DAMASK_EICMD/code/DAMASK_spectral.f90

968 lines
59 KiB
Fortran

! Copyright 2011 Max-Planck-Institut fuer Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Duesseldorf Advanced Material Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!##############################################################
!* $Id$
!********************************************************************
! Material subroutine for BVP solution using spectral method
!
! Run 'DAMASK_spectral.exe --help' to get usage hints
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts,
! D.D. Tjahjanto,
! C. Kords,
! M. Diehl,
! R. Lebensohn
!
! MPI fuer Eisenforschung, Duesseldorf
!
program DAMASK_spectral
!********************************************************************
use DAMASK_interface
use prec, only: pInt, pReal, DAMASK_NaN
use IO
use debug, only: debug_spectral, &
debug_spectralGeneral, &
debug_spectralDivergence, &
debug_spectralRestart
use math
use kdtree2_module
use mesh, only: mesh_ipCenterOfGravity
use CPFEM, only: CPFEM_general, CPFEM_initAll
use FEsolving, only: restartWrite, restartReadStep
use numerics, only: err_div_tol, err_stress_tolrel , rotation_tol,&
itmax, memory_efficient, DAMASK_NumThreadsInt, divergence_correction, &
fftw_planner_flag, fftw_timelimit
use homogenization, only: materialpoint_sizeResults, materialpoint_results
!$ use OMP_LIB ! the openMP function library
implicit none
! variables to read from loadcase and geom file
real(pReal), dimension(9) :: temp_valueVector ! stores information temporarily from loadcase file
logical, dimension(9) :: temp_maskVector
integer(pInt), parameter :: maxNchunksLoadcase = &
(1_pInt + 9_pInt)*3_pInt + & ! deformation, rotation, and stress
(1_pInt + 1_pInt)*5_pInt + & ! time, (log)incs, temp, restartfrequency, and outputfrequency
1_pInt, & ! dropguessing
maxNchunksGeom = 7_pInt ! 4 identifiers, 3 values
myUnit = 234_pInt
integer(pInt), dimension (1_pInt + maxNchunksLoadcase*2_pInt) :: positions ! this is longer than needed for geometry parsing
integer(pInt) :: headerLength, N_l=0_pInt, N_t=0_pInt, N_n=0_pInt, N_Fdot=0_pInt
character(len=1024) :: path, line, keyword
logical :: gotResolution =.false., gotDimension =.false., gotHomogenization = .false.
type bc_type
real(pReal), dimension (3,3) :: deformation, & ! applied velocity gradient or time derivative of deformation gradient
stress, & ! stress BC (if applicable)
rotation ! rotation of BC (if applicable)
real(pReal) :: timeIncrement, & ! length of increment
temperature ! isothermal starting conditions
integer(pInt) :: steps, & ! number of steps
outputfrequency, & ! frequency of result writes
restartfrequency, & ! frequency of restart writes
logscale ! linear/logaritmic time step flag
logical :: followFormerTrajectory,& ! follow trajectory of former loadcase
velGradApplied ! decide wether velocity gradient or fdot is given
logical, dimension(3,3) :: maskDeformation, & ! mask of boundary conditions
maskStress
logical, dimension(9) :: maskStressVector ! linear mask of boundary conditions
end type
type(bc_type), allocatable, dimension(:) :: bc
type(bc_type) :: bc_default
character(len=6) :: loadcase_string
! variables storing information from geom file
real(pReal) :: wgt
real(pReal), dimension(3) :: geomdimension = 0.0_pReal ! physical dimension of volume element per direction
integer(pInt) :: Npoints,& ! number of Fourier points
homog ! homogenization scheme used
integer(pInt), dimension(3) :: res = 1_pInt ! resolution (number of Fourier points) in each direction
! stress, stiffness and compliance average etc.
real(pReal), dimension(3,3) :: pstress, pstress_av, defgrad_av_lab, &
defgradAim = math_I3, defgradAimOld= math_I3, defgradAimCorr= math_I3,&
mask_stress, mask_defgrad, fDot, &
pstress_av_lab, defgradAim_lab ! quantities rotated to other coordinate system
real(pReal), dimension(3,3,3,3) :: dPdF, c0_reference, c_current = 0.0_pReal, s_prev, c_prev ! stiffness and compliance
real(pReal), dimension(6) :: cstress ! cauchy stress
real(pReal), dimension(6,6) :: dsde ! small strain stiffness
real(pReal), dimension(9,9) :: s_prev99, c_prev99 ! compliance and stiffness in matrix notation
real(pReal), dimension(:,:), allocatable :: s_reduced, c_reduced ! reduced compliance and stiffness (only for stress BC)
integer(pInt) :: size_reduced = 0.0_pReal ! number of stress BCs
! pointwise data
real(pReal), dimension(:,:,:,:,:), allocatable :: workfft, defgrad, defgradold
real(pReal), dimension(:,:,:,:), allocatable :: coordinates
real(pReal), dimension(:,:,:), allocatable :: temperature
! variables storing information for spectral method and FFTW
real(pReal), dimension(3,3) :: xiDyad ! product of wave vectors
real(pReal), dimension(:,:,:,:,:,:,:), allocatable :: gamma_hat ! gamma operator (field) for spectral method
real(pReal), dimension(:,:,:,:), allocatable :: xi ! wave vector field for divergence and for gamma operator
integer(pInt), dimension(3) :: k_s
integer*8, dimension(3) :: fftw_plan ! plans for fftw (forward and backward)
! variables for regriding
real(pReal), dimension(:,:,:,:) ,allocatable :: deformed_small
real(pReal), dimension(:,:) ,allocatable :: deformed_large
real(pReal), dimension(:,:,:,:) ,allocatable :: new_coordinates
type(kdtree2), pointer :: tree
real(pReal), dimension(3) :: shift
! loop variables, convergence etc.
real(pReal) :: time = 0.0_pReal, time0 = 0.0_pReal, timeinc ! elapsed time, begin of interval, time interval
real(pReal) :: guessmode, err_div, err_stress, err_stress_tol, p_hat_avg
complex(pReal) :: err_div_avg_complex
complex(pReal), dimension(3) :: divergence_complex
complex(pReal), parameter :: img = cmplx(0.0_pReal,1.0_pReal)
real(pReal), dimension(3,3), parameter :: ones = 1.0_pReal, zeroes = 0.0_pReal
complex(pReal), dimension(3,3) :: temp33_Complex
real(pReal), dimension(3,3) :: temp33_Real
integer(pInt) :: i, j, k, l, m, n, p, errorID
integer(pInt) :: N_Loadcases, loadcase, step, iter, ielem, CPFEM_mode, &
ierr, notConvergedCounter = 0_pInt, totalStepsCounter = 0_pInt
logical :: errmatinv, regrid = .false.
