DAMASK_EICMD/code/mpie_cpfem_marc.f90

301 lines
12 KiB
Fortran

!********************************************************************
! Material subroutine for MSC.Marc
!
! written by P. Eisenlohr,
! F. Roters,
! L. Hantcherli,
! W.A. Counts
! D.D. Tjahjanto
!
! MPI fuer Eisenforschung, Duesseldorf
!
!********************************************************************
! Usage:
! - choose material as hypela2
! - set statevariable 2 to index of homogenization
! - set statevariable 3 to index of microstructure
! - make sure the file "material.config" exists in the working
! directory
! - make sure the file "numerics.config" exists in the working
! directory
! - use nonsymmetric option for solver (e.g. direct
! profile or multifrontal sparse, the latter seems
! to be faster!)
! - in case of ddm (domain decomposition)a SYMMETRIC
! solver has to be used, i.e uncheck "non-symmetric"
!********************************************************************
! Marc subroutines used:
! - hypela2
! - plotv
! - quit
!********************************************************************
! Marc common blocks included:
! - concom: lovl, ncycle, inc, incsub
! - creeps: timinc
!********************************************************************
!
include "prec.f90" ! uses nothing else
include "math.f90" ! uses prec
include "IO.f90" ! uses prec, math
include "numerics.f90" ! uses prec, IO
include "debug.f90" ! uses prec, numerics
include "FEsolving.f90" ! uses prec, IO
include "mesh.f90" ! uses prec, math, IO, FEsolving
include "material.f90" ! uses prec, math, IO, mesh
include "lattice.f90" ! uses prec, math, IO, material
include "constitutive_phenomenological.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_j2.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive_dislobased.f90" ! uses prec, math, IO, lattice, material, debug
include "constitutive.f90" ! uses prec, IO, math, lattice, mesh, debug
include "crystallite.f90" ! uses prec, math, IO, numerics
include "homogenization_isostrain.f90" ! uses prec, math, IO,
include "homogenization.f90" ! uses prec, math, IO, numerics
include "CPFEM.f90" ! uses prec, math, IO, numerics, debug, FEsolving, mesh, lattice, constitutive, crystallite
!********************************************************************
! This is the Marc material routine
!********************************************************************
!
! ************* user subroutine for defining material behavior **************
!
!
! CAUTION : Due to calculation of the Deformation gradients, Stretch Tensors and
! Rotation tensors at previous and current states, the analysis can be
! computationally expensive. Please use the user subroutine -> hypela
! if these kinematic quantities are not needed in the constitutive model
!
!
! IMPORTANT NOTES :
!
! (1) F,R,U are only available for continuum and membrane elements (not for
! shells and beams).
!
! (2) For total Lagrangian formulation use the -> 'Elasticity,1' card(=
! total Lagrange with large disp) in the parameter section of input deck.
! For updated Lagrangian formulation use the -> 'Plasticity,3' card(=
! update+finite+large disp+constant d) in the parameter section of
! input deck.
!
! The following operation obtains U (stretch tensor) at t=n+1 :
!
! call scla(un1,0.d0,itel,itel,1)
! do 3 k=1,3
! do 2 i=1,3
! do 1 j=1,3
! un1(i,j)=un1(i,j)+dsqrt(strechn1(k))*eigvn1(i,k)*eigvn1(j,k)
!1 continue
!2 continue
!3 continue
!
