DAMASK_EICMD/code/material.f90

1601 lines
86 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Parses material config file, either solverJobName.materialConfig or material.config
!> @details reads the material configuration file, where solverJobName.materialConfig takes
!! precedence over material.config and parses the sections 'homogenization', 'crystallite',
!! 'phase', 'texture', and 'microstucture'
!--------------------------------------------------------------------------------------------------
module material
use prec, only: &
pReal, &
pInt, &
tState, &
tPlasticState, &
tSourceState, &
tHomogMapping, &
tPhaseMapping, &
p_vec, &
p_intvec
implicit none
private
character(len=*), parameter, public :: &
ELASTICITY_hooke_label = 'hooke', &
PLASTICITY_none_label = 'none', &
PLASTICITY_isotropic_label = 'isotropic', &
PLASTICITY_phenopowerlaw_label = 'phenopowerlaw', &
PLASTICITY_phenoplus_label = 'phenoplus', &
PLASTICITY_dislotwin_label = 'dislotwin', &
PLASTICITY_disloucla_label = 'disloucla', &
PLASTICITY_titanmod_label = 'titanmod', &
PLASTICITY_nonlocal_label = 'nonlocal', &
SOURCE_thermal_dissipation_label = 'thermal_dissipation', &
SOURCE_thermal_externalheat_label = 'thermal_externalheat', &
SOURCE_damage_isoBrittle_label = 'damage_isobrittle', &
SOURCE_damage_isoDuctile_label = 'damage_isoductile', &
SOURCE_damage_anisoBrittle_label = 'damage_anisobrittle', &
SOURCE_damage_anisoDuctile_label = 'damage_anisoductile', &
SOURCE_vacancy_phenoplasticity_label = 'vacancy_phenoplasticity', &
SOURCE_vacancy_irradiation_label = 'vacancy_irradiation', &
SOURCE_vacancy_thermalfluc_label = 'vacancy_thermalfluctuation', &
KINEMATICS_thermal_expansion_label = 'thermal_expansion', &
KINEMATICS_cleavage_opening_label = 'cleavage_opening', &
KINEMATICS_slipplane_opening_label = 'slipplane_opening', &
KINEMATICS_vacancy_strain_label = 'vacancy_strain', &
KINEMATICS_hydrogen_strain_label = 'hydrogen_strain', &
STIFFNESS_DEGRADATION_damage_label = 'damage', &
STIFFNESS_DEGRADATION_porosity_label = 'porosity', &
THERMAL_isothermal_label = 'isothermal', &
THERMAL_adiabatic_label = 'adiabatic', &
THERMAL_conduction_label = 'conduction', &
DAMAGE_none_label = 'none', &
DAMAGE_local_label = 'local', &
DAMAGE_nonlocal_label = 'nonlocal', &
VACANCYFLUX_isoconc_label = 'isoconcentration', &
VACANCYFLUX_isochempot_label = 'isochemicalpotential', &
VACANCYFLUX_cahnhilliard_label = 'cahnhilliard', &
POROSITY_none_label = 'none', &
POROSITY_phasefield_label = 'phasefield', &
HYDROGENFLUX_isoconc_label = 'isoconcentration', &
HYDROGENFLUX_cahnhilliard_label = 'cahnhilliard', &
HOMOGENIZATION_none_label = 'none', &
HOMOGENIZATION_isostrain_label = 'isostrain', &
HOMOGENIZATION_rgc_label = 'rgc'
enum, bind(c)
enumerator :: ELASTICITY_undefined_ID, &
ELASTICITY_hooke_ID
end enum
enum, bind(c)
enumerator :: PLASTICITY_undefined_ID, &
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
PLASTICITY_disloucla_ID, &
PLASTICITY_titanmod_ID, &
PLASTICITY_nonlocal_ID
end enum
enum, bind(c)
enumerator :: SOURCE_undefined_ID, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID
end enum
enum, bind(c)
enumerator :: KINEMATICS_undefined_ID, &
KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID, &
KINEMATICS_vacancy_strain_ID, &
KINEMATICS_hydrogen_strain_ID
end enum
enum, bind(c)
enumerator :: STIFFNESS_DEGRADATION_undefined_ID, &
STIFFNESS_DEGRADATION_damage_ID, &
STIFFNESS_DEGRADATION_porosity_ID
end enum
enum, bind(c)
enumerator :: THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID
end enum
enum, bind(c)
enumerator :: DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID
end enum
enum, bind(c)
enumerator :: VACANCYFLUX_isoconc_ID, &
VACANCYFLUX_isochempot_ID, &
VACANCYFLUX_cahnhilliard_ID
end enum
enum, bind(c)
enumerator :: POROSITY_none_ID, &
POROSITY_phasefield_ID
end enum
enum, bind(c)
enumerator :: HYDROGENFLUX_isoconc_ID, &
HYDROGENFLUX_cahnhilliard_ID
end enum
enum, bind(c)
enumerator :: HOMOGENIZATION_undefined_ID, &
HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, &
HOMOGENIZATION_rgc_ID
end enum
character(len=*), parameter, public :: &
MATERIAL_configFile = 'material.config', & !< generic name for material configuration file
MATERIAL_localFileExt = 'materialConfig' !< extension of solver job name depending material configuration file
character(len=*), parameter, public :: &
MATERIAL_partHomogenization = 'homogenization', & !< keyword for homogenization part
MATERIAL_partCrystallite = 'crystallite', & !< keyword for crystallite part
MATERIAL_partPhase = 'phase' !< keyword for phase part
integer(kind(ELASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: &
phase_elasticity !< elasticity of each phase
integer(kind(PLASTICITY_undefined_ID)), dimension(:), allocatable, public, protected :: &
phase_plasticity !< plasticity of each phase
integer(kind(THERMAL_isothermal_ID)), dimension(:), allocatable, public, protected :: &
thermal_type !< thermal transport model
integer(kind(DAMAGE_none_ID)), dimension(:), allocatable, public, protected :: &
damage_type !< nonlocal damage model
integer(kind(VACANCYFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: &
vacancyflux_type !< vacancy transport model
integer(kind(POROSITY_none_ID)), dimension(:), allocatable, public, protected :: &
porosity_type !< porosity evolution model
integer(kind(HYDROGENFLUX_isoconc_ID)), dimension(:), allocatable, public, protected :: &
hydrogenflux_type !< hydrogen transport model
integer(kind(SOURCE_undefined_ID)), dimension(:,:), allocatable, public, protected :: &
phase_source, & !< active sources mechanisms of each phase
phase_kinematics, & !< active kinematic mechanisms of each phase
phase_stiffnessDegradation !< active stiffness degradation mechanisms of each phase
integer(kind(HOMOGENIZATION_undefined_ID)), dimension(:), allocatable, public, protected :: &
homogenization_type !< type of each homogenization
character(len=64), dimension(:), allocatable, public, protected :: &
phase_name, & !< name of each phase
homogenization_name, & !< name of each homogenization
crystallite_name !< name of each crystallite setting
integer(pInt), public, protected :: &
homogenization_maxNgrains, & !< max number of grains in any USED homogenization
material_Nphase, & !< number of phases
material_Nhomogenization, & !< number of homogenizations
material_Nmicrostructure, & !< number of microstructures
material_Ncrystallite !< number of crystallite settings
integer(pInt), dimension(:), allocatable, public, protected :: &
phase_Nsources, & !< number of source mechanisms active in each phase
phase_Nkinematics, & !< number of kinematic mechanisms active in each phase
phase_NstiffnessDegradations, & !< number of stiffness degradation mechanisms active in each phase
phase_Noutput, & !< number of '(output)' items per phase
phase_elasticityInstance, & !< instance of particular elasticity of each phase
phase_plasticityInstance !< instance of particular plasticity of each phase
integer(pInt), dimension(:), allocatable, public, protected :: &
crystallite_Noutput !< number of '(output)' items per crystallite setting
integer(pInt), dimension(:), allocatable, public, protected :: &
homogenization_Ngrains, & !< number of grains in each homogenization
homogenization_Noutput, & !< number of '(output)' items per homogenization
homogenization_typeInstance, & !< instance of particular type of each homogenization
thermal_typeInstance, & !< instance of particular type of each thermal transport
damage_typeInstance, & !< instance of particular type of each nonlocal damage
