DAMASK_EICMD/code/thermal_adiabatic.f90

469 lines
22 KiB
Fortran

!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incoprorating local heat generation due to plastic dissipation
!> @details to be done
!--------------------------------------------------------------------------------------------------
module thermal_adiabatic
use prec, only: &
pReal, &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
thermal_adiabatic_sizePostResults !< cumulative size of post results
integer(pInt), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_sizePostResult !< size of each post result output
character(len=64), dimension(:,:), allocatable, target, public :: &
thermal_adiabatic_output !< name of each post result output
integer(pInt), dimension(:), allocatable, target, public :: &
thermal_adiabatic_Noutput !< number of outputs per instance of this damage
real(pReal), dimension(:), allocatable, public :: &
thermal_adiabatic_aTol
enum, bind(c)
enumerator :: undefined_ID, &
temperature_ID
end enum
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
thermal_adiabatic_outputID !< ID of each post result output
public :: &
thermal_adiabatic_init, &
thermal_adiabatic_stateInit, &
thermal_adiabatic_aTolState, &
thermal_adiabatic_microstructure, &
thermal_adiabatic_LTAndItsTangent, &
thermal_adiabatic_getTemperature, &
thermal_adiabatic_getLocalTemperature, &
thermal_adiabatic_putLocalTemperature, &
thermal_adiabatic_getHeatGeneration, &
thermal_adiabatic_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_init(fileUnit,temperature_init)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use debug, only: &
debug_level,&
debug_constitutive,&
debug_levelBasic
use IO, only: &
IO_read, &
IO_lc, &
IO_getTag, &
IO_isBlank, &
IO_stringPos, &
IO_stringValue, &
IO_floatValue, &
IO_intValue, &
IO_warning, &
IO_error, &
IO_timeStamp, &
IO_EOF
use material, only: &
phase_thermal, &
phase_thermalInstance, &
phase_Noutput, &
LOCAL_THERMAL_ADIABATIC_label, &
LOCAL_THERMAL_adiabatic_ID, &
material_phase, &
thermalState, &
MATERIAL_partPhase
use numerics,only: &
worldrank, &
numerics_integrator
implicit none
real(pReal), intent(in) :: temperature_init !< initial temperature
integer(pInt), intent(in) :: fileUnit
integer(pInt), parameter :: MAXNCHUNKS = 7_pInt
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,instance,o
integer(pInt) :: sizeState, sizeDotState
integer(pInt) :: NofMyPhase
character(len=65536) :: &
tag = '', &
line = ''
mainProcess: if (worldrank == 0) then
write(6,'(/,a)') ' <<<+- thermal_'//LOCAL_THERMAL_ADIABATIC_label//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
endif mainProcess
maxNinstance = int(count(phase_thermal == LOCAL_THERMAL_adiabatic_ID),pInt)
if (maxNinstance == 0_pInt) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
allocate(thermal_adiabatic_sizePostResults(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
allocate(thermal_adiabatic_output(maxval(phase_Noutput),maxNinstance))
thermal_adiabatic_output = ''
allocate(thermal_adiabatic_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
allocate(thermal_adiabatic_Noutput(maxNinstance), source=0_pInt)
allocate(thermal_adiabatic_aTol(maxNinstance), source=0.0_pReal)
rewind(fileUnit)
phase = 0_pInt
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
line = IO_read(fileUnit)
enddo
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
line = IO_read(fileUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
line = IO_read(fileUnit, .true.) ! reset IO_read
exit
endif
if (IO_getTag(line,'[',']') /= '') then ! next phase section
phase = phase + 1_pInt ! advance phase section counter
cycle ! skip to next line
endif
if (phase > 0_pInt ) then; if (phase_thermal(phase) == LOCAL_THERMAL_adiabatic_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
instance = phase_thermalInstance(phase) ! which instance of my thermal is present phase
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('temperature')
thermal_adiabatic_Noutput(instance) = thermal_adiabatic_Noutput(instance) + 1_pInt
thermal_adiabatic_outputID(thermal_adiabatic_Noutput(instance),instance) = temperature_ID
thermal_adiabatic_output(thermal_adiabatic_Noutput(instance),instance) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
end select
case ('atol_adiabatic')
thermal_adiabatic_aTol(instance) = IO_floatValue(line,positions,2_pInt)
end select
endif; endif
enddo parsingFile
initializeInstances: do phase = 1_pInt, size(phase_thermal)
if (phase_thermal(phase) == LOCAL_THERMAL_adiabatic_ID) then