real(pReal) :: defgradDet, defgradDetMax, defgradDetMin
real(pReal) :: correctionFactor
integer(pInt), dimension(3) :: cutting_freq
! --- debugging variables
real(pReal), dimension(:,:,:,:), allocatable :: divergence
real(pReal) :: p_real_avg, err_div_max, err_real_div_avg, err_real_div_max
logical :: debugGeneral, debugDivergence, debugRestart
! --- initialize default value for loadcase
bc_default%steps = 0_pInt; bc_default%timeIncrement = 0.0_pReal
bc_default%temperature = 300.0_pReal; bc_default%logscale = 0_pInt
bc_default%outputfrequency = 1_pInt; bc_default%restartfrequency = 0_pInt
bc_default%deformation = zeroes; bc_default%stress = zeroes
bc_default%maskDeformation = .false.; bc_default%maskStress = .false.
bc_default%velGradApplied = .false.; bc_default%maskStressVector = .false.
bc_default%followFormerTrajectory = .true.
bc_default%rotation = math_I3 ! assume no rotation
! --- initializing model size independed parameters
!$ call omp_set_num_threads(DAMASK_NumThreadsInt) ! set number of threads for parallel execution set by DAMASK_NUM_THREADS
call DAMASK_interface_init()
print '(a)', ''
print '(a,a)', ' <<<+- DAMASK_spectral init -+>>>'
print '(a,a)', ' $Id$'
print '(a)', ''
print '(a,a)', ' Working Directory: ',trim(getSolverWorkingDirectoryName())
print '(a,a)', ' Solver Job Name: ',trim(getSolverJobName())
print '(a)', ''
! Reading the loadcase file and allocate variables for loadcases
path = getLoadcaseName()
if (.not. IO_open_file(myUnit,path)) call IO_error(error_ID = 30_pInt,ext_msg = trim(path))
rewind(myUnit)
do
read(myUnit,'(a1024)',END = 100) line
if (IO_isBlank(line)) cycle ! skip empty lines
positions = IO_stringPos(line,maxNchunksLoadcase)
do i = 1_pInt, maxNchunksLoadcase, 1_pInt ! reading compulsory parameters for loadcase
select case (IO_lc(IO_stringValue(line,positions,i)))
case('l', 'velocitygrad', 'velgrad','velocitygradient')
N_l = N_l + 1_pInt
case('fdot')
N_Fdot = N_Fdot + 1_pInt
case('t', 'time', 'delta')
N_t = N_t + 1_pInt
case('n', 'incs', 'increments', 'steps', 'logincs', 'logsteps')
N_n = N_n + 1_pInt
end select
enddo ! count all identifiers to allocate memory and do sanity check
enddo
100 N_Loadcases = N_n
if ((N_l + N_Fdot /= N_n) .or. (N_n /= N_t)) & ! sanity check
call IO_error(error_ID=37_pInt,ext_msg = trim(path)) ! error message for incomplete loadcase
allocate (bc(N_Loadcases))
! --- reading the loadcase and assign values to the allocated data structure
rewind(myUnit)
loadcase = 0_pInt
do
read(myUnit,'(a1024)',END = 101) line
if (IO_isBlank(line)) cycle ! skip empty lines
loadcase = loadcase + 1_pInt
bc(loadcase) = bc_default
positions = IO_stringPos(line,maxNchunksLoadcase)
do j = 1_pInt,maxNchunksLoadcase
select case (IO_lc(IO_stringValue(line,positions,j)))
case('fdot','l','velocitygrad','velgrad','velocitygradient') ! assign values for the deformation BC matrix
bc(loadcase)%velGradApplied = (IO_lc(IO_stringValue(line,positions,j)) == 'l' .or. & ! in case of given L, set flag to true
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygrad' .or. &
IO_lc(IO_stringValue(line,positions,j)) == 'velgrad' .or. &
IO_lc(IO_stringValue(line,positions,j)) == 'velocitygradient')
temp_valueVector = 0.0_pReal
temp_maskVector = .false.
forall (k = 1_pInt:9_pInt) temp_maskVector(k) = IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (temp_maskVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
enddo
bc(loadcase)%maskDeformation = transpose(reshape(temp_maskVector,(/3,3/)))
bc(loadcase)%deformation = math_plain9to33(temp_valueVector)
case('p', 'pk1', 'piolakirchhoff', 'stress')
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) bc(loadcase)%maskStressVector(k) = IO_stringValue(line,positions,j+k) /= '*'
do k = 1_pInt,9_pInt
if (bc(loadcase)%maskStressVector(k)) temp_valueVector(k) = IO_floatValue(line,positions,j+k) ! assign values for the bc(loadcase)%stress matrix
enddo
bc(loadcase)%maskStress = transpose(reshape(bc(loadcase)%maskStressVector,(/3,3/)))
bc(loadcase)%stress = math_plain9to33(temp_valueVector)
case('t','time','delta') ! increment time
bc(loadcase)%timeIncrement = IO_floatValue(line,positions,j+1_pInt)
case('temp','temperature') ! starting temperature
bc(loadcase)%temperature = IO_floatValue(line,positions,j+1_pInt)
case('n','incs','increments','steps') ! number of increments
bc(loadcase)%steps = IO_intValue(line,positions,j+1_pInt)
case('logincs','logincrements','logsteps') ! number of increments (switch to log time scaling)