vacancyflux_typeInstance, & !< instance of particular type of each vacancy flux
porosity_typeInstance, & !< instance of particular type of each porosity model
hydrogenflux_typeInstance, & !< instance of particular type of each hydrogen flux
microstructure_crystallite !< crystallite setting ID of each microstructure
real(pReal), dimension(:), allocatable, public, protected :: &
thermal_initialT, & !< initial temperature per each homogenization
damage_initialPhi, & !< initial damage per each homogenization
vacancyflux_initialCv, & !< initial vacancy concentration per each homogenization
porosity_initialPhi, & !< initial posority per each homogenization
hydrogenflux_initialCh !< initial hydrogen concentration per each homogenization
integer(pInt), dimension(:,:,:), allocatable, public :: &
material_phase !< phase (index) of each grain,IP,element
integer(pInt), dimension(:,:), allocatable, public :: &
material_homog !< homogenization (index) of each IP,element
type(tPlasticState), allocatable, dimension(:), public :: &
plasticState
type(tSourceState), allocatable, dimension(:), public :: &
sourceState
type(tState), allocatable, dimension(:), public :: &
homogState, &
thermalState, &
damageState, &
vacancyfluxState, &
porosityState, &
hydrogenfluxState
integer(pInt), dimension(:,:,:), allocatable, public, protected :: &
material_texture !< texture (index) of each grain,IP,element
real(pReal), dimension(:,:,:,:), allocatable, public, protected :: &
material_EulerAngles !< initial orientation of each grain,IP,element
logical, dimension(:), allocatable, public, protected :: &
microstructure_active, &
microstructure_elemhomo, & !< flag to indicate homogeneous microstructure distribution over element's IPs
phase_localPlasticity !< flags phases with local constitutive law
character(len=*), parameter, private :: &
MATERIAL_partMicrostructure = 'microstructure', & !< keyword for microstructure part
MATERIAL_partTexture = 'texture' !< keyword for texture part
character(len=64), dimension(:), allocatable, private :: &
microstructure_name, & !< name of each microstructure
texture_name !< name of each texture
character(len=256), dimension(:), allocatable, private :: &
texture_ODFfile !< name of each ODF file
integer(pInt), private :: &
material_Ntexture, & !< number of textures
microstructure_maxNconstituents, & !< max number of constituents in any phase
texture_maxNgauss, & !< max number of Gauss components in any texture
texture_maxNfiber !< max number of Fiber components in any texture
integer(pInt), dimension(:), allocatable, private :: &
microstructure_Nconstituents, & !< number of constituents in each microstructure
texture_symmetry, & !< number of symmetric orientations per texture
texture_Ngauss, & !< number of Gauss components per texture
texture_Nfiber !< number of Fiber components per texture
integer(pInt), dimension(:,:), allocatable, private :: &
microstructure_phase, & !< phase IDs of each microstructure
microstructure_texture !< texture IDs of each microstructure
real(pReal), dimension(:,:), allocatable, private :: &
microstructure_fraction !< vol fraction of each constituent in microstructure
real(pReal), dimension(:,:,:), allocatable, private :: &
material_volume, & !< volume of each grain,IP,element
texture_Gauss, & !< data of each Gauss component
texture_Fiber, & !< data of each Fiber component
texture_transformation !< transformation for each texture
logical, dimension(:), allocatable, private :: &
homogenization_active
integer(pInt), dimension(:,:,:), allocatable, public :: phaseAt !< phase ID of every material point (ipc,ip,el)
integer(pInt), dimension(:,:,:), allocatable, public :: phasememberAt !< memberID of given phase at every material point (ipc,ip,el)
integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingCrystallite
integer(pInt), dimension(:,:,:), allocatable, public, target :: mappingHomogenization !< mapping from material points to offset in heterogenous state/field
integer(pInt), dimension(:,:), allocatable, public, target :: mappingHomogenizationConst !< mapping from material points to offset in constant state/field
type(tHomogMapping), allocatable, dimension(:), public :: &
thermalMapping, & !< mapping for thermal state/fields
damageMapping, & !< mapping for damage state/fields
vacancyfluxMapping, & !< mapping for vacancy conc state/fields
porosityMapping, & !< mapping for porosity state/fields
hydrogenfluxMapping !< mapping for hydrogen conc state/fields
type(p_vec), allocatable, dimension(:), public :: &
temperature, & !< temperature field
damage, & !< damage field
vacancyConc, & !< vacancy conc field
porosity, & !< porosity field
hydrogenConc, & !< hydrogen conc field
temperatureRate, & !< temperature change rate field
vacancyConcRate, & !< vacancy conc change field
hydrogenConcRate !< hydrogen conc change field
public :: &
material_init, &
ELASTICITY_hooke_ID ,&
PLASTICITY_none_ID, &
PLASTICITY_isotropic_ID, &
PLASTICITY_phenopowerlaw_ID, &
PLASTICITY_phenoplus_ID, &
PLASTICITY_dislotwin_ID, &
PLASTICITY_disloucla_ID, &
PLASTICITY_titanmod_ID, &
PLASTICITY_nonlocal_ID, &
SOURCE_thermal_dissipation_ID, &
SOURCE_thermal_externalheat_ID, &
SOURCE_damage_isoBrittle_ID, &
SOURCE_damage_isoDuctile_ID, &
SOURCE_damage_anisoBrittle_ID, &
SOURCE_damage_anisoDuctile_ID, &
SOURCE_vacancy_phenoplasticity_ID, &
SOURCE_vacancy_irradiation_ID, &
SOURCE_vacancy_thermalfluc_ID, &
KINEMATICS_cleavage_opening_ID, &
KINEMATICS_slipplane_opening_ID, &
KINEMATICS_thermal_expansion_ID, &
KINEMATICS_vacancy_strain_ID, &
KINEMATICS_hydrogen_strain_ID, &
STIFFNESS_DEGRADATION_damage_ID, &
STIFFNESS_DEGRADATION_porosity_ID, &
THERMAL_isothermal_ID, &
THERMAL_adiabatic_ID, &
THERMAL_conduction_ID, &
DAMAGE_none_ID, &
DAMAGE_local_ID, &
DAMAGE_nonlocal_ID, &
VACANCYFLUX_isoconc_ID, &
VACANCYFLUX_isochempot_ID, &
VACANCYFLUX_cahnhilliard_ID, &
POROSITY_none_ID, &
POROSITY_phasefield_ID, &
HYDROGENFLUX_isoconc_ID, &
HYDROGENFLUX_cahnhilliard_ID, &
HOMOGENIZATION_none_ID, &
HOMOGENIZATION_isostrain_ID, &
HOMOGENIZATION_RGC_ID
private :: &
material_parseHomogenization, &
material_parseMicrostructure, &
material_parseCrystallite, &
material_parsePhase, &
material_parseTexture, &
material_populateGrains
contains
!--------------------------------------------------------------------------------------------------
!> @brief parses material configuration file
!> @details figures out if solverJobName.materialConfig is present, if not looks for
!> material.config
!--------------------------------------------------------------------------------------------------
subroutine material_init()
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use IO, only: &
IO_error, &
IO_open_file, &
IO_open_jobFile_stat, &
IO_timeStamp
use debug, only: &
debug_level, &
debug_material, &
debug_levelBasic, &
debug_levelExtensive
use mesh, only: &
mesh_maxNips, &
mesh_NcpElems, &
mesh_element, &
FE_Nips, &
FE_geomtype
use numerics, only: &
worldrank
implicit none
integer(pInt), parameter :: FILEUNIT = 200_pInt
integer(pInt) :: m,c,h, myDebug, myPhase, myHomog
integer(pInt) :: &
g, & !< grain number
i, & !< integration point number
e, & !< element number
phase
integer(pInt), dimension(:), allocatable :: ConstitutivePosition
integer(pInt), dimension(:), allocatable :: CrystallitePosition
integer(pInt), dimension(:), allocatable :: HomogenizationPosition
myDebug = debug_level(debug_material)
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- material init -+>>>'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
call IO_open_file(FILEUNIT,material_configFile) ! ...open material.config file