!********************************************************************
subroutine hypela2(&
d,& ! stress strain law to be formed
g,& ! change in stress due to temperature effects
e,& ! total elastic strain
de,& ! increment of strain
s,& ! stress - should be updated by user
t,& ! state variables (comes in at t=n, must be updated to have state variables at t=n+1)
dt,& ! increment of state variables
ngens,& ! size of stress - strain law
n,& ! element number
nn,& ! integration point number
kcus,& ! (1) layer number, (2) internal layer number
matus,& ! (1) user material identification number, (2) internal material identification number
ndi,& ! number of direct components
nshear,& ! number of shear components
disp,& ! incremental displacements
dispt,& ! displacements at t=n (at assembly, lovl=4) and displacements at t=n+1 (at stress recovery, lovl=6)
coord,& ! coordinates
ffn,& ! deformation gradient
frotn,& ! rotation tensor
strechn,& ! square of principal stretch ratios, lambda(i)
eigvn,& ! i principal direction components for j eigenvalues
ffn1,& ! deformation gradient
frotn1,& ! rotation tensor
strechn1,& ! square of principal stretch ratios, lambda(i)
eigvn1,& ! i principal direction components for j eigenvalues
ncrd,& ! number of coordinates
itel,& ! dimension of F and R, either 2 or 3
ndeg,& ! number of degrees of freedom ==> is this at correct list position ?!?
ndm,& !
nnode,& ! number of nodes per element
jtype,& ! element type
lclass,& ! element class
ifr,& ! set to 1 if R has been calculated
ifu & ! set to 1 if stretch has been calculated
)
use prec, only: pReal, &
pInt
use FEsolving, only: cycleCounter, &
theInc, &
theCycle, &
theLovl, &
theTime, &
lastIncConverged, &
outdatedByNewInc, &
outdatedFFN1, &
symmetricSolver
use CPFEM, only: CPFEM_general
use math, only: invnrmMandel
use debug, only: debug_info, &
debug_reset
implicit none
! ** Start of generated type statements **
real(pReal) coord, d, de, disp, dispt, dt, e, eigvn, eigvn1, ffn, ffn1
real(pReal) frotn, frotn1, g
integer(pInt) ifr, ifu, itel, jtype, kcus, lclass, matus, n, ncrd, ndeg
integer(pInt) ndi, ndm, ngens, nn, nnode, nshear
real(pReal) s, strechn, strechn1, t
! ** End of generated type statements **
dimension e(*),de(*),t(*),dt(*),g(*),d(ngens,*),s(*), n(2),coord(ncrd,*),disp(ndeg,*),matus(2),dispt(ndeg,*),ffn(itel,*),&
frotn(itel,*),strechn(itel),eigvn(itel,*),ffn1(itel,*),frotn1(itel,*),strechn1(itel),eigvn1(itel,*),kcus(2), lclass(2)
! Marc common blocks are in fixed format so they have to be reformated to free format (f90)
! Beware of changes in newer Marc versions
include "concom%%MARCVERSION%%" ! concom is needed for inc, subinc, ncycle, lovl
include "creeps%%MARCVERSION%%" ! creeps is needed for timinc (time increment)
integer(pInt) computationMode, i
if (inc == 0) then
cycleCounter = 4
else
if (theCycle > ncycle .or. theInc /= inc) cycleCounter = 0 ! reset counter for each cutback or new inc
if (theCycle /= ncycle .or. theLovl /= lovl) then
cycleCounter = cycleCounter+1 ! ping pong
outdatedFFN1 = .false.
write (6,*) n(1),nn,'cycleCounter',cycleCounter
call debug_info() ! output of debugging/performance statistics of former
call debug_reset()
endif
endif
if (cptim > theTime .or. theInc /= inc) then ! reached convergence
lastIncConverged = .true.
outdatedByNewInc = .true.
write (6,*) n(1),nn,'lastIncConverged + outdated'
endif
if (mod(cycleCounter,2) /= 0) computationMode = 4 ! recycle in odd cycles
if (mod(cycleCounter,4) == 2) computationMode = 3 ! collect in 2,6,10,...
if (mod(cycleCounter,4) == 0) computationMode = 2 ! compute in 0,4,8,...
if (computationMode == 4 .and. ncycle == 0 .and. .not. lastIncConverged) &
computationMode = 6 ! recycle but restore known good consistent tangent
if (computationMode == 4 .and. lastIncConverged) then
computationMode = 5 ! recycle and record former consistent tangent
lastIncConverged = .false.