bc(loadcase)%steps = IO_intValue(line,positions,j+1_pInt)
bc(loadcase)%logscale = 1_pInt
case('f','freq','frequency','outputfreq') ! frequency of result writings
bc(loadcase)%outputfrequency = IO_intValue(line,positions,j+1_pInt)
case('r','restart','restartwrite') ! frequency of writing restart information
bc(loadcase)%restartfrequency = max(0_pInt,IO_intValue(line,positions,j+1_pInt))
case('guessreset','dropguessing')
bc(loadcase)%followFormerTrajectory = .false. ! do not continue to predict deformation along former trajectory
case('euler') ! rotation of loadcase given in euler angles
p = 0_pInt ! assuming values given in radians
l = 1_pInt ! assuming keyword indicating degree/radians
select case (IO_lc(IO_stringValue(line,positions,j+1_pInt)))
case('deg','degree')
p = 1_pInt ! for conversion from degree to radian
case('rad','radian')
case default
l = 0_pInt ! immediately reading in angles, assuming radians
end select
forall(k = 1_pInt:3_pInt) temp33_Real(k,1) = IO_floatValue(line,positions,j+l+k) * real(p,pReal) * inRad
bc(loadcase)%rotation = math_EulerToR(temp33_Real(:,1))
case('rotation','rot') ! assign values for the rotation of loadcase matrix
temp_valueVector = 0.0_pReal
forall (k = 1_pInt:9_pInt) temp_valueVector(k) = IO_floatValue(line,positions,j+k)
bc(loadcase)%rotation = math_plain9to33(temp_valueVector)
end select
enddo; enddo
101 close(myUnit)
! --- read header of geom file to get the information needed before the complete geom file is intepretated by mesh.f90
path = getModelName()
if (.not. IO_open_file(myUnit,trim(path)//InputFileExtension))&
call IO_error(error_ID=101_pInt,ext_msg = trim(path)//InputFileExtension)
rewind(myUnit)
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,2_pInt)
keyword = IO_lc(IO_StringValue(line,positions,2_pInt))
if (keyword(1:4) == 'head') then
headerLength = IO_intValue(line,positions,1_pInt) + 1_pInt
else
call IO_error(error_ID=42_pInt)
endif
rewind(myUnit)
do i = 1_pInt, headerLength
read(myUnit,'(a1024)') line
positions = IO_stringPos(line,maxNchunksGeom)
select case ( IO_lc(IO_StringValue(line,positions,1)) )
case ('dimension')
gotDimension = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('x')
geomdimension(1) = IO_floatValue(line,positions,j+1_pInt)
case('y')
geomdimension(2) = IO_floatValue(line,positions,j+1_pInt)
case('z')
geomdimension(3) = IO_floatValue(line,positions,j+1_pInt)
end select
enddo
case ('homogenization')
gotHomogenization = .true.
homog = IO_intValue(line,positions,2_pInt)
case ('resolution')
gotResolution = .true.
do j = 2_pInt,6_pInt,2_pInt
select case (IO_lc(IO_stringValue(line,positions,j)))
case('a')
res(1) = IO_intValue(line,positions,j+1_pInt)
case('b')
res(2) = IO_intValue(line,positions,j+1_pInt)
case('c')
res(3) = IO_intValue(line,positions,j+1_pInt)
end select
enddo
end select
enddo
close(myUnit)
if (.not.(gotDimension .and. gotHomogenization .and. gotResolution)) call IO_error(error_ID = 45_pInt)
if(mod(res(1),2_pInt)/=0_pInt .or.&
mod(res(2),2_pInt)/=0_pInt .or.&
(mod(res(3),2_pInt)/=0_pInt .and. res(3)/= 1_pInt)) call IO_error(error_ID = 103_pInt)
Npoints = res(1)*res(2)*res(3)
! --- initialization of CPFEM_general (= constitutive law)
call CPFEM_initAll(bc(1)%temperature,1_pInt,1_pInt)
! --- debugging parameters
debugGeneral = iand(debug_spectral,debug_spectralGeneral) > 0_pInt
debugDivergence = iand(debug_spectral,debug_spectralDivergence) > 0_pInt
debugRestart = iand(debug_spectral,debug_spectralRestart) > 0_pInt
! --- output of geometry
print '(a)', ''
print '(a)', '#############################################################'
print '(a)', 'DAMASK spectral:'
print '(a)', 'The spectral method boundary value problem solver for'
print '(a)', 'the Duesseldorf Advanced Material Simulation Kit'
print '(a)', '#############################################################'
print '(a,a)', 'geometry file: ',trim(path)//'.geom'
print '(a)', '============================================================='
print '(a,i12,i12,i12)','resolution a b c:', res
print '(a,f12.5,f12.5,f12.5)','dimension x y z:', geomdimension
print '(a,i5)','homogenization: ',homog
print '(a)', '#############################################################'
print '(a,a)', 'loadcase file: ',trim(getLoadcaseName())
if (bc(1)%followFormerTrajectory) then
call IO_warning(warning_ID = 33_pInt) ! cannot guess along trajectory for first step of first loadcase
bc(1)%followFormerTrajectory = .false.