call material_parseHomogenization(FILEUNIT,material_partHomogenization)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Homogenization parsed'; flush(6)
call material_parseMicrostructure(FILEUNIT,material_partMicrostructure)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Microstructure parsed'; flush(6)
call material_parseCrystallite(FILEUNIT,material_partCrystallite)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Crystallite parsed'; flush(6)
call material_parseTexture(FILEUNIT,material_partTexture)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Texture parsed'; flush(6)
call material_parsePhase(FILEUNIT,material_partPhase)
if (iand(myDebug,debug_levelBasic) /= 0_pInt) write(6,'(a)') ' Phase parsed'; flush(6)
close(FILEUNIT)
allocate(plasticState (material_Nphase))
allocate(sourceState (material_Nphase))
do myPhase = 1,material_Nphase
allocate(sourceState(myPhase)%p(phase_Nsources(myPhase)))
enddo
allocate(homogState (material_Nhomogenization))
allocate(thermalState (material_Nhomogenization))
allocate(damageState (material_Nhomogenization))
allocate(vacancyfluxState (material_Nhomogenization))
allocate(porosityState (material_Nhomogenization))
allocate(hydrogenfluxState (material_Nhomogenization))
allocate(thermalMapping (material_Nhomogenization))
allocate(damageMapping (material_Nhomogenization))
allocate(vacancyfluxMapping (material_Nhomogenization))
allocate(porosityMapping (material_Nhomogenization))
allocate(hydrogenfluxMapping(material_Nhomogenization))
allocate(temperature (material_Nhomogenization))
allocate(damage (material_Nhomogenization))
allocate(vacancyConc (material_Nhomogenization))
allocate(porosity (material_Nhomogenization))
allocate(hydrogenConc (material_Nhomogenization))
allocate(temperatureRate (material_Nhomogenization))
allocate(vacancyConcRate (material_Nhomogenization))
allocate(hydrogenConcRate (material_Nhomogenization))
do m = 1_pInt,material_Nmicrostructure
if(microstructure_crystallite(m) < 1_pInt .or. &
microstructure_crystallite(m) > material_Ncrystallite) &
call IO_error(150_pInt,m,ext_msg='crystallite')
if(minval(microstructure_phase(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. &
maxval(microstructure_phase(1:microstructure_Nconstituents(m),m)) > material_Nphase) &
call IO_error(150_pInt,m,ext_msg='phase')
if(minval(microstructure_texture(1:microstructure_Nconstituents(m),m)) < 1_pInt .or. &
maxval(microstructure_texture(1:microstructure_Nconstituents(m),m)) > material_Ntexture) &
call IO_error(150_pInt,m,ext_msg='texture')
if(microstructure_Nconstituents(m) < 1_pInt) &
call IO_error(151_pInt,m)
enddo
debugOut: if (iand(myDebug,debug_levelExtensive) /= 0_pInt) then
write(6,'(/,a,/)') ' MATERIAL configuration'
write(6,'(a32,1x,a16,1x,a6)') 'homogenization ','type ','grains'
do h = 1_pInt,material_Nhomogenization
write(6,'(1x,a32,1x,a16,1x,i6)') homogenization_name(h),homogenization_type(h),homogenization_Ngrains(h)
enddo
write(6,'(/,a14,18x,1x,a11,1x,a12,1x,a13)') 'microstructure','crystallite','constituents','homogeneous'
do m = 1_pInt,material_Nmicrostructure
write(6,'(1x,a32,1x,i11,1x,i12,1x,l13)') microstructure_name(m), &
microstructure_crystallite(m), &
microstructure_Nconstituents(m), &
microstructure_elemhomo(m)
if (microstructure_Nconstituents(m) > 0_pInt) then
do c = 1_pInt,microstructure_Nconstituents(m)
write(6,'(a1,1x,a32,1x,a32,1x,f7.4)') '>',phase_name(microstructure_phase(c,m)),&
texture_name(microstructure_texture(c,m)),&
microstructure_fraction(c,m)
enddo
write(6,*)
endif
enddo
endif debugOut
call material_populateGrains
allocate(phaseAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(phasememberAt ( homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(mappingHomogenization (2, mesh_maxNips,mesh_NcpElems),source=0_pInt)
allocate(mappingCrystallite (2,homogenization_maxNgrains, mesh_NcpElems),source=0_pInt)
allocate(mappingHomogenizationConst( mesh_maxNips,mesh_NcpElems),source=1_pInt)
allocate(ConstitutivePosition (material_Nphase), source=0_pInt)
allocate(HomogenizationPosition(material_Nhomogenization),source=0_pInt)
allocate(CrystallitePosition (material_Nphase), source=0_pInt)
ElemLoop:do e = 1_pInt,mesh_NcpElems
myHomog = mesh_element(3,e)
IPloop:do i = 1_pInt,FE_Nips(FE_geomtype(mesh_element(2,e)))
HomogenizationPosition(myHomog) = HomogenizationPosition(myHomog) + 1_pInt
mappingHomogenization(1:2,i,e) = [HomogenizationPosition(myHomog),myHomog]
GrainLoop:do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
phase = material_phase(g,i,e)
ConstitutivePosition(phase) = ConstitutivePosition(phase)+1_pInt ! not distinguishing between instances of same phase
phaseAt(g,i,e) = phase
phasememberAt(g,i,e) = ConstitutivePosition(phase)
enddo GrainLoop
enddo IPloop
enddo ElemLoop
! hack needed to initialize field values used during constitutive and crystallite initializations
do myHomog = 1,material_Nhomogenization
thermalMapping (myHomog)%p => mappingHomogenizationConst
damageMapping (myHomog)%p => mappingHomogenizationConst
vacancyfluxMapping (myHomog)%p => mappingHomogenizationConst
porosityMapping (myHomog)%p => mappingHomogenizationConst
hydrogenfluxMapping(myHomog)%p => mappingHomogenizationConst
allocate(temperature (myHomog)%p(1), source=thermal_initialT(myHomog))
allocate(damage (myHomog)%p(1), source=damage_initialPhi(myHomog))
allocate(vacancyConc (myHomog)%p(1), source=vacancyflux_initialCv(myHomog))
allocate(porosity (myHomog)%p(1), source=porosity_initialPhi(myHomog))
allocate(hydrogenConc (myHomog)%p(1), source=hydrogenflux_initialCh(myHomog))
allocate(temperatureRate (myHomog)%p(1), source=0.0_pReal)
allocate(vacancyConcRate (myHomog)%p(1), source=0.0_pReal)
allocate(hydrogenConcRate(myHomog)%p(1), source=0.0_pReal)
enddo
end subroutine material_init
!--------------------------------------------------------------------------------------------------
!> @brief parses the homogenization part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseHomogenization(fileUnit,myPart)
use IO, only: &
IO_read, &
IO_globalTagInPart, &
IO_countSections, &
IO_error, &
IO_countTagInPart, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringValue, &
IO_intValue, &
IO_floatValue, &
IO_stringPos, &
IO_EOF
use mesh, only: &
mesh_element
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: Nsections, section, s, p
character(len=65536) :: &
tag, line
logical :: echo
echo = IO_globalTagInPart(fileUnit,myPart,'/echo/')
Nsections = IO_countSections(fileUnit,myPart)
material_Nhomogenization = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(homogenization_name(Nsections)); homogenization_name = ''
allocate(homogenization_type(Nsections), source=HOMOGENIZATION_undefined_ID)
allocate(thermal_type(Nsections), source=THERMAL_isothermal_ID)
allocate(damage_type (Nsections), source=DAMAGE_none_ID)
allocate(vacancyflux_type(Nsections), source=VACANCYFLUX_isoconc_ID)
allocate(porosity_type (Nsections), source=POROSITY_none_ID)
allocate(hydrogenflux_type(Nsections), source=HYDROGENFLUX_isoconc_ID)
allocate(homogenization_typeInstance(Nsections), source=0_pInt)
allocate(thermal_typeInstance(Nsections), source=0_pInt)
allocate(damage_typeInstance(Nsections), source=0_pInt)
allocate(vacancyflux_typeInstance(Nsections), source=0_pInt)
allocate(porosity_typeInstance(Nsections), source=0_pInt)
allocate(hydrogenflux_typeInstance(Nsections), source=0_pInt)
allocate(homogenization_Ngrains(Nsections), source=0_pInt)
allocate(homogenization_Noutput(Nsections), source=0_pInt)
allocate(homogenization_active(Nsections), source=.false.) !!!!!!!!!!!!!!!
