twin interaction types for bcc
!< 1: self interaction
!< 2: collinear interaction
!< 3: other interaction
!--------------------------------------------------------------------------------------------------
! hex
integer(pInt), dimension(lattice_maxNslipFamily), parameter, public :: &
lattice_hex_NslipSystem = int([ 3, 3, 3, 6, 12, 6],pInt) !< # of slip systems per family for hex
integer(pInt), dimension(lattice_maxNtwinFamily), parameter, public :: &
lattice_hex_NtwinSystem = int([ 6, 6, 6, 6],pInt) !< # of slip systems per family for hex
integer(pInt), parameter , private :: &
lattice_hex_Nslip = 33_pInt, & ! sum(lattice_hex_NslipSystem), !< total # of slip systems for hex
lattice_hex_Ntwin = 24_pInt, & ! sum(lattice_hex_NtwinSystem) !< total # of twin systems for hex
lattice_hex_NnonSchmid = 0_pInt !< # of non-Schmid contributions for hex
real(pReal), dimension(4+4,lattice_hex_Nslip), parameter, private :: &
lattice_hex_systemSlip = reshape(real([&
! Slip direction Plane normal
! Basal systems <11.0>{00.1} (independent of c/a-ratio, Bravais notation (4 coordinate base))
2, -1, -1, 0, 0, 0, 0, 1, &
-1, 2, -1, 0, 0, 0, 0, 1, &
-1, -1, 2, 0, 0, 0, 0, 1, &
! 1st type prismatic systems <11.0>{10.0} (independent of c/a-ratio)
2, -1, -1, 0, 0, 1, -1, 0, &
-1, 2, -1, 0, -1, 0, 1, 0, &
-1, -1, 2, 0, 1, -1, 0, 0, &
! 2nd type prismatic systems <10.0>{11.0} -- a slip; plane normals independent of c/a-ratio
0, 1, -1, 0, 2, -1, -1, 0, &
-1, 0, 1, 0, -1, 2, -1, 0, &
1, -1, 0, 0, -1, -1, 2, 0, &
! 1st type 1st order pyramidal systems <11.0>{-11.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 0, 0, 1, -1, 1, &
-1, 2, -1, 0, -1, 0, 1, 1, &
-1, -1, 2, 0, 1, -1, 0, 1, &
1, 1, -2, 0, -1, 1, 0, 1, &
-2, 1, 1, 0, 0, -1, 1, 1, &
1, -2, 1, 0, 1, 0, -1, 1, &
! pyramidal system: c+a slip <11.3>{-10.1} -- plane normals depend on the c/a-ratio
2, -1, -1, 3, -1, 1, 0, 1, &
1, -2, 1, 3, -1, 1, 0, 1, &
-1, -1, 2, 3, 1, 0, -1, 1, &
-2, 1, 1, 3, 1, 0, -1, 1, &
-1, 2, -1, 3, 0, -1, 1, 1, &
1, 1, -2, 3, 0, -1, 1, 1, &
-2, 1, 1, 3, 1, -1, 0, 1, &
-1, 2, -1, 3, 1, -1, 0, 1, &
1, 1, -2, 3, -1, 0, 1, 1, &
2, -1, -1, 3, -1, 0, 1, 1, &
1, -2, 1, 3, 0, 1, -1, 1, &
-1, -1, 2, 3, 0, 1, -1, 1, &
! pyramidal system: c+a slip <11.3>{-1-1.2} -- as for hexagonal ice (Castelnau et al. 1996, similar to twin system found below)
2, -1, -1, 3, -2, 1, 1, 2, & ! sorted according to similar twin system
-1, 2, -1, 3, 1, -2, 1, 2, & ! <11.3>{-1-1.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, -1, 2, 3, 1, 1, -2, 2, &
-2, 1, 1, 3, 2, -1, -1, 2, &
1, -2, 1, 3, -1, 2, -1, 2, &
1, 1, -2, 3, -1, -1, 2, 2 &
],pReal),[ 4_pInt + 4_pInt,lattice_hex_Nslip]) !< slip systems for hex sorted by A. Alankar & P. Eisenlohr
real(pReal), dimension(4+4,lattice_hex_Ntwin), parameter, private :: &
lattice_hex_systemTwin = reshape(real([&
! Compression or Tension =f(twinning shear=f(c/a)) for each metal ! (according to Yoo 1981)
1, -1, 0, 1, -1, 1, 0, 2, & ! <-10.1>{10.2} shear = (3-(c/a)^2)/(sqrt(3) c/a)
-1, 0, 1, 1, 1, 0, -1, 2, &
0, 1, -1, 1, 0, -1, 1, 2, &
-1, 1, 0, 1, 1, -1, 0, 2, &
1, 0, -1, 1, -1, 0, 1, 2, &
0, -1, 1, 1, 0, 1, -1, 2, &
!
2, -1, -1, 6, -2, 1, 1, 1, & ! <11.6>{-1-1.1} shear = 1/(c/a)
-1, 2, -1, 6, 1, -2, 1, 1, &
-1, -1, 2, 6, 1, 1, -2, 1, &
-2, 1, 1, 6, 2, -1, -1, 1, &
1, -2, 1, 6, -1, 2, -1, 1, &
1, 1, -2, 6, -1, -1, 2, 1, &
!
-1, 1, 0, -2, -1, 1, 0, 1, & !! <10.-2>{10.1} shear = (4(c/a)^2-9)/(4 sqrt(3) c/a)
1, 0, -1, -2, 1, 0, -1, 1, &
0, -1, 1, -2, 0, -1, 1, 1, &
1, -1, 0, -2, 1, -1, 0, 1, &
-1, 0, 1, -2, -1, 0, 1, 1, &
0, 1, -1, -2, 0, 1, -1, 1, &
!