endif
! --- consistency checks and output of loadcase
errorID = 0_pInt
do loadcase = 1_pInt, N_Loadcases
write (loadcase_string, '(i6)' ) loadcase
print '(a)', '============================================================='
print '(a,i6)', 'loadcase: ', loadcase
if (.not. bc(loadcase)%followFormerTrajectory) print '(a)', 'drop guessing along trajectory'
if (bc(loadcase)%velGradApplied) then
do j = 1_pInt, 3_pInt
if (any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .true.) .and. &
any(bc(loadcase)%maskDeformation(j,1:3) .eqv. .false.)) errorID = 32_pInt ! each row should be either fully or not at all defined
enddo
print '(a)','velocity gradient:'
else
print '(a)','deformation gradient rate:'
endif
print '(3(3(f12.6,x)/)$)', merge(math_transpose3x3(bc(loadcase)%deformation),&
reshape(spread(DAMASK_NaN,1,9),(/3,3/)),transpose(bc(loadcase)%maskDeformation))
print '(a,/,3(3(f12.6,x)/)$)','stress / GPa:',1e-9*merge(math_transpose3x3(bc(loadcase)%stress),&
reshape(spread(DAMASK_NaN,1,9),(/3,3/)),&
transpose(bc(loadcase)%maskStress))
if (any(bc(loadcase)%rotation /= math_I3)) &
print '(a,3(3(f12.6,x)/)$)','rotation of loadframe:',math_transpose3x3(bc(loadcase)%rotation)
print '(a,f12.6)','temperature:',bc(loadcase)%temperature
print '(a,f12.6)','time: ',bc(loadcase)%timeIncrement
print '(a,i5)','steps: ',bc(loadcase)%steps
print '(a,i5)','output frequency: ',bc(loadcase)%outputfrequency
print '(a,i5)','restart frequency: ',bc(loadcase)%restartfrequency
if (any(bc(loadcase)%maskStress .eqv. bc(loadcase)%maskDeformation)) errorID = 31 ! exclusive or masking only
if (any(bc(loadcase)%maskStress .and. transpose(bc(loadcase)%maskStress) .and. &
reshape((/.false.,.true.,.true.,.true.,.false.,.true.,.true.,.true.,.false./),(/3,3/)))) &
errorID = 38_pInt ! no rotation is allowed by stress BC
if (any(abs(math_mul33x33(bc(loadcase)%rotation,math_transpose3x3(bc(loadcase)%rotation))-math_I3)&
> reshape(spread(rotation_tol,1,9),(/3,3/)))&
.or. abs(math_det3x3(bc(loadcase)%rotation)) > 1.0_pReal + rotation_tol) &
errorID = 46_pInt ! given rotation matrix contains strain
if (bc(loadcase)%timeIncrement < 0.0_pReal) errorID = 34_pInt ! negative time increment
if (bc(loadcase)%steps < 1_pInt) errorID = 35_pInt ! non-positive increment count
if (bc(loadcase)%outputfrequency < 1_pInt) errorID = 36_pInt ! non-positive result frequency
if (errorID > 0_pInt) call IO_error(error_ID = errorID, ext_msg = loadcase_string)
enddo
! Initialization of fftw (see manual on fftw.org for more details)
#ifdef _OPENMP
if(DAMASK_NumThreadsInt > 0_pInt) then
call dfftw_init_threads(ierr)
if (ierr == 0_pInt) call IO_error(error_ID = 104_pInt)
call dfftw_plan_with_nthreads(DAMASK_NumThreadsInt)
endif
#endif
call dfftw_set_timelimit(fftw_timelimit)
!*************************************************************
! Loop over loadcases defined in the loadcase file
do loadcase = 1_pInt, N_Loadcases
!*************************************************************
time0 = time ! loadcase start time
if (bc(loadcase)%followFormerTrajectory) then ! continue to guess along former trajectory where applicable
guessmode = 1.0_pReal
else
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step
endif
mask_defgrad = merge(ones,zeroes,bc(loadcase)%maskDeformation)
mask_stress = merge(ones,zeroes,bc(loadcase)%maskStress)
size_reduced = count(bc(loadcase)%maskStressVector)
allocate (c_reduced(size_reduced,size_reduced)); c_reduced = 0.0_pReal
allocate (s_reduced(size_reduced,size_reduced)); s_reduced = 0.0_pReal
timeinc = bc(loadcase)%timeIncrement/bc(loadcase)%steps ! only valid for given linear time scale. will be overwritten later in case logarithmic scale is used
fDot = bc(loadcase)%deformation ! only valid for given fDot. will be overwritten later in case L is given
!*************************************************************
! loop oper steps defined in input file for current loadcase
do step = 1_pInt, bc(loadcase)%steps
!*************************************************************
! forwarding time
if (bc(loadcase)%logscale == 1_pInt) then ! logarithmic scale
if (loadcase == 1_pInt) then ! 1st loadcase of logarithmic scale
if (step == 1_pInt) then ! 1st step of 1st loadcase of logarithmic scale
timeinc = bc(1)%timeIncrement*(2.0_pReal**real( 1_pInt-bc(1)%steps ,pReal)) ! assume 1st step is equal to 2nd
else ! not-1st step of 1st loadcase of logarithmic scale
timeinc = bc(1)%timeIncrement*(2.0_pReal**real(step-1_pInt-bc(1)%steps ,pReal))
endif
else ! not-1st loadcase of logarithmic scale
timeinc = time0 *( (1.0_pReal + bc(loadcase)%timeIncrement/time0 )**real( step/bc(loadcase)%steps ,pReal) &
-(1.0_pReal + bc(loadcase)%timeIncrement/time0 )**real( (step-1_pInt)/bc(loadcase)%steps ,pReal) )
endif
endif
time = time + timeinc
totalStepsCounter = totalStepsCounter + 1_pInt
!*************************************************************
! Initialization Start
!*************************************************************
if(totalStepsCounter == restartReadStep) then ! Initialize values
if (regrid .eqv. .true. ) then ! 'DeInitialize' the values changing in case of regridding
regrid = .false.
call dfftw_destroy_plan(fftw_plan(1)); call dfftw_destroy_plan(fftw_plan(2))
if(debugDivergence) call dfftw_destroy_plan(fftw_plan(3))
deallocate (defgrad)
deallocate (defgradold)
deallocate (coordinates)
deallocate (temperature)
deallocate (xi)
deallocate (workfft)
!ToDo: here we have to create the new geometry and assign the values from the previous step
endif
guessmode = 0.0_pReal ! change of load case, homogeneous guess for the first step
allocate (defgrad ( res(1),res(2),res(3),3,3)); defgrad = 0.0_pReal
allocate (defgradold ( res(1),res(2),res(3),3,3)); defgradold = 0.0_pReal
allocate (coordinates(3,res(1),res(2),res(3))); coordinates = 0.0_pReal
allocate (temperature( res(1),res(2),res(3))); temperature = bc(1)%temperature ! start out isothermally
allocate (xi (3,res(1)/2+1,res(2),res(3))); xi =0.0_pReal
allocate (workfft(res(1)+2,res(2),res(3),3,3)); workfft = 0.0_pReal
if (debugDivergence) allocate (divergence(res(1)+2,res(2),res(3),3)); divergence = 0.0_pReal
wgt = 1.0_pReal/real(Npoints, pReal)
call dfftw_plan_many_dft_r2c(fftw_plan(1),3,(/res(1),res(2),res(3)/),9,&