allocate(thermal_initialT(Nsections), source=300.0_pReal)
allocate(damage_initialPhi(Nsections), source=1.0_pReal)
allocate(vacancyflux_initialCv(Nsections), source=0.0_pReal)
allocate(porosity_initialPhi(Nsections), source=1.0_pReal)
allocate(hydrogenflux_initialCh(Nsections), source=0.0_pReal)
forall (s = 1_pInt:Nsections) homogenization_active(s) = any(mesh_element(3,:) == s) ! current homogenization used in model? Homogenization view, maximum operations depend on maximum number of homog schemes
homogenization_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections)
rewind(fileUnit)
line = '' ! to have it initialized
section = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <homogenization>
line = IO_read(fileUnit)
enddo
if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header
do while (trim(line) /= IO_EOF) ! read through sections of material part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
homogenization_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('type')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(HOMOGENIZATION_NONE_label)
homogenization_type(section) = HOMOGENIZATION_NONE_ID
homogenization_Ngrains(section) = 1_pInt
case(HOMOGENIZATION_ISOSTRAIN_label)
homogenization_type(section) = HOMOGENIZATION_ISOSTRAIN_ID
case(HOMOGENIZATION_RGC_label)
homogenization_type(section) = HOMOGENIZATION_RGC_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
homogenization_typeInstance(section) = &
count(homogenization_type==homogenization_type(section)) ! count instances
case ('thermal')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(THERMAL_isothermal_label)
thermal_type(section) = THERMAL_isothermal_ID
case(THERMAL_adiabatic_label)
thermal_type(section) = THERMAL_adiabatic_ID
case(THERMAL_conduction_label)
thermal_type(section) = THERMAL_conduction_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('damage')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(DAMAGE_NONE_label)
damage_type(section) = DAMAGE_none_ID
case(DAMAGE_LOCAL_label)
damage_type(section) = DAMAGE_local_ID
case(DAMAGE_NONLOCAL_label)
damage_type(section) = DAMAGE_nonlocal_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('vacancyflux')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(VACANCYFLUX_isoconc_label)
vacancyflux_type(section) = VACANCYFLUX_isoconc_ID
case(VACANCYFLUX_isochempot_label)
vacancyflux_type(section) = VACANCYFLUX_isochempot_ID
case(VACANCYFLUX_cahnhilliard_label)
vacancyflux_type(section) = VACANCYFLUX_cahnhilliard_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('porosity')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(POROSITY_NONE_label)
porosity_type(section) = POROSITY_none_ID
case(POROSITY_phasefield_label)
porosity_type(section) = POROSITY_phasefield_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('hydrogenflux')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case(HYDROGENFLUX_isoconc_label)
hydrogenflux_type(section) = HYDROGENFLUX_isoconc_ID
case(HYDROGENFLUX_cahnhilliard_label)
hydrogenflux_type(section) = HYDROGENFLUX_cahnhilliard_ID
case default
call IO_error(500_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('nconstituents','ngrains')
homogenization_Ngrains(section) = IO_intValue(line,chunkPos,2_pInt)
case ('initialtemperature','initialt')
thermal_initialT(section) = IO_floatValue(line,chunkPos,2_pInt)
case ('initialdamage')
damage_initialPhi(section) = IO_floatValue(line,chunkPos,2_pInt)
case ('initialvacancyconc','initialcv')
vacancyflux_initialCv(section) = IO_floatValue(line,chunkPos,2_pInt)
case ('initialporosity')
porosity_initialPhi(section) = IO_floatValue(line,chunkPos,2_pInt)
case ('initialhydrogenconc','initialch')
hydrogenflux_initialCh(section) = IO_floatValue(line,chunkPos,2_pInt)
end select
endif
enddo
do p=1_pInt, Nsections
homogenization_typeInstance(p) = count(homogenization_type(1:p) == homogenization_type(p))
thermal_typeInstance(p) = count(thermal_type (1:p) == thermal_type (p))
damage_typeInstance(p) = count(damage_type (1:p) == damage_type (p))
vacancyflux_typeInstance(p) = count(vacancyflux_type (1:p) == vacancyflux_type (p))
porosity_typeInstance(p) = count(porosity_type (1:p) == porosity_type (p))
hydrogenflux_typeInstance(p) = count(hydrogenflux_type (1:p) == hydrogenflux_type (p))
enddo
homogenization_maxNgrains = maxval(homogenization_Ngrains,homogenization_active)
end subroutine material_parseHomogenization
!--------------------------------------------------------------------------------------------------
!> @brief parses the microstructure part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseMicrostructure(fileUnit,myPart)
use IO
use mesh, only: &
mesh_element, &
mesh_NcpElems
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: Nsections, section, constituent, e, i
character(len=65536) :: &
tag, line
logical :: echo
echo = IO_globalTagInPart(fileUnit,myPart,'/echo/')
Nsections = IO_countSections(fileUnit,myPart)
material_Nmicrostructure = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(microstructure_name(Nsections)); microstructure_name = ''
allocate(microstructure_crystallite(Nsections), source=0_pInt)
allocate(microstructure_Nconstituents(Nsections), source=0_pInt)
allocate(microstructure_active(Nsections), source=.false.)
allocate(microstructure_elemhomo(Nsections), source=.false.)