2, -1, -1, -3, 2, -1, -1, 2, & ! <11.-3>{11.2} shear = 2((c/a)^2-2)/(3 c/a)
-1, 2, -1, -3, -1, 2, -1, 2, &
-1, -1, 2, -3, -1, -1, 2, 2, &
-2, 1, 1, -3, -2, 1, 1, 2, &
1, -2, 1, -3, 1, -2, 1, 2, &
1, 1, -2, -3, 1, 1, -2, 2 &
],pReal),[ 4_pInt + 4_pInt ,lattice_hex_Ntwin]) !< twin systems for hex, order follows Prof. Tom Bieler's scheme; but numbering in data was restarted from 1
integer(pInt), dimension(lattice_hex_Ntwin), parameter, private :: &
lattice_hex_shearTwin = reshape(int( [& ! indicator to formula further below
1, & ! <-10.1>{10.2}
1, &
1, &
1, &
1, &
1, &
2, & ! <11.6>{-1-1.1}
2, &
2, &
2, &
2, &
2, &
3, & ! <10.-2>{10.1}
3, &
3, &
3, &
3, &
3, &
4, & ! <11.-3>{11.2}
4, &
4, &
4, &
4, &
4 &
],pInt),[lattice_hex_Ntwin])
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Nslip), parameter, public :: &
lattice_hex_interactionSlipSlip = reshape(int( [&
1, 2, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! ---> slip
2, 1, 2, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
2, 2, 1, 3, 3, 3, 7, 7, 7, 13,13,13,13,13,13, 21,21,21,21,21,21,21,21,21,21,21,21, 31,31,31,31,31,31, & ! |
! v slip
6, 6, 6, 4, 5, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
6, 6, 6, 5, 4, 5, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
6, 6, 6, 5, 5, 4, 8, 8, 8, 14,14,14,14,14,14, 22,22,22,22,22,22,22,22,22,22,22,22, 32,32,32,32,32,32, &
!
12,12,12, 11,11,11, 9,10,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, &
12,12,12, 11,11,11, 10, 9,10, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, &
12,12,12, 11,11,11, 10,10, 9, 15,15,15,15,15,15, 23,23,23,23,23,23,23,23,23,23,23,23, 33,33,33,33,33,33, &
!
20,20,20, 19,19,19, 18,18,18, 16,17,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,16,17,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,16,17,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,16,17,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,16,17, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
20,20,20, 19,19,19, 18,18,18, 17,17,17,17,17,16, 24,24,24,24,24,24,24,24,24,24,24,24, 34,34,34,34,34,34, &
!
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 25,26,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,25,26,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,25,26,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,25,26,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,25,26,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,25,26,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,25,26,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,25,26,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,25,26,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,25,26,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,25,26, 35,35,35,35,35,35, &
30,30,30, 29,29,29, 28,28,28, 27,27,27,27,27,27, 26,26,26,26,26,26,26,26,26,26,26,25, 35,35,35,35,35,35, &
!
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 36,37,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,36,37,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,36,37,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,36,37,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,36,37, &
42,42,42, 41,41,41, 40,40,40, 39,39,39,39,39,39, 38,38,38,38,38,38,38,38,38,38,38,38, 37,37,37,37,37,36 &
!
],pInt),[lattice_hex_Nslip,lattice_hex_Nslip],order=[2,1]) !< Slip--slip interaction types for hex (32? in total)
integer(pInt), dimension(lattice_hex_Nslip,lattice_hex_Ntwin), parameter, public :: &
lattice_hex_interactionSlipTwin = reshape(int( [&
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! --> twin
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, & ! |
! v
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, & ! slip
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, &
!
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
9, 9, 9, 9, 9, 9, 10,10,10,10,10,10, 11,11,11,11,11,11, 12,12,12,12,12,12, &
!
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
13,13,13,13,13,13, 14,14,14,14,14,14, 15,15,15,15,15,15, 16,16,16,16,16,16, &
!
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
17,17,17,17,17,17, 18,18,18,18,18,18, 19,19,19,19,19,19, 20,20,20,20,20,20, &
!
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24, &
21,21,21,21,21,21, 22,22,22,22,22,22, 23,23,23,23,23,23, 24,24,24,24,24,24 &
!
],pInt),[lattice_hex_Nslip,lattice_hex_Ntwin],order=[2,1]) !< Slip--twin interaction types for hex (isotropic, 24 in total)
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Nslip), parameter, public :: &
lattice_hex_interactionTwinSlip = reshape(int( [&
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! --> slip
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! |
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! v
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, & ! twin
1, 1, 1, 5, 5, 5, 9, 9, 9, 13,13,13,13,13,13, 17,17,17,17,17,17,17,17,17,17,17,17, 21,21,21,21,21,21, &
!
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
2, 2, 2, 6, 6, 6, 10,10,10, 14,14,14,14,14,14, 18,18,18,18,18,18,18,18,18,18,18,18, 22,22,22,22,22,22, &
!
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
3, 3, 3, 7, 7, 7, 11,11,11, 15,15,15,15,15,15, 19,19,19,19,19,19,19,19,19,19,19,19, 23,23,23,23,23,23, &
!
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24, &
4, 4, 4, 8, 8, 8, 12,12,12, 16,16,16,16,16,16, 20,20,20,20,20,20,20,20,20,20,20,20, 24,24,24,24,24,24 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Nslip],order=[2,1]) !< Twin--twin interaction types for hex (isotropic, 20 in total)
integer(pInt), dimension(lattice_hex_Ntwin,lattice_hex_Ntwin), parameter, public :: &
lattice_hex_interactionTwinTwin = reshape(int( [&
1, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! ---> twin
2, 1, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! |
2, 2, 2, 1, 2, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, & ! v twin
2, 2, 2, 2, 1, 2, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
2, 2, 2, 2, 2, 1, 3, 3, 3, 3, 3, 3, 7, 7, 7, 7, 7, 7, 13,13,13,13,13,13, &
!
