4377 lines
249 KiB
Fortran
4377 lines
249 KiB
Fortran
!--------------------------------------------------------------------------------------------------
|
|
! $Id$
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @author Christoph Kords, Max-Planck-Institut für Eisenforschung GmbH
|
|
!> @brief crystallite state integration functions and reporting of results
|
|
!--------------------------------------------------------------------------------------------------
|
|
|
|
module crystallite
|
|
use prec, only: &
|
|
pReal, &
|
|
pInt
|
|
|
|
implicit none
|
|
|
|
private
|
|
character(len=64), dimension(:,:), allocatable, private :: &
|
|
crystallite_output !< name of each post result output
|
|
integer(pInt), public, protected :: &
|
|
crystallite_maxSizePostResults !< description not available
|
|
integer(pInt), dimension(:), allocatable, public, protected :: &
|
|
crystallite_sizePostResults !< description not available
|
|
integer(pInt), dimension(:,:), allocatable, private :: &
|
|
crystallite_sizePostResult !< description not available
|
|
|
|
real(pReal), dimension(:,:,:), allocatable, public :: &
|
|
crystallite_dt !< requested time increment of each grain
|
|
real(pReal), dimension(:,:,:), allocatable, private :: &
|
|
crystallite_subdt, & !< substepped time increment of each grain
|
|
crystallite_subFrac, & !< already calculated fraction of increment
|
|
crystallite_subStep !< size of next integration step
|
|
real(pReal), dimension(:,:,:,:), allocatable, public :: &
|
|
crystallite_Tstar_v, & !< current 2nd Piola-Kirchhoff stress vector (end of converged time step)
|
|
crystallite_Tstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of FE inc
|
|
crystallite_partionedTstar0_v !< 2nd Piola-Kirchhoff stress vector at start of homog inc
|
|
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
|
crystallite_subTstar0_v, & !< 2nd Piola-Kirchhoff stress vector at start of crystallite inc
|
|
crystallite_orientation, & !< orientation as quaternion
|
|
crystallite_orientation0, & !< initial orientation as quaternion
|
|
crystallite_rotation !< grain rotation away from initial orientation as axis-angle (in degrees) in crystal reference frame
|
|
real(pReal), dimension(:,:,:,:,:), allocatable, public :: &
|
|
crystallite_Fp, & !< current plastic def grad (end of converged time step)
|
|
crystallite_Fp0, & !< plastic def grad at start of FE inc
|
|
crystallite_partionedFp0,& !< plastic def grad at start of homog inc
|
|
crystallite_Fi, & !< current intermediate def grad (end of converged time step)
|
|
crystallite_Fi0, & !< intermediate def grad at start of FE inc
|
|
crystallite_partionedFi0,& !< intermediate def grad at start of homog inc
|
|
crystallite_F0, & !< def grad at start of FE inc
|
|
crystallite_partionedF, & !< def grad to be reached at end of homog inc
|
|
crystallite_partionedF0, & !< def grad at start of homog inc
|
|
crystallite_Lp, & !< current plastic velocitiy grad (end of converged time step)
|
|
crystallite_Lp0, & !< plastic velocitiy grad at start of FE inc
|
|
crystallite_partionedLp0,& !< plastic velocity grad at start of homog inc
|
|
crystallite_Li, & !< current intermediate velocitiy grad (end of converged time step)
|
|
crystallite_Li0, & !< intermediate velocitiy grad at start of FE inc
|
|
crystallite_partionedLi0,& !< intermediate velocity grad at start of homog inc
|
|
crystallite_P !< 1st Piola-Kirchhoff stress per grain
|
|
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
|
|
crystallite_Fe, & !< current "elastic" def grad (end of converged time step)
|
|
crystallite_subFe0,& !< "elastic" def grad at start of crystallite inc
|
|
crystallite_invFp, & !< inverse of current plastic def grad (end of converged time step)
|
|
crystallite_subFp0,& !< plastic def grad at start of crystallite inc
|
|
crystallite_invFi, & !< inverse of current intermediate def grad (end of converged time step)
|
|