if(any(mesh_element(4,1:mesh_NcpElems) > Nsections)) &
call IO_error(155_pInt,ext_msg='Microstructure in geometry > Sections in material.config')
forall (e = 1_pInt:mesh_NcpElems) microstructure_active(mesh_element(4,e)) = .true. ! current microstructure used in model? Elementwise view, maximum N operations for N elements
microstructure_Nconstituents = IO_countTagInPart(fileUnit,myPart,'(constituent)',Nsections)
microstructure_maxNconstituents = maxval(microstructure_Nconstituents)
microstructure_elemhomo = IO_spotTagInPart(fileUnit,myPart,'/elementhomogeneous/',Nsections)
allocate(microstructure_phase (microstructure_maxNconstituents,Nsections),source=0_pInt)
allocate(microstructure_texture (microstructure_maxNconstituents,Nsections),source=0_pInt)
allocate(microstructure_fraction(microstructure_maxNconstituents,Nsections),source=0.0_pReal)
rewind(fileUnit)
line = '' ! to have it initialized
section = 0_pInt ! - " -
constituent = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <microstructure>
line = IO_read(fileUnit)
enddo
if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header
do while (trim(line) /= IO_EOF) ! read through sections of material part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
constituent = 0_pInt
microstructure_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('crystallite')
microstructure_crystallite(section) = IO_intValue(line,chunkPos,2_pInt)
case ('(constituent)')
constituent = constituent + 1_pInt
do i=2_pInt,6_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,chunkPos,i))
select case (tag)
case('phase')
microstructure_phase(constituent,section) = IO_intValue(line,chunkPos,i+1_pInt)
case('texture')
microstructure_texture(constituent,section) = IO_intValue(line,chunkPos,i+1_pInt)
case('fraction')
microstructure_fraction(constituent,section) = IO_floatValue(line,chunkPos,i+1_pInt)
end select
enddo
end select
endif
enddo
end subroutine material_parseMicrostructure
!--------------------------------------------------------------------------------------------------
!> @brief parses the crystallite part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseCrystallite(fileUnit,myPart)
use IO, only: &
IO_read, &
IO_countSections, &
IO_error, &
IO_countTagInPart, &
IO_globalTagInPart, &
IO_getTag, &
IO_lc, &
IO_isBlank, &
IO_EOF
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: fileUnit
integer(pInt) :: Nsections, &
section
character(len=65536) :: line
logical :: echo
echo = IO_globalTagInPart(fileUnit,myPart,'/echo/')
Nsections = IO_countSections(fileUnit,myPart)
material_Ncrystallite = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(crystallite_name(Nsections)); crystallite_name = ''
allocate(crystallite_Noutput(Nsections), source=0_pInt)
crystallite_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections)
rewind(fileUnit)
line = '' ! to have it initialized
section = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <Crystallite>
line = IO_read(fileUnit)
enddo
if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header
do while (trim(line) /= IO_EOF) ! read through sections of material part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
crystallite_name(section) = IO_getTag(line,'[',']')
endif
enddo
end subroutine material_parseCrystallite
!--------------------------------------------------------------------------------------------------
!> @brief parses the phase part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parsePhase(fileUnit,myPart)
use IO, only: &
IO_read, &
IO_globalTagInPart, &
IO_countSections, &
IO_error, &
IO_countTagInPart, &
IO_getTag, &
IO_spotTagInPart, &
IO_lc, &
IO_isBlank, &
IO_stringValue, &
IO_stringPos, &
IO_EOF
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: Nsections, section, sourceCtr, kinematicsCtr, stiffDegradationCtr, p
character(len=65536) :: &
tag,line
logical :: echo
echo = IO_globalTagInPart(fileUnit,myPart,'/echo/')
Nsections = IO_countSections(fileUnit,myPart)
material_Nphase = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(phase_name(Nsections)); phase_name = ''
allocate(phase_elasticity(Nsections), source=ELASTICITY_undefined_ID)
allocate(phase_elasticityInstance(Nsections), source=0_pInt)
allocate(phase_plasticity(Nsections) , source=PLASTICITY_undefined_ID)
allocate(phase_plasticityInstance(Nsections), source=0_pInt)
allocate(phase_Nsources(Nsections), source=0_pInt)
allocate(phase_Nkinematics(Nsections), source=0_pInt)
allocate(phase_NstiffnessDegradations(Nsections),source=0_pInt)
allocate(phase_Noutput(Nsections), source=0_pInt)
allocate(phase_localPlasticity(Nsections), source=.false.)
phase_Noutput = IO_countTagInPart(fileUnit,myPart,'(output)',Nsections)
phase_Nsources = IO_countTagInPart(fileUnit,myPart,'(source)',Nsections)
phase_Nkinematics = IO_countTagInPart(fileUnit,myPart,'(kinematics)',Nsections)
phase_NstiffnessDegradations = IO_countTagInPart(fileUnit,myPart,'(stiffness_degradation)',Nsections)
phase_localPlasticity = .not. IO_spotTagInPart(fileUnit,myPart,'/nonlocal/',Nsections)
allocate(phase_source(maxval(phase_Nsources),Nsections), source=SOURCE_undefined_ID)
allocate(phase_kinematics(maxval(phase_Nkinematics),Nsections), source=KINEMATICS_undefined_ID)
allocate(phase_stiffnessDegradation(maxval(phase_NstiffnessDegradations),Nsections), &
source=STIFFNESS_DEGRADATION_undefined_ID)
rewind(fileUnit)
line = '' ! to have it initialized
section = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <Phase>
line = IO_read(fileUnit)
enddo
if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header
do while (trim(line) /= IO_EOF) ! read through sections of material part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
sourceCtr = 0_pInt
kinematicsCtr = 0_pInt
stiffDegradationCtr = 0_pInt
phase_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
select case(tag)
case ('elasticity')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (ELASTICITY_HOOKE_label)
phase_elasticity(section) = ELASTICITY_HOOKE_ID
case default
call IO_error(200_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('plasticity')
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (PLASTICITY_NONE_label)
phase_plasticity(section) = PLASTICITY_NONE_ID
case (PLASTICITY_ISOTROPIC_label)
phase_plasticity(section) = PLASTICITY_ISOTROPIC_ID
case (PLASTICITY_PHENOPOWERLAW_label)
phase_plasticity(section) = PLASTICITY_PHENOPOWERLAW_ID
case (PLASTICITY_PHENOPLUS_label)
phase_plasticity(section) = PLASTICITY_PHENOPLUS_ID
case (PLASTICITY_DISLOTWIN_label)
phase_plasticity(section) = PLASTICITY_DISLOTWIN_ID
case (PLASTICITY_DISLOUCLA_label)
phase_plasticity(section) = PLASTICITY_DISLOUCLA_ID
case (PLASTICITY_TITANMOD_label)
phase_plasticity(section) = PLASTICITY_TITANMOD_ID
case (PLASTICITY_NONLOCAL_label)
phase_plasticity(section) = PLASTICITY_NONLOCAL_ID
case default
call IO_error(201_pInt,ext_msg=trim(IO_stringValue(line,chunkPos,2_pInt)))
end select
case ('(source)')
sourceCtr = sourceCtr + 1_pInt
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (SOURCE_thermal_dissipation_label)
phase_source(sourceCtr,section) = SOURCE_thermal_dissipation_ID
case (SOURCE_thermal_externalheat_label)
phase_source(sourceCtr,section) = SOURCE_thermal_externalheat_ID
case (SOURCE_damage_isoBrittle_label)
phase_source(sourceCtr,section) = SOURCE_damage_isoBrittle_ID
case (SOURCE_damage_isoDuctile_label)
phase_source(sourceCtr,section) = SOURCE_damage_isoDuctile_ID
case (SOURCE_damage_anisoBrittle_label)
phase_source(sourceCtr,section) = SOURCE_damage_anisoBrittle_ID
case (SOURCE_damage_anisoDuctile_label)
phase_source(sourceCtr,section) = SOURCE_damage_anisoDuctile_ID
case (SOURCE_vacancy_phenoplasticity_label)
phase_source(sourceCtr,section) = SOURCE_vacancy_phenoplasticity_ID
case (SOURCE_vacancy_irradiation_label)
phase_source(sourceCtr,section) = SOURCE_vacancy_irradiation_ID
case (SOURCE_vacancy_thermalfluc_label)
phase_source(sourceCtr,section) = SOURCE_vacancy_thermalfluc_ID
end select
case ('(kinematics)')
kinematicsCtr = kinematicsCtr + 1_pInt
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (KINEMATICS_cleavage_opening_label)
phase_kinematics(kinematicsCtr,section) = KINEMATICS_cleavage_opening_ID
case (KINEMATICS_slipplane_opening_label)
phase_kinematics(kinematicsCtr,section) = KINEMATICS_slipplane_opening_ID
case (KINEMATICS_thermal_expansion_label)
phase_kinematics(kinematicsCtr,section) = KINEMATICS_thermal_expansion_ID
case (KINEMATICS_vacancy_strain_label)
phase_kinematics(kinematicsCtr,section) = KINEMATICS_vacancy_strain_ID
case (KINEMATICS_hydrogen_strain_label)
phase_kinematics(kinematicsCtr,section) = KINEMATICS_hydrogen_strain_ID
end select
case ('(stiffness_degradation)')
stiffDegradationCtr = stiffDegradationCtr + 1_pInt
select case (IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
case (STIFFNESS_DEGRADATION_damage_label)
phase_stiffnessDegradation(stiffDegradationCtr,section) = STIFFNESS_DEGRADATION_damage_ID
case (STIFFNESS_DEGRADATION_porosity_label)
phase_stiffnessDegradation(stiffDegradationCtr,section) = STIFFNESS_DEGRADATION_porosity_ID
end select
end select
endif
enddo
do p=1_pInt, Nsections
phase_elasticityInstance(p) = count(phase_elasticity(1:p) == phase_elasticity(p))
phase_plasticityInstance(p) = count(phase_plasticity(1:p) == phase_plasticity(p))
enddo
end subroutine material_parsePhase
!--------------------------------------------------------------------------------------------------