6, 6, 6, 6, 6, 6, 4, 5, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 4, 5, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 4, 5, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 4, 5, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 4, 5, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
6, 6, 6, 6, 6, 6, 5, 5, 5, 5, 5, 4, 8, 8, 8, 8, 8, 8, 14,14,14,14,14,14, &
!
12,12,12,12,12,12, 11,11,11,11,11,11, 9,10,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10, 9,10,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10, 9,10,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10, 9,10,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10, 9,10, 15,15,15,15,15,15, &
12,12,12,12,12,12, 11,11,11,11,11,11, 10,10,10,10,10, 9, 15,15,15,15,15,15, &
!
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 16,17,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,16,17,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,16,17,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,16,17,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,16,17, &
20,20,20,20,20,20, 19,19,19,19,19,19, 18,18,18,18,18,18, 17,17,17,17,17,16 &
],pInt),[lattice_hex_Ntwin,lattice_hex_Ntwin],order=[2,1]) !< Twin--slip interaction types for hex (isotropic, 16 in total)
real(pReal), dimension(:,:,:), allocatable, public, protected :: &
lattice_C66
real(pReal), dimension(:,:,:,:,:), allocatable, public, protected :: &
lattice_C3333
real(pReal), dimension(:), allocatable, public, protected :: &
lattice_mu, &
lattice_nu
enum, bind(c)
enumerator :: LATTICE_undefined_ID, &
LATTICE_iso_ID, &
LATTICE_fcc_ID, &
LATTICE_bcc_ID, &
LATTICE_hex_ID, &
LATTICE_ort_ID
end enum
integer(kind(LATTICE_undefined_ID)), dimension(:), allocatable, public, protected :: &
lattice_structure
integer(pInt), dimension(2), parameter, private :: &
lattice_NsymOperations = [24_pInt,12_pInt]
real(pReal), dimension(4,36), parameter, private :: &
lattice_symOperations = reshape([&
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! cubic symmetry operations
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, & ! 2-fold symmetry
0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
0.0_pReal, 0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, &
0.0_pReal, -0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
0.0_pReal, 0.7071067811865476_pReal, -0.7071067811865476_pReal, 0.0_pReal, &
0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, & ! 3-fold symmetry
-0.5_pReal, 0.5_pReal, 0.5_pReal, 0.5_pReal, &
0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
-0.5_pReal, -0.5_pReal, 0.5_pReal, 0.5_pReal, &
0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
-0.5_pReal, 0.5_pReal, -0.5_pReal, 0.5_pReal, &
0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
-0.5_pReal, 0.5_pReal, 0.5_pReal, -0.5_pReal, &
0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, & ! 4-fold symmetry
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, &
-0.7071067811865476_pReal, 0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, &
0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
-0.7071067811865476_pReal, 0.0_pReal, 0.7071067811865476_pReal, 0.0_pReal, &
0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal, &
-0.7071067811865476_pReal, 0.0_pReal, 0.0_pReal, 0.7071067811865476_pReal, &
1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal, & ! hexagonal symmetry operations
0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal, & ! 2-fold symmetry
0.0_pReal, 0.0_pReal, 1.0_pReal, 0.0_pReal, &
0.0_pReal, 0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
0.0_pReal, -0.5_pReal, 0.866025403784439_pReal, 0.0_pReal, &
0.0_pReal, 0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
0.0_pReal, -0.866025403784439_pReal, 0.5_pReal, 0.0_pReal, &
0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, & ! 6-fold symmetry
-0.866025403784439_pReal, 0.0_pReal, 0.0_pReal, 0.5_pReal, &
0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
-0.5_pReal, 0.0_pReal, 0.0_pReal, 0.866025403784439_pReal, &
0.0_pReal, 0.0_pReal, 0.0_pReal, 1.0_pReal &
],[4,36]) !< Symmetry operations as quaternions 24 for cubic, 12 for hexagonal = 36
! use this later on to substitute the matrix above
! if self.lattice == 'cubic':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [ 0.0, 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2) ],
! [ 0.0, 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2) ],
! [ 0.0, 0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
! [ 0.0,-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0 ],