workfft,(/res(1) +2_pInt,res(2),res(3)/),1,(res(1) +2_pInt)*res(2)*res(3),&
workfft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),fftw_planner_flag)
call dfftw_plan_many_dft_c2r(fftw_plan(2),3,(/res(1),res(2),res(3)/),9,&
workfft,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
workfft,(/res(1) +2_pInt,res(2),res(3)/),1,(res(1) +2_pInt)*res(2)*res(3),fftw_planner_flag)
if (debugDivergence) &
call dfftw_plan_many_dft_c2r(fftw_plan(3),3,(/res(1),res(2),res(3)/),3,&
divergence,(/res(1)/2_pInt+1_pInt,res(2),res(3)/),1,(res(1)/2_pInt+1_pInt)*res(2)*res(3),&
divergence,(/res(1) +2_pInt,res(2),res(3)/),1,(res(1) +2_pInt)*res(2)*res(3),fftw_planner_flag)
if (debugGeneral) then
write (6,*) 'FFTW initialized'
endif
if (restartReadStep==1_pInt) then ! not restarting, no deformation at the beginning
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgrad(i,j,k,1:3,1:3) = math_I3
defgradold(i,j,k,1:3,1:3) = math_I3
enddo; enddo; enddo
else ! using old values
if (IO_read_jobBinaryFile(777,'convergedSpectralDefgrad',trim(getSolverJobName()),size(defgrad))) then
read (777,rec=1) defgrad
close (777)
endif
defgradold = defgrad
defgradAim = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradAim = defgradAim + defgrad(i,j,k,1:3,1:3) ! calculating old average deformation
enddo; enddo; enddo
defgradAim = defgradAim * wgt
defgradAimOld = defgradAim
guessmode=0.0_pInt
endif
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
coordinates(1:3,i,j,k) = mesh_ipCenterOfGravity(1:3,1,ielem) ! set to initial coordinates ToDo: SHOULD BE UPDATED TO CURRENT POSITION IN FUTURE REVISIONS!!! But do we know them? I don't think so. Otherwise we don't need geometry reconstruction
call CPFEM_general(2_pInt,coordinates(1:3,i,j,k),math_I3,math_I3,temperature(i,j,k),&
0.0_pReal,ielem,1_pInt,cstress,dsde,pstress,dPdF)
c_current = c_current + dPdF
enddo; enddo; enddo
c0_reference = c_current * wgt ! linear reference material stiffness
if (debugGeneral) then
write (6,*) 'first call to CPFEM_general finished'
endif
do k = 1_pInt, res(3) ! calculation of discrete angular frequencies, ordered as in FFTW (wrap around)
k_s(3) = k - 1_pInt
if(k > res(3)/2_pInt + 1_pInt) k_s(3) = k_s(3) - res(3)
do j = 1_pInt, res(2)
k_s(2) = j - 1_pInt
if(j > res(2)/2_pInt + 1_pInt) k_s(2) = k_s(2) - res(2)
do i = 1, res(1)/2_pInt + 1_pInt
k_s(1) = i - 1_pInt
xi(3,i,j,k) = 0.0_pReal ! 2D case
if(res(3) > 1_pInt) xi(3,i,j,k) = real(k_s(3), pReal)/geomdimension(3) ! 3D case
xi(2,i,j,k) = real(k_s(2), pReal)/geomdimension(2) ! 2D and 3D case
xi(1,i,j,k) = real(k_s(1), pReal)/geomdimension(1) ! 2D and 3D case
enddo; enddo; enddo
!remove the given highest frequencies for calculation of the gamma operator
cutting_freq = (/0_pInt,0_pInt,0_pInt/) ! for 0,0,0, just the highest freq. is removed
do k = 1_pInt ,res(3); do j = 1_pInt ,res(2); do i = 1_pInt,res(1)/2_pInt + 1_pInt
if((k .gt. res(3)/2_pInt - cutting_freq(3)).and.(k .le. res(3)/2_pInt + 1_pInt + cutting_freq(3))) xi(3,i,j,k)= 0.0_pReal
if((j .gt. res(2)/2_pInt - cutting_freq(2)).and.(j .le. res(2)/2_pInt + 1_pInt + cutting_freq(2))) xi(2,i,j,k)= 0.0_pReal
if((i .gt. res(1)/2_pInt - cutting_freq(1)).and.(i .le. res(2)/2_pInt + 1_pInt + cutting_freq(1))) xi(1,i,j,k)= 0.0_pReal
enddo; enddo; enddo
if(memory_efficient) then ! allocate just single fourth order tensor
allocate (gamma_hat(1,1,1,3,3,3,3)); gamma_hat = 0.0_pReal
else ! precalculation of gamma_hat field
allocate (gamma_hat(res(1)/2_pInt + 1_pInt ,res(2),res(3),3,3,3,3)); gamma_hat = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt + 1_pInt
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
do l = 1_pInt ,3_pInt; do m = 1_pInt,3_pInt
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
enddo; enddo
temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad))
else
xiDyad = 0.0_pReal
temp33_Real = 0.0_pReal
endif
do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt
gamma_hat(i,j,k, l,m,n,p) = - 0.25*(temp33_Real(l,n)+temp33_Real(n,l)) *&
(xiDyad(m,p)+xiDyad(p,m))
enddo; enddo; enddo; enddo
enddo; enddo; enddo
endif
if (divergence_correction) then
if (res(3) == 1_pInt) then
correctionFactor = minval(geomdimension(1:2))*wgt**(-1.0_pReal/4.0_pReal) ! 2D case, ToDo: correct?
else
correctionFactor = minval(geomdimension(1:3))*wgt**(-1.0_pReal/4.0_pReal) ! multiplying by minimum dimension to get rid of dimension dependency and phenomenologigal factor wgt**(-1/4) to get rid of resolution dependency
endif
else
correctionFactor = 1.0_pReal
endif
! write header of output file
!$OMP CRITICAL (write2out)
open(538,file=trim(getSolverWorkingDirectoryName())//trim(getSolverJobName())&
//'.spectralOut',form='UNFORMATTED',status='REPLACE')
write(538), 'load', trim(getLoadcaseName())
write(538), 'workingdir', trim(getSolverWorkingDirectoryName())
write(538), 'geometry', trim(getSolverJobName())//InputFileExtension
write(538), 'resolution', res
write(538), 'dimension', geomdimension
write(538), 'materialpoint_sizeResults', materialpoint_sizeResults
write(538), 'loadcases', N_Loadcases
write(538), 'frequencies', bc(1:N_Loadcases)%outputfrequency ! one entry per loadcase
write(538), 'times', bc(1:N_Loadcases)%timeIncrement ! one entry per loadcase
write(538), 'logscales', bc(1:N_Loadcases)%logscale ! one entry per loadcase (0: linear, 1: log)
bc(1)%steps= bc(1)%steps + 1_pInt
write(538), 'increments', bc(1:N_Loadcases)%steps ! one entry per loadcase
bc(1)%steps= bc(1)%steps - 1_pInt
write(538), 'startingIncrement', restartReadStep -1_pInt ! start with writing out the previous step
write(538), 'eoh' ! end of header
write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! initial (non-deformed) results
!$OMP END CRITICAL (write2out)
endif
!*************************************************************
! Initialization End
!*************************************************************
if(totalStepsCounter >= restartReadStep) then ! Do calculations (otherwise just forwarding)
if(bc(loadcase)%restartFrequency>0_pInt) &
restartWrite = ( mod(step - 1_pInt,bc(loadcase)%restartFrequency)==0_pInt) ! at frequency of writing restart information
! setting restart parameter for FEsolving (first call to CPFEM_general will write ToDo: true?)