!> @brief parses the texture part in the material configuration file
!--------------------------------------------------------------------------------------------------
subroutine material_parseTexture(fileUnit,myPart)
use IO, only: &
IO_read, &
IO_globalTagInPart, &
IO_countSections, &
IO_error, &
IO_countTagInPart, &
IO_getTag, &
IO_spotTagInPart, &
IO_lc, &
IO_isBlank, &
IO_floatValue, &
IO_stringValue, &
IO_stringPos, &
IO_EOF
use math, only: &
inRad, &
math_sampleRandomOri, &
math_I3, &
math_inv33
implicit none
character(len=*), intent(in) :: myPart
integer(pInt), intent(in) :: fileUnit
integer(pInt), allocatable, dimension(:) :: chunkPos
integer(pInt) :: Nsections, section, gauss, fiber, j
character(len=65536) :: tag
character(len=65536) :: line
logical :: echo
echo = IO_globalTagInPart(fileUnit,myPart,'/echo/')
Nsections = IO_countSections(fileUnit,myPart)
material_Ntexture = Nsections
if (Nsections < 1_pInt) call IO_error(160_pInt,ext_msg=myPart)
allocate(texture_name(Nsections)); texture_name=''
allocate(texture_ODFfile(Nsections)); texture_ODFfile=''
allocate(texture_symmetry(Nsections), source=1_pInt)
allocate(texture_Ngauss(Nsections), source=0_pInt)
allocate(texture_Nfiber(Nsections), source=0_pInt)
texture_Ngauss = IO_countTagInPart(fileUnit,myPart,'(gauss)', Nsections) + &
IO_countTagInPart(fileUnit,myPart,'(random)',Nsections)
texture_Nfiber = IO_countTagInPart(fileUnit,myPart,'(fiber)', Nsections)
texture_maxNgauss = maxval(texture_Ngauss)
texture_maxNfiber = maxval(texture_Nfiber)
allocate(texture_Gauss (5,texture_maxNgauss,Nsections), source=0.0_pReal)
allocate(texture_Fiber (6,texture_maxNfiber,Nsections), source=0.0_pReal)
allocate(texture_transformation(3,3,Nsections), source=0.0_pReal)
texture_transformation = spread(math_I3,3,Nsections)
rewind(fileUnit)
line = '' ! to have in initialized
section = 0_pInt ! - " -
gauss = 0_pInt ! - " -
fiber = 0_pInt ! - " -
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= myPart) ! wind forward to <texture>
line = IO_read(fileUnit)
enddo
if (echo) write(6,'(/,1x,a)') trim(line) ! echo part header
do while (trim(line) /= IO_EOF)
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (echo) write(6,'(2x,a)') trim(line) ! echo back read lines
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
gauss = 0_pInt
fiber = 0_pInt
texture_name(section) = IO_getTag(line,'[',']')
endif
if (section > 0_pInt) then
chunkPos = IO_stringPos(line)
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
textureType: select case(tag)
case ('axes', 'rotation') textureType
do j = 1_pInt, 3_pInt ! look for "x", "y", and "z" entries
tag = IO_lc(IO_stringValue(line,chunkPos,j+1_pInt))
select case (tag)
case('x', '+x')
texture_transformation(j,1:3,section) = [ 1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now +x-axis
case('-x')
texture_transformation(j,1:3,section) = [-1.0_pReal, 0.0_pReal, 0.0_pReal] ! original axis is now -x-axis
case('y', '+y')
texture_transformation(j,1:3,section) = [ 0.0_pReal, 1.0_pReal, 0.0_pReal] ! original axis is now +y-axis
case('-y')
texture_transformation(j,1:3,section) = [ 0.0_pReal,-1.0_pReal, 0.0_pReal] ! original axis is now -y-axis
case('z', '+z')
texture_transformation(j,1:3,section) = [ 0.0_pReal, 0.0_pReal, 1.0_pReal] ! original axis is now +z-axis
case('-z')
texture_transformation(j,1:3,section) = [ 0.0_pReal, 0.0_pReal,-1.0_pReal] ! original axis is now -z-axis
case default
call IO_error(157_pInt,section)
end select
enddo
case ('hybridia') textureType
texture_ODFfile(section) = IO_stringValue(line,chunkPos,2_pInt)
case ('symmetry') textureType
tag = IO_lc(IO_stringValue(line,chunkPos,2_pInt))
select case (tag)
case('orthotropic')
texture_symmetry(section) = 4_pInt
case('monoclinic')
texture_symmetry(section) = 2_pInt
case default
texture_symmetry(section) = 1_pInt
end select
case ('(random)') textureType
gauss = gauss + 1_pInt
texture_Gauss(1:3,gauss,section) = math_sampleRandomOri()
do j = 2_pInt,4_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,chunkPos,j))
select case (tag)
case('scatter')
texture_Gauss(4,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)
end select
enddo
case ('(gauss)') textureType
gauss = gauss + 1_pInt
do j = 2_pInt,10_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,chunkPos,j))
select case (tag)
case('phi1')
texture_Gauss(1,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('phi')
texture_Gauss(2,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('phi2')
texture_Gauss(3,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('scatter')
texture_Gauss(4,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Gauss(5,gauss,section) = IO_floatValue(line,chunkPos,j+1_pInt)
end select
enddo
case ('(fiber)') textureType
fiber = fiber + 1_pInt
do j = 2_pInt,12_pInt,2_pInt
tag = IO_lc(IO_stringValue(line,chunkPos,j))
select case (tag)
case('alpha1')
texture_Fiber(1,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('alpha2')
texture_Fiber(2,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('beta1')
texture_Fiber(3,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('beta2')
texture_Fiber(4,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('scatter')
texture_Fiber(5,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)*inRad
case('fraction')
texture_Fiber(6,fiber,section) = IO_floatValue(line,chunkPos,j+1_pInt)
end select
enddo
end select textureType
endif
enddo
end subroutine material_parseTexture
!--------------------------------------------------------------------------------------------------
!> @brief populates the grains
!> @details populates the grains by identifying active microstructure/homogenization pairs,
!! calculates the volume of the grains and deals with texture components and hybridIA
!--------------------------------------------------------------------------------------------------
subroutine material_populateGrains
use prec, only: &
dEq
use math, only: &
math_RtoEuler, &
math_EulerToR, &
math_mul33x33, &
math_range, &
math_sampleRandomOri, &
math_sampleGaussOri, &
math_sampleFiberOri, &
math_symmetricEulers
use mesh, only: &
mesh_element, &
mesh_maxNips, &
mesh_NcpElems, &
mesh_ipVolume, &
FE_Nips, &
FE_geomtype
use IO, only: &
IO_error, &
IO_hybridIA
use debug, only: &
debug_level, &
debug_material, &
debug_levelBasic
implicit none
integer(pInt), dimension (:,:), allocatable :: Ngrains
integer(pInt), dimension (microstructure_maxNconstituents) :: &
NgrainsOfConstituent, &
currentGrainOfConstituent, &
randomOrder
real(pReal), dimension (microstructure_maxNconstituents) :: &
rndArray
real(pReal), dimension (:), allocatable :: volumeOfGrain
real(pReal), dimension (:,:), allocatable :: orientationOfGrain
real(pReal), dimension (3) :: orientation
real(pReal), dimension (3,3) :: symOrientation
integer(pInt), dimension (:), allocatable :: phaseOfGrain, textureOfGrain
integer(pInt) :: t,e,i,g,j,m,c,r,homog,micro,sgn,hme, myDebug, &
phaseID,textureID,dGrains,myNgrains,myNorientations,myNconstituents, &
grain,constituentGrain,ipGrain,symExtension, ip
real(pReal) :: deviation,extreme,rnd
integer(pInt), dimension (:,:), allocatable :: Nelems ! counts number of elements in homog, micro array
type(p_intvec), dimension (:,:), allocatable :: elemsOfHomogMicro ! lists element number in homog, micro array
myDebug = debug_level(debug_material)
allocate(material_volume(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0.0_pReal)
allocate(material_phase(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_homog(mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_texture(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), source=0_pInt)
allocate(material_EulerAngles(3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems),source=0.0_pReal)
allocate(Ngrains(material_Nhomogenization,material_Nmicrostructure), source=0_pInt)
allocate(Nelems(material_Nhomogenization,material_Nmicrostructure), source=0_pInt)
! populating homogenization schemes in each
!--------------------------------------------------------------------------------------------------
do e = 1_pInt, mesh_NcpElems
material_homog(1_pInt:FE_Nips(FE_geomtype(mesh_element(2,e))),e) = mesh_element(3,e)
enddo
!--------------------------------------------------------------------------------------------------
! precounting of elements for each homog/micro pair
do e = 1_pInt, mesh_NcpElems
homog = mesh_element(3,e)
micro = mesh_element(4,e)
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt
enddo
allocate(elemsOfHomogMicro(material_Nhomogenization,material_Nmicrostructure))
do homog = 1,material_Nhomogenization
do micro = 1,material_Nmicrostructure
if (Nelems(homog,micro) > 0_pInt) then
allocate(elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)))
elemsOfHomogMicro(homog,micro)%p = 0_pInt
endif
enddo
enddo
!--------------------------------------------------------------------------------------------------
! identify maximum grain count per IP (from element) and find grains per homog/micro pair
Nelems = 0_pInt ! reuse as counter
elementLooping: do e = 1_pInt,mesh_NcpElems
t = FE_geomtype(mesh_element(2,e))
homog = mesh_element(3,e)
micro = mesh_element(4,e)
if (homog < 1_pInt .or. homog > material_Nhomogenization) & ! out of bounds
call IO_error(154_pInt,e,0_pInt,0_pInt)
if (micro < 1_pInt .or. micro > material_Nmicrostructure) & ! out of bounds
call IO_error(155_pInt,e,0_pInt,0_pInt)
if (microstructure_elemhomo(micro)) then ! how many grains are needed at this element?