! [ 0.5, 0.5, 0.5, 0.5 ],
! [-0.5, 0.5, 0.5, 0.5 ],
! [-0.5, 0.5, 0.5,-0.5 ],
! [-0.5, 0.5,-0.5, 0.5 ],
! [-0.5,-0.5, 0.5, 0.5 ],
! [-0.5,-0.5, 0.5,-0.5 ],
! [-0.5,-0.5,-0.5, 0.5 ],
! [-0.5, 0.5,-0.5,-0.5 ],
! [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [-0.5*math.sqrt(2), 0.0, 0.5*math.sqrt(2), 0.0 ],
! [-0.5*math.sqrt(2), 0.0,-0.5*math.sqrt(2), 0.0 ],
! [-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0, 0.0 ],
! [-0.5*math.sqrt(2),-0.5*math.sqrt(2), 0.0, 0.0 ],
! ]
! elif self.lattice == 'hexagonal':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [-0.5*math.sqrt(3), 0.0, 0.0, 0.5 ],
! [-0.5*math.sqrt(3), 0.0, 0.0,-0.5 ],
! [ 0.0, 0.5*math.sqrt(3), 0.5, 0.0 ],
! [ 0.0,-0.5*math.sqrt(3), 0.5, 0.0 ],
! [ 0.0, 0.5,-0.5*math.sqrt(3), 0.0 ],
! [ 0.0,-0.5,-0.5*math.sqrt(3), 0.0 ],
! [ 0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
! [-0.5, 0.0, 0.0, 0.5*math.sqrt(3) ],
! ]
! elif self.lattice == 'tetragonal':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! [ 0.0, 0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
! [ 0.0,-0.5*math.sqrt(2), 0.5*math.sqrt(2), 0.0 ],
! [ 0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! [-0.5*math.sqrt(2), 0.0, 0.0, 0.5*math.sqrt(2) ],
! ]
! elif self.lattice == 'orthorhombic':
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! [ 0.0,1.0,0.0,0.0 ],
! [ 0.0,0.0,1.0,0.0 ],
! [ 0.0,0.0,0.0,1.0 ],
! ]
! else:
! symQuats = [
! [ 1.0,0.0,0.0,0.0 ],
! ]
public :: &
lattice_init, &
lattice_qDisorientation, &
LATTICE_fcc_ID, &
LATTICE_bcc_ID, &
LATTICE_hex_ID
contains
!--------------------------------------------------------------------------------------------------
!> @brief Module initialization
!--------------------------------------------------------------------------------------------------
subroutine lattice_init
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use prec, only: &
tol_math_check
use IO, only: &
IO_open_file,&
IO_open_jobFile_stat, &
IO_countSections, &
IO_countTagInPart, &
IO_error, &
IO_timeStamp, &
IO_stringPos, &
IO_EOF, &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_EOF
use material, only: &
material_configfile, &
material_localFileExt, &
material_partPhase
use debug, only: &
debug_level, &
debug_lattice, &
debug_levelBasic
implicit none
integer(pInt), parameter :: FILEUNIT = 200_pInt
integer(pInt) :: Nphases
character(len=65536) :: &
tag = '', &
line = ''
integer(pInt), parameter :: MAXNCHUNKS = 2_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: section = 0_pInt,i
real(pReal), dimension(:), allocatable :: CoverA !< c/a ratio for hex type lattice
write(6,'(/,a)') ' <<<+- lattice init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! consistency checks
if (LATTICE_maxNslip /= maxval([lattice_fcc_Nslip,lattice_bcc_Nslip,lattice_hex_Nslip])) &
call IO_error(0_pInt,ext_msg = 'LATTICE_maxNslip')
if (LATTICE_maxNtwin /= maxval([lattice_fcc_Ntwin,lattice_bcc_Ntwin,lattice_hex_Ntwin])) &
call IO_error(0_pInt,ext_msg = 'LATTICE_maxNtwin')
if (LATTICE_maxNnonSchmid /= maxval([lattice_fcc_NnonSchmid,lattice_bcc_NnonSchmid,&
lattice_hex_NnonSchmid])) call IO_error(0_pInt,ext_msg = 'LATTICE_maxNnonSchmid')
if (LATTICE_maxNinteraction /= max(&
maxval(lattice_fcc_interactionSlipSlip), &
maxval(lattice_bcc_interactionSlipSlip), &
maxval(lattice_hex_interactionSlipSlip), &
!
maxval(lattice_fcc_interactionSlipTwin), &
maxval(lattice_bcc_interactionSlipTwin), &
maxval(lattice_hex_interactionSlipTwin), &
!
maxval(lattice_fcc_interactionTwinSlip), &
maxval(lattice_bcc_interactionTwinSlip), &
maxval(lattice_hex_interactionTwinSlip), &
!
maxval(lattice_fcc_interactionTwinTwin), &
maxval(lattice_bcc_interactionTwinTwin), &
maxval(lattice_hex_interactionTwinTwin))) &
call IO_error(0_pInt,ext_msg = 'LATTICE_maxNinteraction')
!--------------------------------------------------------------------------------------------------
! read from material configuration file
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ... open material.config file
Nphases = IO_countSections(FILEUNIT,material_partPhase)
allocate(lattice_structure(Nphases),source = LATTICE_undefined_ID)
allocate(lattice_C66(6,6,Nphases), source=0.0_pReal)
allocate(lattice_C3333(3,3,3,3,Nphases), source=0.0_pReal)
allocate(lattice_mu(Nphases), source=0.0_pReal)
allocate(lattice_nu(Nphases), source=0.0_pReal)
allocate(lattice_NnonSchmid(Nphases), source=0_pInt)
allocate(lattice_Sslip(3,3,1+2*lattice_maxNnonSchmid,lattice_maxNslip,Nphases),source=0.0_pReal)