endif
if (computationMode == 2 .and. outdatedByNewInc) then
computationMode = 1 ! compute and age former results
outdatedByNewInc = .false.
endif
theTime = cptim ! record current starting time
theInc = inc ! record current increment number
theCycle = ncycle ! record current cycle count
theLovl = lovl ! record current lovl
call CPFEM_general(computationMode,ffn,ffn1,t(1),timinc,n(1),nn,s,d,ngens)
! Mandel: 11, 22, 33, SQRT(2)*12, SQRT(2)*23, SQRT(2)*13
! Marc: 11, 22, 33, 12, 23, 13
forall(i=1:ngens) d(1:ngens,i) = invnrmMandel(i)*d(1:ngens,i)*invnrmMandel(1:ngens)
s(1:ngens) = s(1:ngens)*invnrmMandel(1:ngens)
if(symmetricSolver) d(1:ngens,1:ngens) = 0.5_pReal*(d(1:ngens,1:ngens)+transpose(d(1:ngens,1:ngens)))
return
end subroutine
!********************************************************************
! This routine sets user defined output variables for Marc
!********************************************************************
!
! select a variable contour plotting (user subroutine).
!
!********************************************************************
subroutine plotv(&
v,& ! variable
s,& ! stress array
sp,& ! stresses in preferred direction
etot,& ! total strain (generalized)
eplas,& ! total plastic strain
ecreep,& ! total creep strain
t,& ! current temperature
m,& ! element number
nn,& ! integration point number
layer,& ! layer number
ndi,& ! number of direct stress components
nshear,& ! number of shear stress components
jpltcd & ! user variable index
)
use prec, only: pReal,pInt
use mesh, only: mesh_FEasCP
use homogenization, only: materialpoint_results
implicit none
real(pReal) s(*),etot(*),eplas(*),ecreep(*),sp(*)
real(pReal) v, t(*)
integer(pInt) m, nn, layer, ndi, nshear, jpltcd
v = materialpoint_results(jpltcd,nn,mesh_FEasCP('elem', m))
return
end subroutine
! subroutine utimestep(timestep,timestepold,icall,time,timeloadcase)
!********************************************************************
! This routine modifies the addaptive time step of Marc
!********************************************************************
! use prec, only: pReal,pInt
! use CPFEM, only : CPFEM_timefactor_max
! implicit none
!
! real(pReal) timestep, timestepold, time,timeloadcase
! integer(pInt) icall
!
! user subroutine for modifying the time step in auto step
!
! timestep : the current time step as suggested by marc
! to be modified in this routine
! timestepold : the current time step before it was modified by marc
! icall : =1 for setting the initial time step
! =2 if this routine is called during an increment
! =3 if this routine is called at the beginning
! of the increment
! time : time at the start of the current increment
! timeloadcase: time period of the current load case
!
! it is in general not recommended to increase the time step
! during the increment.
! this routine is called right after the time step has (possibly)
! been updated by marc.
!
! user coding
! reduce timestep during increment in case mpie_timefactor is too large
! if(icall==2_pInt) then
! if(mpie_timefactor_max>1.25_pReal) then
! timestep=min(timestep,timestepold*0.8_pReal)
! end if
! return
! modify timestep at beginning of new increment
! else if(icall==3_pInt) then
! if(mpie_timefactor_max<=0.8_pReal) then
! timestep=min(timestep,timestepold*1.25_pReal)
! else if (mpie_timefactor_max<=1.0_pReal) then
! timestep=min(timestep,timestepold/mpie_timefactor_max)
! else if (mpie_timefactor_max<=1.25_pReal) then
! timestep=min(timestep,timestepold*1.01_pReal)
! else
! timestep=min(timestep,timestepold*0.8_pReal)
! end if
! end if
! return
! end