if (bc(loadcase)%velGradApplied) & ! calculate fDot from given L and current F
fDot = math_mul33x33(bc(loadcase)%deformation, defgradAim)
!winding forward of deformation aim in loadcase system
temp33_Real = defgradAim
defgradAim = defgradAim &
+ guessmode * mask_stress * (defgradAim - defgradAimOld) &
+ mask_defgrad * fDot * timeinc
defgradAimOld = temp33_Real
! update local deformation gradient
if (any(bc(loadcase)%rotation/=math_I3)) then ! lab and loadcase coordinate system are NOT the same
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = defgrad(i,j,k,1:3,1:3)
if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing)
fDot = math_mul33x33(bc(loadcase)%deformation,&
math_rotate_forward3x3(defgradold(i,j,k,1:3,1:3),bc(loadcase)%rotation))
defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing...
+ math_rotate_backward3x3((1.0_pReal-guessmode) * mask_defgrad * fDot,&
bc(loadcase)%rotation) *timeinc ! apply the prescribed value where deformation is given if not guessing
defgradold(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
else ! one coordinate system for lab and loadcase, save some multiplications
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
temp33_Real = defgrad(i,j,k,1:3,1:3)
if (bc(loadcase)%velGradApplied) & ! use velocity gradient to calculate new deformation gradient (if not guessing)
fDot = math_mul33x33(bc(loadcase)%deformation,defgradold(i,j,k,1:3,1:3))
defgrad(i,j,k,1:3,1:3) = defgrad(i,j,k,1:3,1:3) & ! decide if guessing along former trajectory or apply homogeneous addon
+ guessmode * (defgrad(i,j,k,1:3,1:3) - defgradold(i,j,k,1:3,1:3))& ! guessing...
+ (1.0_pReal-guessmode) * mask_defgrad * fDot * timeinc ! apply the prescribed value where deformation is given if not guessing
defgradold(i,j,k,1:3,1:3) = temp33_Real
enddo; enddo; enddo
endif
guessmode = 1.0_pReal ! keep guessing along former trajectory during same loadcase
CPFEM_mode = 1_pInt ! winding forward
iter = 0_pInt
err_div = 2.0_pReal * err_div_tol ! go into loop
c_prev = math_rotate_forward3x3x3x3(c_current*wgt,bc(loadcase)%rotation) ! calculate stiffness from former step
if(size_reduced > 0_pInt) then ! calculate compliance in case stress BC is applied
c_prev99 = math_Plain3333to99(c_prev)
k = 0_pInt ! build reduced stiffness
do n = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(m)) then
j = j + 1_pInt
c_reduced(k,j) = c_prev99(n,m)
endif; enddo; endif; enddo
call math_invert(size_reduced, c_reduced, s_reduced, i, errmatinv) ! invert reduced stiffness
if(errmatinv) call IO_error(error_ID=800)
s_prev99 = 0.0_pReal ! build full compliance
k = 0_pInt
do n = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(n)) then
k = k + 1_pInt
j = 0_pInt
do m = 1_pInt,9_pInt
if(bc(loadcase)%maskStressVector(m)) then
j = j + 1_pInt
s_prev99(n,m) = s_reduced(k,j)
endif; enddo; endif; enddo
s_prev = (math_Plain99to3333(s_prev99))
endif
print '(a)', '#############################################################'
print '(A,I5.5,A,es12.6)', 'Increment ', totalStepsCounter, ' Time ',time
if (restartWrite ) then
print '(A)', 'writing converged results of previous step for restart'
if(IO_write_jobBinaryFile(777,'convergedSpectralDefgrad',size(defgrad))) then ! and writing deformation gradient field to file
write (777,rec=1) defgrad
close (777)
endif
endif
!*************************************************************
! convergence loop
do while(iter < itmax .and. &
(err_div > err_div_tol .or. &
err_stress > err_stress_tol))
iter = iter + 1_pInt
!*************************************************************
print '(a)', ''
print '(a)', '============================================================='
print '(5(a,i5.5))', 'Loadcase ',loadcase,' Step ',step,'/',bc(loadcase)%steps,'@Iteration ',iter,'/',itmax
do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n)) * wgt
enddo; enddo
print '(a,/,3(3(f12.7,x)/)$)', 'deformation gradient:',&
math_transpose3x3(math_rotate_forward3x3(defgrad_av_lab,bc(loadcase)%rotation))
print '(a)', ''
print '(a)', '... update stress field P(F) ................................'
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(3_pInt,& ! collect cycle
coordinates(1:3,i,j,k), defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),&
temperature(i,j,k),timeinc,ielem,1_pInt,&
cstress,dsde, pstress, dPdF)
enddo; enddo; enddo
workfft = 0.0_pReal ! needed because of the padding for FFTW
c_current = 0.0_pReal
ielem = 0_pInt
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
ielem = ielem + 1_pInt
call CPFEM_general(CPFEM_mode,& ! first element in first iteration retains CPFEM_mode 1,
coordinates(1:3,i,j,k),&
defgradold(i,j,k,1:3,1:3), defgrad(i,j,k,1:3,1:3),& ! others get 2 (saves winding forward effort)
temperature(i,j,k),timeinc,ielem,1_pInt,&
cstress,dsde, pstress,dPdF)
CPFEM_mode = 2_pInt
workfft(i,j,k,1:3,1:3) = pstress ! build up average P-K stress
c_current = c_current + dPdF
enddo; enddo; enddo
do n = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
pstress_av_lab(m,n) = sum(workfft(1:res(1),1:res(2),1:res(3),m,n)) * wgt
enddo; enddo
print '(a)', ''
print '(a)', '... calculating equilibrium with spectral method ............'