allocate(lattice_Sslip_v(6,1+2*lattice_maxNnonSchmid,lattice_maxNslip,Nphases),source=0.0_pReal)
allocate(lattice_sd(3,lattice_maxNslip,Nphases),source=0.0_pReal)
allocate(lattice_st(3,lattice_maxNslip,Nphases),source=0.0_pReal)
allocate(lattice_sn(3,lattice_maxNslip,Nphases),source=0.0_pReal)
allocate(lattice_Qtwin(3,3,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_Stwin(3,3,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_Stwin_v(6,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_td(3,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_tt(3,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_tn(3,lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_shearTwin(lattice_maxNtwin,Nphases),source=0.0_pReal)
allocate(lattice_NslipSystem(lattice_maxNslipFamily,Nphases),source=0_pInt)
allocate(lattice_NtwinSystem(lattice_maxNtwinFamily,Nphases),source=0_pInt)
allocate(lattice_interactionSlipSlip(lattice_maxNslip,lattice_maxNslip,Nphases),source=0_pInt)! other:me
allocate(lattice_interactionSlipTwin(lattice_maxNslip,lattice_maxNtwin,Nphases),source=0_pInt)! other:me
allocate(lattice_interactionTwinSlip(lattice_maxNtwin,lattice_maxNslip,Nphases),source=0_pInt)! other:me
allocate(lattice_interactionTwinTwin(lattice_maxNtwin,lattice_maxNtwin,Nphases),source=0_pInt)! other:me
allocate(CoverA(Nphases),source=0.0_pReal)
rewind(fileUnit)
line = '' ! to have it initialized
section = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partPhase) ! wind forward to <Phase>
line = IO_read(fileUnit)
enddo
do while (trim(line) /= IO_EOF) ! read through sections of material part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
endif
if (section > 0_pInt) then
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('lattice_structure')
select case(trim(IO_lc(IO_stringValue(line,positions,2_pInt))))
case('iso','isotropic')
lattice_structure(section) = LATTICE_iso_ID
case('fcc')
lattice_structure(section) = LATTICE_fcc_ID
case('bcc')
lattice_structure(section) = LATTICE_bcc_ID
case('hex','hexagonal')
lattice_structure(section) = LATTICE_hex_ID
case('ort','orthorombic')
lattice_structure(section) = LATTICE_ort_ID
case default
!there will be an error here
end select
case ('c11')
lattice_C66(1,1,section) = IO_floatValue(line,positions,2_pInt)
case ('c12')
lattice_C66(1,2,section) = IO_floatValue(line,positions,2_pInt)
case ('c13')
lattice_C66(1,3,section) = IO_floatValue(line,positions,2_pInt)
case ('c22')
lattice_C66(2,2,section) = IO_floatValue(line,positions,2_pInt)
case ('c23')
lattice_C66(2,3,section) = IO_floatValue(line,positions,2_pInt)
case ('c33')
lattice_C66(3,3,section) = IO_floatValue(line,positions,2_pInt)
case ('c44')
lattice_C66(4,4,section) = IO_floatValue(line,positions,2_pInt)
case ('c55')
lattice_C66(5,5,section) = IO_floatValue(line,positions,2_pInt)
case ('c66')
lattice_C66(6,6,section) = IO_floatValue(line,positions,2_pInt)
case ('covera_ratio','c/a_ratio','c/a')
CoverA(section) = IO_floatValue(line,positions,2_pInt)
if (CoverA(section) < 1.0_pReal .or. CoverA(section) > 2.0_pReal) call IO_error(206_pInt) ! checking physical significance of c/a
end select
endif
enddo
if (iand(debug_level(debug_lattice),debug_levelBasic) /= 0_pInt) then
write(6,'(a16,1x,i5)') ' # phases:',Nphases
endif
do i = 1_pInt,Nphases
call lattice_initializeStructure(i, CoverA(i))
enddo
deallocate(CoverA)
end subroutine lattice_init
!--------------------------------------------------------------------------------------------------
!> @brief Calculation of Schmid matrices, etc.
!--------------------------------------------------------------------------------------------------
subroutine lattice_initializeStructure(myPhase,CoverA)
use prec, only: &
tol_math_check
use math, only: &
math_vectorproduct, &
math_tensorproduct, &
math_norm3, &
math_mul33x3, &
math_trace33, &
math_symmetric33, &
math_Mandel33to6, &
math_Mandel3333to66, &
math_Voigt66to3333, &
math_axisAngleToR, &
INRAD
use IO, only: &
IO_error
implicit none
integer(pInt), intent(in) :: myPhase
real(pReal), intent(in) :: CoverA
real(pReal), dimension(3) :: &
sdU, snU, &
np, nn
real(pReal), dimension(3,lattice_maxNslip) :: &
sd, sn
real(pReal), dimension(3,3,2,lattice_maxNnonSchmid,lattice_maxNslip) :: &
sns
real(pReal), dimension(3,lattice_maxNtwin) :: &
td, tn
real(pReal), dimension(lattice_maxNtwin) :: &
ts
integer(pInt) :: &
i,j, &
myNslip, myNtwin
lattice_C66(1:6,1:6,myPhase) = lattice_symmetrizeC66(lattice_structure(myPhase),lattice_C66(1:6,1:6,myPhase))