dGrains = homogenization_Ngrains(homog) ! only one set of Ngrains (other IPs are plain copies)
else
dGrains = homogenization_Ngrains(homog) * FE_Nips(t) ! each IP has Ngrains
endif
Ngrains(homog,micro) = Ngrains(homog,micro) + dGrains ! total grain count
Nelems(homog,micro) = Nelems(homog,micro) + 1_pInt ! total element count
elemsOfHomogMicro(homog,micro)%p(Nelems(homog,micro)) = e ! remember elements active in this homog/micro pair
enddo elementLooping
allocate(volumeOfGrain(maxval(Ngrains)), source=0.0_pReal) ! reserve memory for maximum case
allocate(phaseOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case
allocate(textureOfGrain(maxval(Ngrains)), source=0_pInt) ! reserve memory for maximum case
allocate(orientationOfGrain(3,maxval(Ngrains)),source=0.0_pReal) ! reserve memory for maximum case
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(/,a/)') ' MATERIAL grain population'
write(6,'(a32,1x,a32,1x,a6)') 'homogenization_name','microstructure_name','grain#'
!$OMP END CRITICAL (write2out)
endif
homogenizationLoop: do homog = 1_pInt,material_Nhomogenization
dGrains = homogenization_Ngrains(homog) ! grain number per material point
microstructureLoop: do micro = 1_pInt,material_Nmicrostructure ! all pairs of homog and micro
activePair: if (Ngrains(homog,micro) > 0_pInt) then
myNgrains = Ngrains(homog,micro) ! assign short name for total number of grains to populate
myNconstituents = microstructure_Nconstituents(micro) ! assign short name for number of constituents
if (iand(myDebug,debug_levelBasic) /= 0_pInt) then
!$OMP CRITICAL (write2out)
write(6,'(/,a32,1x,a32,1x,i6)') homogenization_name(homog),microstructure_name(micro),myNgrains
!$OMP END CRITICAL (write2out)
endif
!--------------------------------------------------------------------------------------------------
! calculate volume of each grain
volumeOfGrain = 0.0_pReal
grain = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(homog,micro)%p(hme) ! my combination of homog and micro, only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
t = FE_geomtype(mesh_element(2,e))
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
volumeOfGrain(grain+1_pInt:grain+dGrains) = sum(mesh_ipVolume(1:FE_Nips(t),e))/&
real(dGrains,pReal) ! each grain combines size of all IPs in that element
grain = grain + dGrains ! wind forward by Ngrains@IP
else
forall (i = 1_pInt:FE_Nips(t)) & ! loop over IPs
volumeOfGrain(grain+(i-1)*dGrains+1_pInt:grain+i*dGrains) = &
mesh_ipVolume(i,e)/real(dGrains,pReal) ! assign IPvolume/Ngrains@IP to all grains of IP
grain = grain + FE_Nips(t) * dGrains ! wind forward by Nips*Ngrains@IP
endif
enddo
if (grain /= myNgrains) &
call IO_error(0,el = homog,ip = micro,ext_msg = 'inconsistent grain count after volume calc')
!--------------------------------------------------------------------------------------------------
! divide myNgrains as best over constituents
!
! example: three constituents with fractions of 0.25, 0.25, and 0.5 distributed over 20 (microstructure) grains
!
! ***** ***** **********
! NgrainsOfConstituent: 5, 5, 10
! counters:
! |-----> grain (if constituent == 2)
! |--> constituentGrain (of constituent 2)
!
NgrainsOfConstituent = 0_pInt ! reset counter of grains per constituent
forall (i = 1_pInt:myNconstituents) &
NgrainsOfConstituent(i) = nint(microstructure_fraction(i,micro)*real(myNgrains,pReal),pInt)! do rounding integer conversion
do while (sum(NgrainsOfConstituent) /= myNgrains) ! total grain count over constituents wrong?