NofMyPhase=count(material_phase==phase)
instance = phase_thermalInstance(phase)
!--------------------------------------------------------------------------------------------------
! Determine size of postResults array
outputsLoop: do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case(temperature_ID)
mySize = 1_pInt
end select
if (mySize > 0_pInt) then ! any meaningful output found
thermal_adiabatic_sizePostResult(o,instance) = mySize
thermal_adiabatic_sizePostResults(instance) = thermal_adiabatic_sizePostResults(instance) + mySize
endif
enddo outputsLoop
! Determine size of state array
sizeDotState = 0_pInt
sizeState = 1_pInt
thermalState(phase)%sizeState = sizeState
thermalState(phase)%sizeDotState = sizeDotState
thermalState(phase)%sizePostResults = thermal_adiabatic_sizePostResults(instance)
allocate(thermalState(phase)%aTolState (sizeState), source=0.0_pReal)
allocate(thermalState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%state_backup (sizeState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%deltaState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%dotState_backup (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 1_pInt)) then
allocate(thermalState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
allocate(thermalState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
endif
if (any(numerics_integrator == 4_pInt)) &
allocate(thermalState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
if (any(numerics_integrator == 5_pInt)) &
allocate(thermalState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
call thermal_adiabatic_stateInit(phase,temperature_init)
call thermal_adiabatic_aTolState(phase,instance)
endif
enddo initializeInstances
end subroutine thermal_adiabatic_init
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant NEW state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_stateInit(phase,temperature_init)
use material, only: &
thermalState
implicit none
integer(pInt), intent(in) :: phase !< number specifying the phase of the thermal
real(pReal), intent(in) :: temperature_init !< initial temperature
real(pReal), dimension(thermalState(phase)%sizeState) :: tempState
tempState(1) = temperature_init
thermalState(phase)%state = spread(tempState,2,size(thermalState(phase)%state(1,:)))
thermalState(phase)%state0 = thermalState(phase)%state
thermalState(phase)%partionedState0 = thermalState(phase)%state
end subroutine thermal_adiabatic_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief sets the relevant state values for a given instance of this thermal
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_aTolState(phase,instance)
use material, only: &
thermalState
implicit none
integer(pInt), intent(in) :: &
phase, &
instance ! number specifying the current instance of the thermal
real(pReal), dimension(thermalState(phase)%sizeState) :: tempTol
tempTol = thermal_adiabatic_aTol(instance)
thermalState(phase)%aTolState = tempTol
end subroutine thermal_adiabatic_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief calculates derived quantities from state
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_microstructure(Tstar_v, Lp, subdt, ipc, ip, el)
use lattice, only: &
lattice_massDensity, &
lattice_specificHeat
use material, only: &
mappingConstitutive, &
thermalState
use math, only: &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal), intent(in) :: &
subdt
integer(pInt) :: &
phase, &
constituent
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
thermalState(phase)%state(1,constituent) = &
thermalState(phase)%subState0(1,constituent) + &
subdt* &
0.95_pReal*sum(abs(math_Mandel6to33(Tstar_v))*Lp)/ &
(lattice_massDensity(phase)*lattice_specificHeat(phase))
end subroutine thermal_adiabatic_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief contains the constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_LTAndItsTangent(LT, dLT_dTstar3333, Tstar_v, Lp, ipc, ip, el)
use lattice, only: &
lattice_massDensity, &
lattice_specificHeat, &
lattice_thermalExpansion33
use material, only: &
mappingConstitutive
use math, only: &
math_Plain3333to99, &
math_Mandel6to33
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal), intent(out), dimension(3,3) :: &
LT !< thermal velocity gradient
real(pReal), intent(out), dimension(3,3,3,3) :: &
dLT_dTstar3333 !< derivative of LT with respect to Tstar (4th-order tensor)
integer(pInt) :: &
phase, &
constituent, &
i, j, k, l
real(pReal) :: &
Tdot
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