lattice_mu(myPhase) = 0.2_pReal * (lattice_C66(1,1,myPhase) - lattice_C66(1,2,myPhase) + 3.0_pReal*lattice_C66(4,4,myPhase)) ! (C11iso-C12iso)/2 with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
lattice_nu(myPhase) = (lattice_C66(1,1,myPhase) + 4.0_pReal*lattice_C66(1,2,myPhase) - 2.0_pReal*lattice_C66(4,4,myPhase)) &
/ (4.0_pReal*lattice_C66(1,1,myPhase) + 6.0_pReal*lattice_C66(1,2,myPhase) + 2.0_pReal*lattice_C66(4,4,myPhase)) ! C12iso/(C11iso+C12iso) with C11iso=(3*C11+2*C12+4*C44)/5 and C12iso=(C11+4*C12-2*C44)/5
lattice_C3333(1:3,1:3,1:3,1:3,myPhase) = math_Voigt66to3333(lattice_C66(1:6,1:6,myPhase)) ! Literature data is Voigt
lattice_C66(1:6,1:6,myPhase) = math_Mandel3333to66(lattice_C3333(1:3,1:3,1:3,1:3,myPhase)) ! DAMASK uses Mandel
select case(lattice_structure(myPhase))
!--------------------------------------------------------------------------------------------------
! fcc
case (LATTICE_fcc_ID)
myNslip = lattice_fcc_Nslip
myNtwin = lattice_fcc_Ntwin
do i = 1_pInt,lattice_fcc_Nslip ! assign slip system vectors
sd(1:3,i) = lattice_fcc_systemSlip(1:3,i)
sn(1:3,i) = lattice_fcc_systemSlip(4:6,i)
enddo
do i = 1_pInt,lattice_fcc_Ntwin ! assign twin system vectors and shears
td(1:3,i) = lattice_fcc_systemTwin(1:3,i)
tn(1:3,i) = lattice_fcc_systemTwin(4:6,i)
ts(i) = lattice_fcc_shearTwin(i)
enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_fcc_NslipSystem
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_fcc_NtwinSystem
lattice_NnonSchmid(myPhase) = lattice_fcc_NnonSchmid
lattice_interactionSlipSlip(1:myNslip,1:myNslip,myPhase) = &
lattice_fcc_interactionSlipSlip
lattice_interactionSlipTwin(1:myNslip,1:myNtwin,myPhase) = &
lattice_fcc_interactionSlipTwin
lattice_interactionTwinSlip(1:myNtwin,1:myNslip,myPhase) = &
lattice_fcc_interactionTwinSlip
lattice_interactionTwinTwin(1:myNtwin,1:myNtwin,myPhase) = &
lattice_fcc_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! bcc
case (LATTICE_bcc_ID)
myNslip = lattice_bcc_Nslip
myNtwin = lattice_bcc_Ntwin
do i = 1_pInt,lattice_bcc_Nslip ! assign slip system vectors
sd(1:3,i) = lattice_bcc_systemSlip(1:3,i)
sn(1:3,i) = lattice_bcc_systemSlip(4:6,i)
sdU = sd(1:3,i) / math_norm3(sd(1:3,i))
snU = sn(1:3,i) / math_norm3(sn(1:3,i))
np = math_mul33x3(math_axisAngleToR(sdU,60.0_pReal*INRAD), snU)
nn = math_mul33x3(math_axisAngleToR(-sdU,60.0_pReal*INRAD), snU)
sns(1:3,1:3,1,1,i) = math_tensorproduct(sdU, np)
sns(1:3,1:3,2,1,i) = math_tensorproduct(-sdU, nn)
sns(1:3,1:3,1,2,i) = math_tensorproduct(math_vectorproduct(snU, sdU), snU)
sns(1:3,1:3,2,2,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), snU)
sns(1:3,1:3,1,3,i) = math_tensorproduct(math_vectorproduct(np, sdU), np)
sns(1:3,1:3,2,3,i) = math_tensorproduct(math_vectorproduct(nn, -sdU), nn)
sns(1:3,1:3,1,4,i) = math_tensorproduct(snU, snU)
sns(1:3,1:3,2,4,i) = math_tensorproduct(snU, snU)
sns(1:3,1:3,1,5,i) = math_tensorproduct(math_vectorproduct(snU, sdU), math_vectorproduct(snU, sdU))
sns(1:3,1:3,2,5,i) = math_tensorproduct(math_vectorproduct(snU, -sdU), math_vectorproduct(snU, -sdU))
sns(1:3,1:3,1,6,i) = math_tensorproduct(sdU, sdU)
sns(1:3,1:3,2,6,i) = math_tensorproduct(-sdU, -sdU)
enddo
do i = 1_pInt,lattice_bcc_Ntwin ! assign twin system vectors and shears
td(1:3,i) = lattice_bcc_systemTwin(1:3,i)
tn(1:3,i) = lattice_bcc_systemTwin(4:6,i)
ts(i) = lattice_bcc_shearTwin(i)
enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_bcc_NslipSystem
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_bcc_NtwinSystem
lattice_NnonSchmid(myPhase) = lattice_bcc_NnonSchmid
lattice_interactionSlipSlip(1:lattice_bcc_Nslip,1:lattice_bcc_Nslip,myPhase) = &
lattice_bcc_interactionSlipSlip
lattice_interactionSlipTwin(1:lattice_bcc_Nslip,1:lattice_bcc_Ntwin,myPhase) = &
lattice_bcc_interactionSlipTwin
lattice_interactionTwinSlip(1:lattice_bcc_Ntwin,1:lattice_bcc_Nslip,myPhase) = &
lattice_bcc_interactionTwinSlip
lattice_interactionTwinTwin(1:lattice_bcc_Ntwin,1:lattice_bcc_Ntwin,myPhase) = &
lattice_bcc_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! hex (including conversion from miller-bravais (a1=a2=a3=c) to miller (a, b, c) indices)
case (LATTICE_hex_ID)
myNslip = lattice_hex_Nslip
myNtwin = lattice_hex_Ntwin
do i = 1_pInt,lattice_hex_Nslip ! assign slip system vectors
sd(1,i) = lattice_hex_systemSlip(1,i)*1.5_pReal ! direction [uvtw]->[3u/2 (u+2v)*sqrt(3)/2 w*(c/a)]
sd(2,i) = (lattice_hex_systemSlip(1,i)+2.0_pReal*lattice_hex_systemSlip(2,i))*(0.5_pReal*sqrt(3.0_pReal))
sd(3,i) = lattice_hex_systemSlip(4,i)*CoverA
sn(1,i) = lattice_hex_systemSlip(5,i) ! plane (hkil)->(h (h+2k)/sqrt(3) l/(c/a))