call dfftw_execute_dft_r2c(fftw_plan(1),workfft,workfft) ! FFT of pstress
p_hat_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(workfft(1,1,1,1:3,1:3),& ! L_2 norm of average stress (freq 0,0,0) in fourier space,
math_transpose3x3(workfft(1,1,1,1:3,1:3)))))) ! ignore imaginary part as it is always zero for real only input
err_div_avg_complex = 0.0_pReal
err_div_max = 0.0_pReal ! only important if debugDivergence == .true.
divergence = 0.0_pReal ! - '' -
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt+1_pInt
divergence_complex = math_mul33x3_complex(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)& ! calculate divergence out of the real and imaginary part of the stress
+ workfft(i*2_pInt ,j,k,1:3,1:3)*img,xi(1:3,i,j,k))
if(debugDivergence) then ! need divergence NOT squared
divergence(i*2_pInt-1_pInt,j,k,1:3) = -aimag(divergence_complex) ! real part at i*2-1, imaginary part at i*2, multiply by i
divergence(i*2_pInt ,j,k,1:3) = real(divergence_complex) ! ==> switch order and change sign of img part
endif
divergence_complex = divergence_complex**2.0_pReal ! all criteria need divergence squared
if(i==1_pInt .or. i == res(1)/2_pInt + 1_pInt) then ! We are on one of the two slides without conjg. complex counterpart
err_div_avg_complex = err_div_avg_complex + sum(divergence_complex) ! RMS of L_2 norm of div(stress) in fourier space (Suquet small strain)
else ! Has somewhere a conj. complex counterpart. Therefore count it twice.
err_div_avg_complex = err_div_avg_complex +2.0*real(sum(divergence_complex)) ! Ignore img part (conjg. complex sum will end up 0). This and the different order
endif ! compared to c2c transform results in slight numerical deviations.
if(debugDivergence) then
err_div_max = max(err_div_max,abs(sqrt(sum(divergence_complex)))) ! maximum of L two norm of div(stress) in fourier space (Suquet large strain)
endif
enddo; enddo; enddo
err_div = abs(sqrt (err_div_avg_complex*wgt)) ! weighting by and taking square root (RMS). abs(...) because result is a complex number
err_div = err_div *correctionFactor/p_hat_avg ! weighting by average stress and multiplying with correction factor
err_div_max = err_div_max*correctionFactor/p_hat_avg ! - '' - only if debugDivergence == .true. of importance
! calculate additional divergence criteria and report -------------
if(debugDivergence) then
call dfftw_execute_dft_c2r(fftw_plan(3),divergence,divergence)
divergence = divergence *pi*2.0_pReal* wgt !pointwise factor 2*pi from differentation and weighting from FT
err_real_div_avg = 0.0_pReal
err_real_div_max = 0.0_pReal
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
err_real_div_avg = err_real_div_avg + sum(divergence(i,j,k,1:3)**2.0_pReal) ! avg of L_2 norm of div(stress) in real space
err_real_div_max = max(err_real_div_max, sqrt(sum(divergence(i,j,k,1:3)**2.0_pReal))) ! maximum of L two norm of div(stress) in real space
enddo; enddo; enddo
p_real_avg = sqrt(maxval (math_eigenvalues3x3(math_mul33x33(pstress_av_lab,& ! L_2 norm of average stress in real space,
math_transpose3x3(pstress_av_lab)))))
err_real_div_avg = sqrt(wgt*err_real_div_avg)*correctionFactor/p_real_avg ! RMS in real space
err_real_div_max = err_real_div_max *correctionFactor/p_real_avg
print '(a,es10.4,a,f6.2)', 'error divergence FT avg = ',err_div, ', ', err_div/err_div_tol
print '(a,es10.4)', 'error divergence FT max = ',err_div_max
print '(a,es10.4)', 'error divergence Real avg = ',err_real_div_avg
print '(a,es10.4)', 'error divergence Real max = ',err_real_div_max
else
print '(a,es10.4,a,f6.2)', 'error divergence = ',err_div, ', ', err_div/err_div_tol
endif
! --------------------------
if(memory_efficient) then ! memory saving version, on-the-fly calculation of gamma_hat
do k = 1_pInt, res(3); do j = 1_pInt, res(2) ;do i = 1_pInt, res(1)/2_pInt+1_pInt
if (any(xi(1:3,i,j,k) /= 0.0_pReal)) then
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt
xiDyad(l,m) = xi(l,i,j,k)*xi(m,i,j,k)
enddo; enddo
temp33_Real = math_inv3x3(math_mul3333xx33(c0_reference, xiDyad))
else
xiDyad = 0.0_pReal
temp33_Real = 0.0_pReal
endif
do l=1_pInt,3_pInt; do m=1_pInt,3_pInt; do n=1_pInt,3_pInt; do p=1_pInt,3_pInt
gamma_hat(1,1,1, l,m,n,p) = - 0.25_pReal*(temp33_Real(l,n)+temp33_Real(n,l))*&
(xiDyad(m,p) +xiDyad(p,m))
enddo; enddo; enddo; enddo
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
temp33_Complex(m,n) = sum(gamma_hat(1,1,1,m,n,1:3,1:3) *(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)&
+workfft(i*2_pInt ,j,k,1:3,1:3)*img))
enddo; enddo
workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) = real (temp33_Complex)
workfft(i*2_pInt ,j,k,1:3,1:3) = aimag(temp33_Complex)
enddo; enddo; enddo
else ! use precalculated gamma-operator
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)/2_pInt+1_pInt
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
temp33_Complex(m,n) = sum(gamma_hat(i,j,k, m,n,1:3,1:3) *(workfft(i*2_pInt-1_pInt,j,k,1:3,1:3)&
+ workfft(i*2_pInt ,j,k,1:3,1:3)*img))
enddo; enddo
workfft(i*2_pInt-1_pInt,j,k,1:3,1:3) = real (temp33_Complex)
workfft(i*2_pInt ,j,k,1:3,1:3) = aimag(temp33_Complex)
enddo; enddo; enddo
endif
workfft(1,1,1,1:3,1:3) = defgrad_av_lab - math_I3 ! assign zero frequency (real part) with average displacement gradient
workfft(2,1,1,1:3,1:3) = 0.0_pReal ! zero frequency (imaginary part)
call dfftw_execute_dft_c2r(fftw_plan(2),workfft,workfft) ! back transform of fluct deformation gradient
defgrad = defgrad + workfft(1:res(1),1:res(2),1:res(3),1:3,1:3)*wgt ! F(x)^(n+1) = F(x)^(n) + correction; *wgt: correcting for missing normalization
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
defgrad_av_lab(m,n) = sum(defgrad(1:res(1),1:res(2),1:res(3),m,n))*wgt ! ToDo: check whether this needs recalculation or is equivalent to former defgrad_av
enddo; enddo
! stress boundary condition check -------------
pstress_av = math_rotate_forward3x3(pstress_av_lab,bc(loadcase)%rotation)
print '(a,/,3(3(f12.7,x)/)$)', 'Piola-Kirchhoff stress / MPa: ',math_transpose3x3(pstress_av)/1.e6
if(size_reduced > 0_pInt) then ! calculate stress BC if applied
err_stress = maxval(abs(mask_stress * (pstress_av - bc(loadcase)%stress))) ! maximum deviaton (tensor norm not applicable)
err_stress_tol = maxval(abs(pstress_av)) * err_stress_tolrel ! don't use any tensor norm because the comparison should be coherent
print '(a)', ''
print '(a,es10.4,a,f6.2)', 'error stress = ',err_stress, ', ', err_stress/err_stress_tol
print '(a)', '... correcting deformation gradient to fulfill BCs ..........'