Tdot = 0.95_pReal &
* sum(abs(math_Mandel6to33(Tstar_v))*Lp) &
/ (lattice_massDensity(phase)*lattice_specificHeat(phase))
LT = Tdot*lattice_thermalExpansion33(1:3,1:3,phase)
dLT_dTstar3333 = 0.0_pReal
forall (i=1_pInt:3_pInt,j=1_pInt:3_pInt,k=1_pInt:3_pInt,l=1_pInt:3_pInt) &
dLT_dTstar3333(i,j,k,l) = Lp(k,l)*lattice_thermalExpansion33(i,j,phase)
dLT_dTstar3333 = 0.95_pReal*dLT_dTstar3333/(lattice_massDensity(phase)*lattice_specificHeat(phase))
end subroutine thermal_adiabatic_LTAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief returns temperature based on local damage model state layout
!--------------------------------------------------------------------------------------------------
pure function thermal_adiabatic_getTemperature(ipc, ip, el)
use material, only: &
mappingHomogenization, &
fieldThermal, &
field_thermal_type, &
FIELD_THERMAL_nonlocal_ID, &
material_homog, &
mappingConstitutive, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal) :: thermal_adiabatic_getTemperature
select case(field_thermal_type(material_homog(ip,el)))
case (FIELD_THERMAL_nonlocal_ID)
thermal_adiabatic_getTemperature = fieldThermal(material_homog(ip,el))% &
field(1,mappingHomogenization(1,ip,el)) ! Taylor type
case default
thermal_adiabatic_getTemperature = thermalState(mappingConstitutive(2,ipc,ip,el))% &
state(1,mappingConstitutive(1,ipc,ip,el))
end select
end function thermal_adiabatic_getTemperature
!--------------------------------------------------------------------------------------------------
!> @brief returns temperature based on local damage model state layout
!--------------------------------------------------------------------------------------------------
pure function thermal_adiabatic_getLocalTemperature(ipc, ip, el)
use material, only: &
mappingConstitutive, &
ThermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal) :: &
thermal_adiabatic_getLocalTemperature
thermal_adiabatic_getLocalTemperature = &
thermalState(mappingConstitutive(2,ipc,ip,el))%state(1,mappingConstitutive(1,ipc,ip,el))
end function thermal_adiabatic_getLocalTemperature
!--------------------------------------------------------------------------------------------------
!> @brief returns temperature based on local damage model state layout
!--------------------------------------------------------------------------------------------------
subroutine thermal_adiabatic_putLocalTemperature(ipc, ip, el, localTemperature)
use material, only: &
mappingConstitutive, &
ThermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< grain number
ip, & !< integration point number
el !< element number
real(pReal), intent(in) :: &
localTemperature
thermalState(mappingConstitutive(2,ipc,ip,el))%state(1,mappingConstitutive(1,ipc,ip,el))= &
localTemperature
end subroutine thermal_adiabatic_putLocalTemperature
!--------------------------------------------------------------------------------------------------
!> @brief returns heat generation rate
!--------------------------------------------------------------------------------------------------
pure function thermal_adiabatic_getHeatGeneration(Tstar_v, Lp)
use math, only: &
math_Mandel6to33
implicit none
real(pReal), intent(in), dimension(6) :: &
Tstar_v !< 2nd Piola-Kirchhoff stress
real(pReal), intent(in), dimension(3,3) :: &
Lp !< plastic velocity gradient
real(pReal) :: thermal_adiabatic_getHeatGeneration
thermal_adiabatic_getHeatGeneration = 0.95_pReal &
* sum(abs(math_Mandel6to33(Tstar_v))*Lp)
end function thermal_adiabatic_getHeatGeneration
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
function thermal_adiabatic_postResults(ipc,ip,el)
use material, only: &
mappingConstitutive, &
phase_thermalInstance, &
thermalState
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID of integration point
ip, & !< integration point
el !< element
real(pReal), dimension(thermal_adiabatic_sizePostResults(phase_thermalInstance(mappingConstitutive(2,ipc,ip,el)))) :: &
thermal_adiabatic_postResults
integer(pInt) :: &
instance, phase, constituent, o, c
phase = mappingConstitutive(2,ipc,ip,el)
constituent = mappingConstitutive(1,ipc,ip,el)
instance = phase_thermalInstance(phase)
c = 0_pInt
thermal_adiabatic_postResults = 0.0_pReal
do o = 1_pInt,thermal_adiabatic_Noutput(instance)
select case(thermal_adiabatic_outputID(o,instance))
case (temperature_ID)
thermal_adiabatic_postResults(c+1_pInt) = thermalState(phase)%state(1,constituent)
c = c + 1
end select
enddo
end function thermal_adiabatic_postResults
end module thermal_adiabatic