sn(2,i) = (lattice_hex_systemSlip(5,i)+2.0_pReal*lattice_hex_systemSlip(6,i))/sqrt(3.0_pReal)
sn(3,i) = lattice_hex_systemSlip(8,i)/CoverA
enddo
do i = 1_pInt,lattice_hex_Ntwin ! assign twin system vectors and shears
td(1,i) = lattice_hex_systemTwin(1,i)*1.5_pReal
td(2,i) = (lattice_hex_systemTwin(1,i)+2.0_pReal*lattice_hex_systemTwin(2,i))*(0.5_pReal*sqrt(3.0_pReal))
td(3,i) = lattice_hex_systemTwin(4,i)*CoverA
tn(1,i) = lattice_hex_systemTwin(5,i)
tn(2,i) = (lattice_hex_systemTwin(5,i)+2.0_pReal*lattice_hex_systemTwin(6,i))/sqrt(3.0_pReal)
tn(3,i) = lattice_hex_systemTwin(8,i)/CoverA
select case(lattice_hex_shearTwin(i)) ! from Christian & Mahajan 1995 p.29
case (1_pInt) ! <-10.1>{10.2}
ts(i) = (3.0_pReal-CoverA*CoverA)/sqrt(3.0_pReal)/CoverA
case (2_pInt) ! <11.6>{-1-1.1}
ts(i) = 1.0_pReal/CoverA
case (3_pInt) ! <10.-2>{10.1}
ts(i) = (4.0_pReal*CoverA*CoverA-9.0_pReal)/4.0_pReal/sqrt(3.0_pReal)/CoverA
case (4_pInt) ! <11.-3>{11.2}
ts(i) = 2.0_pReal*(CoverA*CoverA-2.0_pReal)/3.0_pReal/CoverA
end select
enddo
lattice_NslipSystem(1:lattice_maxNslipFamily,myPhase) = lattice_hex_NslipSystem
lattice_NtwinSystem(1:lattice_maxNtwinFamily,myPhase) = lattice_hex_NtwinSystem
lattice_NnonSchmid(myPhase) = lattice_hex_NnonSchmid
lattice_interactionSlipSlip(1:lattice_hex_Nslip,1:lattice_hex_Nslip,myPhase) = &
lattice_hex_interactionSlipSlip
lattice_interactionSlipTwin(1:lattice_hex_Nslip,1:lattice_hex_Ntwin,myPhase) = &
lattice_hex_interactionSlipTwin
lattice_interactionTwinSlip(1:lattice_hex_Ntwin,1:lattice_hex_Nslip,myPhase) = &
lattice_hex_interactionTwinSlip
lattice_interactionTwinTwin(1:lattice_hex_Ntwin,1:lattice_hex_Ntwin,myPhase) = &
lattice_hex_interactionTwinTwin
!--------------------------------------------------------------------------------------------------
! orthorombic and isotropic (no crystal plasticity)
case (LATTICE_ort_ID, LATTICE_iso_ID)
myNslip = 0_pInt
myNtwin = 0_pInt
!--------------------------------------------------------------------------------------------------
! something went wrong
case default
print*, 'error'
end select
do i = 1_pInt,myNslip ! store slip system vectors and Schmid matrix for my structure
lattice_sd(1:3,i,myPhase) = sd(1:3,i)/math_norm3(sd(1:3,i)) ! make unit vector
lattice_sn(1:3,i,myPhase) = sn(1:3,i)/math_norm3(sn(1:3,i)) ! make unit vector
lattice_st(1:3,i,myPhase) = math_vectorproduct(lattice_sd(1:3,i,myPhase), &
lattice_sn(1:3,i,myPhase))
lattice_Sslip(1:3,1:3,1,i,myPhase) = math_tensorproduct(lattice_sd(1:3,i,myPhase), &
lattice_sn(1:3,i,myPhase))
do j = 1_pInt,lattice_NnonSchmid(myPhase)
lattice_Sslip(1:3,1:3,2*j ,i,myPhase) = sns(1:3,1:3,1,j,i)
lattice_Sslip(1:3,1:3,2*j+1,i,myPhase) = sns(1:3,1:3,2,j,i)
enddo
do j = 1_pInt,1_pInt+2_pInt*lattice_NnonSchmid(myPhase)
lattice_Sslip_v(1:6,j,i,myPhase) = &
math_Mandel33to6(math_symmetric33(lattice_Sslip(1:3,1:3,j,i,myPhase)))
enddo
if (abs(math_trace33(lattice_Sslip(1:3,1:3,1,i,myPhase))) > tol_math_check) &
call IO_error(0_pInt,myPhase,i,0_pInt,ext_msg = 'dilatational slip Schmid matrix')
enddo
do i = 1_pInt,myNtwin ! store twin system vectors and Schmid plus rotation matrix for my structure
lattice_td(1:3,i,myPhase) = td(1:3,i)/math_norm3(td(1:3,i)) ! make unit vector
lattice_tn(1:3,i,myPhase) = tn(1:3,i)/math_norm3(tn(1:3,i)) ! make unit vector
lattice_tt(1:3,i,myPhase) = math_vectorproduct(lattice_td(1:3,i,myPhase), &
lattice_tn(1:3,i,myPhase))
lattice_Stwin(1:3,1:3,i,myPhase) = math_tensorproduct(lattice_td(1:3,i,myPhase), &
lattice_tn(1:3,i,myPhase))
lattice_Stwin_v(1:6,i,myPhase) = math_Mandel33to6(math_symmetric33(lattice_Stwin(1:3,1:3,i,myPhase)))
lattice_Qtwin(1:3,1:3,i,myPhase) = math_axisAngleToR(tn(1:3,i),180.0_pReal*INRAD)
lattice_shearTwin(i,myPhase) = ts(i)
if (abs(math_trace33(lattice_Stwin(1:3,1:3,i,myPhase))) > tol_math_check) &
call IO_error(301_pInt,myPhase,ext_msg = 'dilatational twin Schmid matrix')
enddo
end subroutine lattice_initializeStructure
!--------------------------------------------------------------------------------------------------
!> @brief Symmetrizes stiffness matrix according to lattice type
!--------------------------------------------------------------------------------------------------
pure function lattice_symmetrizeC66(struct,C66)
implicit none
integer(kind(LATTICE_undefined_ID)), intent(in) :: struct
real(pReal), dimension(6,6), intent(in) :: C66
real(pReal), dimension(6,6) :: lattice_symmetrizeC66
integer(pInt) :: j,k
lattice_symmetrizeC66 = 0.0_pReal
select case(struct)
case (LATTICE_iso_ID)
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3,k+3) = 0.5_pReal*(C66(1,1)-C66(1,2))