defgradAimCorr = - math_mul3333xx33(s_prev, ((pstress_av - bc(loadcase)%stress))) ! residual on given stress components
defgradAim = defgradAim + defgradAimCorr
print '(a,/,3(3(f12.7,x)/)$)', 'new deformation aim: ', math_transpose3x3(defgradAim)
print '(a,x,es10.4)' , 'with determinant: ', math_det3x3(defgradAim)
else
err_stress_tol = 0.0_pReal
endif
! ------------------------------
! homogeneous correction towards avg deformation gradient -------------
defgradAim_lab = math_rotate_backward3x3(defgradAim,bc(loadcase)%rotation) ! boundary conditions from load frame into lab (Fourier) frame
do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt
defgrad(1:res(1),1:res(2),1:res(3),m,n) = &
defgrad(1:res(1),1:res(2),1:res(3),m,n) + (defgradAim_lab(m,n) - defgrad_av_lab(m,n)) ! anticipated target minus current state
enddo; enddo
! ------------------------------
! bounds of det(F) -------------
defgradDetMax = -huge(1.0_pReal)
defgradDetMin = +huge(1.0_pReal)
do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
defgradDet = math_det3x3(defgrad(i,j,k,1:3,1:3))
defgradDetMax = max(defgradDetMax,defgradDet)
defgradDetMin = min(defgradDetMin,defgradDet)
enddo; enddo; enddo
print '(a,x,es10.4)' , 'max determinant of deformation:', defgradDetMax
print '(a,x,es10.4)' , 'min determinant of deformation:', defgradDetMin
! ------------------------------
enddo ! end looping when convergency is achieved
!$OMP CRITICAL (write2out)
print '(a)', ''
print '(a)', '============================================================='
if(err_div > err_div_tol .or. err_stress > err_stress_tol) then
print '(A,I5.5,A)', 'increment ', totalStepsCounter, ' NOT converged'
notConvergedCounter = notConvergedCounter + 1_pInt
else
print '(A,I5.5,A)', 'increment ', totalStepsCounter, ' converged'
endif
if (mod(totalStepsCounter -1_pInt,bc(loadcase)%outputfrequency) == 0_pInt) then ! at output frequency
print '(a)', ''
print '(a)', '... writing results to file .................................'
write(538), materialpoint_results(1_pInt:materialpoint_sizeResults,1,1_pInt:Npoints) ! write result to file
endif
!$OMP END CRITICAL (write2out)
! ##################################################
! # test of regridding
! allocate(deformed_small(res(1) ,res(2) ,res(3) ,3)); deformed_small = 0.0_pReal
! allocate(deformed_large(3,Npoints*27_pInt)); deformed_large = 0.0_pReal !ToDo: make it smaller (small corona only)
! call deformed_fft(res,geomdimension,defgrad_av_lab,1.0_pReal,defgrad,deformed_small) ! calculate deformed coordinates
! shift = math_mul33x3(defgrad_av_lab,geomdimension)
! print*, 'defgrad'
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! print*, defgrad(i,j,k,1:3,1:3)
! enddo; enddo; enddo
! print*, 'deformed_small'
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! print*, deformed_small(i,j,k,1:3)
! enddo; enddo; enddo
! print*, 'shift', shift
! ielem = 0_pInt
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! do n = -1, 1
! do m = -1, 1
! do l = -1, 1
! ielem = ielem +1_pInt
! deformed_large(1:3,ielem) = deformed_small(i,j,k,1:3)+ real((/l,m,n/),pReal)*shift
! enddo; enddo; enddo
! enddo; enddo; enddo
! print*, 'deformed_large'
! print*, deformed_large
! tree => kdtree2_create(deformed_large,sort=.true.,rearrange=.true.)
! allocate(new_coordinates(res(1),res(2),res(3),3)); new_coordinates = 0.0_pReal !fluctuation free new coordinates
! do k = 1_pInt, res(3); do j = 1_pInt, res(2); do i = 1_pInt, res(1)
! new_coordinates(i,j,k,1:3) = math_mul33x3(defgrad_av_lab,coordinates(1:3,i,j,k))
! enddo; enddo; enddo
! pause
! ##################################################
! # end test of regridding
endif ! end calculation/forwarding
enddo ! end looping over steps in current loadcase
deallocate(c_reduced)
deallocate(s_reduced)
enddo ! end looping over loadcases
!$OMP CRITICAL (write2out)
print '(a)', ''
print '(a)', '#############################################################'
print '(a,i5.5,a,i5.5,a)', 'of ', totalStepsCounter - restartReadStep + 1_pInt, ' calculated steps, ',&
notConvergedCounter, ' steps did not converge!'
!$OMP END CRITICAL (write2out)
close(538)
call dfftw_destroy_plan(fftw_plan(1)); call dfftw_destroy_plan(fftw_plan(2))
if (debugDivergence) call dfftw_destroy_plan(fftw_plan(3))
end program DAMASK_spectral
!********************************************************************
! quit subroutine to satisfy IO_error
!
!********************************************************************
subroutine quit(id)
use prec
implicit none
integer(pInt) id
stop
end subroutine