sgn = sign(1_pInt, myNgrains - sum(NgrainsOfConstituent)) ! direction of required change
extreme = 0.0_pReal
t = 0_pInt
do i = 1_pInt,myNconstituents ! find largest deviator
deviation = real(sgn,pReal)*log( microstructure_fraction(i,micro) / &
!-------------------------------- &
(real(NgrainsOfConstituent(i),pReal)/real(myNgrains,pReal) ) )
if (deviation > extreme) then
extreme = deviation
t = i
endif
enddo
NgrainsOfConstituent(t) = NgrainsOfConstituent(t) + sgn ! change that by one
enddo
!--------------------------------------------------------------------------------------------------
! assign phase and texture info
phaseOfGrain = 0_pInt
textureOfGrain = 0_pInt
orientationOfGrain = 0.0_pReal
texture: do i = 1_pInt,myNconstituents ! loop over constituents
grain = sum(NgrainsOfConstituent(1_pInt:i-1_pInt)) ! set microstructure grain index of current constituent
! "grain" points to start of this constituent's grain population
constituentGrain = 0_pInt ! constituent grain index
phaseID = microstructure_phase(i,micro)
textureID = microstructure_texture(i,micro)
phaseOfGrain (grain+1_pInt:grain+NgrainsOfConstituent(i)) = phaseID ! assign resp. phase
textureOfGrain(grain+1_pInt:grain+NgrainsOfConstituent(i)) = textureID ! assign resp. texture
myNorientations = ceiling(real(NgrainsOfConstituent(i),pReal)/&
real(texture_symmetry(textureID),pReal),pInt) ! max number of unique orientations (excl. symmetry)
!--------------------------------------------------------------------------------------------------
! ...has texture components
if (texture_ODFfile(textureID) == '') then
gauss: do t = 1_pInt,texture_Ngauss(textureID) ! loop over Gauss components
do g = 1_pInt,int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleGaussOri(texture_Gauss(1:3,t,textureID),&
texture_Gauss( 4,t,textureID))
enddo
constituentGrain = &
constituentGrain + int(real(myNorientations,pReal)*texture_Gauss(5,t,textureID)) ! advance counter for grains of current constituent
enddo gauss
fiber: do t = 1_pInt,texture_Nfiber(textureID) ! loop over fiber components
do g = 1_pInt,int(real(myNorientations,pReal)*texture_Fiber(6,t,textureID),pInt) ! loop over required grain count
orientationOfGrain(:,grain+constituentGrain+g) = &
math_sampleFiberOri(texture_Fiber(1:2,t,textureID),&
texture_Fiber(3:4,t,textureID),&
texture_Fiber( 5,t,textureID))
enddo
constituentGrain = &
constituentGrain + int(real(myNorientations,pReal)*texture_fiber(6,t,textureID),pInt) ! advance counter for grains of current constituent
enddo fiber
random: do constituentGrain = constituentGrain+1_pInt,myNorientations ! fill remainder with random
orientationOfGrain(:,grain+constituentGrain) = math_sampleRandomOri()
enddo random
!--------------------------------------------------------------------------------------------------
! ...has hybrid IA
else
orientationOfGrain(1:3,grain+1_pInt:grain+myNorientations) = &
IO_hybridIA(myNorientations,texture_ODFfile(textureID))
if (all(dEq(orientationOfGrain(1:3,grain+1_pInt),-1.0_pReal))) call IO_error(156_pInt)
endif
!--------------------------------------------------------------------------------------------------
! ...texture transformation
do j = 1_pInt,myNorientations ! loop over each "real" orientation
orientationOfGrain(1:3,grain+j) = math_RtoEuler( & ! translate back to Euler angles
math_mul33x33( & ! pre-multiply
math_EulertoR(orientationOfGrain(1:3,grain+j)), & ! face-value orientation
texture_transformation(1:3,1:3,textureID) & ! and transformation matrix
) &
)
enddo
!--------------------------------------------------------------------------------------------------
! ...sample symmetry
symExtension = texture_symmetry(textureID) - 1_pInt
if (symExtension > 0_pInt) then ! sample symmetry (number of additional equivalent orientations)
constituentGrain = myNorientations ! start right after "real" orientations
do j = 1_pInt,myNorientations ! loop over each "real" orientation
symOrientation = math_symmetricEulers(texture_symmetry(textureID), &
orientationOfGrain(1:3,grain+j)) ! get symmetric equivalents
e = min(symExtension,NgrainsOfConstituent(i)-constituentGrain) ! do not overshoot end of constituent grain array
if (e > 0_pInt) then
orientationOfGrain(1:3,grain+constituentGrain+1: &
grain+constituentGrain+e) = &
symOrientation(1:3,1:e)
constituentGrain = constituentGrain + e ! remainder shrinks by e
endif
enddo
endif
!--------------------------------------------------------------------------------------------------
! shuffle grains within current constituent
do j = 1_pInt,NgrainsOfConstituent(i)-1_pInt ! walk thru grains of current constituent
call random_number(rnd)
t = nint(rnd*real(NgrainsOfConstituent(i)-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! select a grain in remaining list
m = phaseOfGrain(grain+t) ! exchange current with random
phaseOfGrain(grain+t) = phaseOfGrain(grain+j)
phaseOfGrain(grain+j) = m
m = textureOfGrain(grain+t) ! exchange current with random
textureOfGrain(grain+t) = textureOfGrain(grain+j)
textureOfGrain(grain+j) = m
orientation = orientationOfGrain(1:3,grain+t) ! exchange current with random
orientationOfGrain(1:3,grain+t) = orientationOfGrain(1:3,grain+j)
orientationOfGrain(1:3,grain+j) = orientation
enddo
enddo texture
!< @todo calc fraction after weighing with volumePerGrain, exchange in MC steps to improve result (humbug at the moment)
!--------------------------------------------------------------------------------------------------
! distribute grains of all constituents as accurately as possible to given constituent fractions
ip = 0_pInt
currentGrainOfConstituent = 0_pInt
do hme = 1_pInt, Nelems(homog,micro)
e = elemsOfHomogMicro(homog,micro)%p(hme) ! only perform calculations for elements with homog, micro combinations which is indexed in cpElemsindex
t = FE_geomtype(mesh_element(2,e))
if (microstructure_elemhomo(micro)) then ! homogeneous distribution of grains over each element's IPs
m = 1_pInt ! process only first IP
else
m = FE_Nips(t) ! process all IPs
endif
do i = 1_pInt, m ! loop over necessary IPs
ip = ip + 1_pInt ! keep track of total ip count
ipGrain = 0_pInt ! count number of grains assigned at this IP
randomOrder = math_range(microstructure_maxNconstituents) ! start out with ordered sequence of constituents
call random_number(rndArray) ! as many rnd numbers as (max) constituents
do j = 1_pInt, myNconstituents - 1_pInt ! loop over constituents ...
r = nint(rndArray(j)*real(myNconstituents-j,pReal)+real(j,pReal)+0.5_pReal,pInt) ! ... select one in remaining list
c = randomOrder(r) ! ... call it "c"
randomOrder(r) = randomOrder(j) ! ... and exchange with present position in constituent list
grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population
do g = 1_pInt, min(dGrains-ipGrain, & ! leftover number of grains at this IP
max(0_pInt, & ! no negative values
nint(real(ip * dGrains * NgrainsOfConstituent(c)) / & ! fraction of grains scaled to this constituent...
real(myNgrains),pInt) - & ! ...minus those already distributed
currentGrainOfConstituent(c)))
ipGrain = ipGrain + 1_pInt ! advance IP grain counter
currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt ! advance index of grain population for constituent c
material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c)) ! assign properties
material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c))
material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c))
material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c))
enddo; enddo
c = randomOrder(microstructure_Nconstituents(micro)) ! look up constituent remaining after random shuffling
grain = sum(NgrainsOfConstituent(1:c-1_pInt)) ! figure out actual starting index in overall/consecutive grain population
do ipGrain = ipGrain + 1_pInt, dGrains ! ensure last constituent fills up to dGrains
currentGrainOfConstituent(c) = currentGrainOfConstituent(c) + 1_pInt
material_volume(ipGrain,i,e) = volumeOfGrain(grain+currentGrainOfConstituent(c))
material_phase(ipGrain,i,e) = phaseOfGrain(grain+currentGrainOfConstituent(c))
material_texture(ipGrain,i,e) = textureOfGrain(grain+currentGrainOfConstituent(c))
material_EulerAngles(1:3,ipGrain,i,e) = orientationOfGrain(1:3,grain+currentGrainOfConstituent(c))
enddo
enddo
do i = i, FE_Nips(t) ! loop over IPs to (possibly) distribute copies from first IP
material_volume (1_pInt:dGrains,i,e) = material_volume (1_pInt:dGrains,1,e)
material_phase (1_pInt:dGrains,i,e) = material_phase (1_pInt:dGrains,1,e)
material_texture(1_pInt:dGrains,i,e) = material_texture(1_pInt:dGrains,1,e)
material_EulerAngles(1:3,1_pInt:dGrains,i,e) = material_EulerAngles(1:3,1_pInt:dGrains,1,e)
enddo
enddo
endif activePair
enddo microstructureLoop
enddo homogenizationLoop
deallocate(volumeOfGrain)
deallocate(phaseOfGrain)
deallocate(textureOfGrain)
deallocate(orientationOfGrain)
deallocate(Nelems)
!> @todo - causing segmentation fault: needs looking into
!do homog = 1,material_Nhomogenization
! do micro = 1,material_Nmicrostructure
! if (Nelems(homog,micro) > 0_pInt) deallocate(elemsOfHomogMicro(homog,micro)%p)
! enddo
!enddo
deallocate(elemsOfHomogMicro)
end subroutine material_populateGrains
end module material