end forall
case (LATTICE_fcc_ID,LATTICE_bcc_ID)
forall(k=1_pInt:3_pInt)
forall(j=1_pInt:3_pInt) lattice_symmetrizeC66(k,j) = C66(1,2)
lattice_symmetrizeC66(k,k) = C66(1,1)
lattice_symmetrizeC66(k+3_pInt,k+3_pInt) = C66(4,4)
end forall
case (LATTICE_hex_ID)
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(1,1)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(1,3)
lattice_symmetrizeC66(3,2) = C66(1,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(4,4)
lattice_symmetrizeC66(6,6) = 0.5_pReal*(C66(1,1)-C66(1,2))
case (LATTICE_ort_ID)
lattice_symmetrizeC66(1,1) = C66(1,1)
lattice_symmetrizeC66(2,2) = C66(2,2)
lattice_symmetrizeC66(3,3) = C66(3,3)
lattice_symmetrizeC66(1,2) = C66(1,2)
lattice_symmetrizeC66(2,1) = C66(1,2)
lattice_symmetrizeC66(1,3) = C66(1,3)
lattice_symmetrizeC66(3,1) = C66(1,3)
lattice_symmetrizeC66(2,3) = C66(2,3)
lattice_symmetrizeC66(3,2) = C66(2,3)
lattice_symmetrizeC66(4,4) = C66(4,4)
lattice_symmetrizeC66(5,5) = C66(5,5)
lattice_symmetrizeC66(6,6) = C66(6,6)
case default
lattice_symmetrizeC66 = C66
end select
end function lattice_symmetrizeC66
!--------------------------------------------------------------------------------------------------
!> @brief figures whether unit quat falls into stereographic standard triangle
!--------------------------------------------------------------------------------------------------
logical pure function lattice_qInSST(Q, struct)
use math, only: &
math_qToRodrig
implicit none
real(pReal), dimension(4), intent(in) :: Q ! orientation
integer(kind(LATTICE_undefined_ID)), intent(in) :: struct ! lattice structure
real(pReal), dimension(3) :: Rodrig ! Rodrigues vector of Q
Rodrig = math_qToRodrig(Q)
if (any(Rodrig/=Rodrig)) then
lattice_qInSST = .false.
else
select case (struct)
case (LATTICE_bcc_ID,LATTICE_fcc_ID)
lattice_qInSST = Rodrig(1) > Rodrig(2) .and. &
Rodrig(2) > Rodrig(3) .and. &
Rodrig(3) > 0.0_pReal
case (LATTICE_hex_ID)
lattice_qInSST = Rodrig(1) > sqrt(3.0_pReal)*Rodrig(2) .and. &
Rodrig(2) > 0.0_pReal .and. &
Rodrig(3) > 0.0_pReal
case default
lattice_qInSST = .true.
end select
endif
end function lattice_qInSST
!--------------------------------------------------------------------------------------------------
!> @brief calculates the disorientation for 2 unit quaternions
!--------------------------------------------------------------------------------------------------
pure function lattice_qDisorientation(Q1, Q2, struct)
use prec, only: &
tol_math_check
use math, only: &
math_qMul, &
math_qConj
implicit none
real(pReal), dimension(4) :: lattice_qDisorientation
real(pReal), dimension(4), intent(in) :: &
Q1, & ! 1st orientation
Q2 ! 2nd orientation
integer(kind(LATTICE_undefined_ID)), optional, intent(in) :: & ! if given, symmetries between the two orientation will be considered
struct
real(pReal), dimension(4) :: dQ,dQsymA,mis
integer(pInt) :: i,j,k,s,symmetry
integer(kind(LATTICE_undefined_ID)) :: myStruct
!--------------------------------------------------------------------------------------------------
! check if a structure with known symmetries is given
if (present(struct)) then
myStruct = struct
select case (struct)
case(LATTICE_fcc_ID,LATTICE_bcc_ID)
symmetry = 1_pInt
case(LATTICE_hex_ID)
symmetry = 2_pInt
case default
symmetry = 0_pInt
end select
else
symmetry = 0_pInt
myStruct = LATTICE_undefined_ID
endif
!--------------------------------------------------------------------------------------------------
! calculate misorientation, for cubic(1) and hexagonal(2) structure find symmetries
dQ = math_qMul(math_qConj(Q1),Q2)
lattice_qDisorientation = dQ
select case(symmetry)
case (1_pInt,2_pInt)
s = sum(lattice_NsymOperations(1:symmetry-1_pInt))
do i = 1_pInt,2_pInt
dQ = math_qConj(dQ) ! switch order of "from -- to"
do j = 1_pInt,lattice_NsymOperations(symmetry) ! run through first crystal's symmetries
dQsymA = math_qMul(lattice_symOperations(1:4,s+j),dQ) ! apply sym
do k = 1_pInt,lattice_NsymOperations(symmetry) ! run through 2nd crystal's symmetries
mis = math_qMul(dQsymA,lattice_symOperations(1:4,s+k)) ! apply sym
if (mis(1) < 0.0_pReal) & ! want positive angle
mis = -mis
if (mis(1)-lattice_qDisorientation(1) > -tol_math_check &
.and. lattice_qInSST(mis,LATTICE_undefined_ID)) lattice_qDisorientation = mis ! found better one
enddo; enddo; enddo
case (0_pInt)
if (lattice_qDisorientation(1) < 0.0_pReal) lattice_qDisorientation = -lattice_qDisorientation ! keep omega within 0 to 180 deg
end select
end function lattice_qDisorientation
end module lattice