crystallite_subFi0,& !< intermediate def grad at start of crystallite inc
|
|
crystallite_subF, & !< def grad to be reached at end of crystallite inc
|
|
crystallite_subF0, & !< def grad at start of crystallite inc
|
|
crystallite_subLp0,& !< plastic velocity grad at start of crystallite inc
|
|
crystallite_subLi0,& !< intermediate velocity grad at start of crystallite inc
|
|
crystallite_disorientation !< disorientation between two neighboring ips (only calculated for single grain IPs)
|
|
real(pReal), dimension(:,:,:,:,:,:,:), allocatable, public :: &
|
|
crystallite_dPdF, & !< current individual dPdF per grain (end of converged time step)
|
|
crystallite_dPdF0, & !< individual dPdF per grain at start of FE inc
|
|
crystallite_partioneddPdF0 !< individual dPdF per grain at start of homog inc
|
|
real(pReal), dimension(:,:,:,:,:,:,:), allocatable, private :: &
|
|
crystallite_fallbackdPdF !< dPdF fallback for non-converged grains (elastic prediction)
|
|
logical, dimension(:,:,:), allocatable, public :: &
|
|
crystallite_requested !< flag to request crystallite calculation
|
|
logical, dimension(:,:,:), allocatable, public, protected :: &
|
|
crystallite_converged, & !< convergence flag
|
|
crystallite_localPlasticity !< indicates this grain to have purely local constitutive law
|
|
logical, dimension(:,:,:), allocatable, private :: &
|
|
crystallite_todo !< flag to indicate need for further computation
|
|
logical, dimension(:,:), allocatable, private :: &
|
|
crystallite_clearToWindForward, & !< description not available
|
|
crystallite_clearToCutback, & !< description not available
|
|
crystallite_syncSubFrac, & !< description not available
|
|
crystallite_syncSubFracCompleted, & !< description not available
|
|
crystallite_neighborEnforcedCutback !< description not available
|
|
|
|
enum, bind(c)
|
|
enumerator :: undefined_ID, &
|
|
phase_ID, &
|
|
texture_ID, &
|
|
volume_ID, &
|
|
grainrotationx_ID, &
|
|
grainrotationy_ID, &
|
|
grainrotationz_ID, &
|
|
orientation_ID, &
|
|
grainrotation_ID, &
|
|
eulerangles_ID, &
|
|
defgrad_ID, &
|
|
fe_ID, &
|
|
fp_ID, &
|
|
fi_ID, &
|
|
lp_ID, &
|
|
li_ID, &
|
|
e_ID, &
|
|
ee_ID, &
|
|
p_ID, &
|
|
s_ID, &
|
|
elasmatrix_ID, &
|
|
neighboringip_ID, &
|
|
neighboringelement_ID
|
|
end enum
|
|
integer(kind(undefined_ID)),dimension(:,:), allocatable, private :: &
|
|
crystallite_outputID !< ID of each post result output
|
|
|
|
|
|
public :: &
|
|
crystallite_init, &
|
|
crystallite_stressAndItsTangent, &
|
|
crystallite_orientations, &
|
|
crystallite_push33ToRef, &
|
|
crystallite_postResults
|
|
private :: &
|
|
crystallite_integrateStateFPI, &
|
|
crystallite_integrateStateEuler, &
|
|
crystallite_integrateStateAdaptiveEuler, &
|
|
crystallite_integrateStateRK4, &
|
|
crystallite_integrateStateRKCK45, &
|
|
crystallite_integrateStress, &
|
|
crystallite_stateJump
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief allocates and initialize per grain variables
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_init
|
|
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
|
|
use debug, only: &
|
|
debug_info, &
|
|
debug_reset, &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic
|
|
use numerics, only: &
|
|
worldrank, &
|
|
usePingPong
|
|
use math, only: &
|
|
math_I3, &
|
|
math_EulerToR, &
|
|
math_inv33, &
|
|
math_transpose33, &
|
|
math_mul33xx33, &
|
|
math_mul33x33
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips, &
|
|
mesh_maxNipNeighbors
|
|
use IO, only: &
|
|
IO_read, &
|
|
IO_timeStamp, &
|
|
IO_open_jobFile_stat, &
|
|
IO_open_file, &
|
|
IO_lc, &
|
|
IO_getTag, &
|
|
IO_isBlank, &
|
|
IO_stringPos, &
|
|
IO_stringValue, &
|
|
IO_write_jobFile, &
|
|
IO_error, &
|
|
IO_EOF
|
|
use material
|
|
use lattice, only: &
|
|
lattice_structure
|
|
use constitutive, only: &
|
|
constitutive_microstructure ! derived (shortcut) quantities of given state
|
|
|
|
implicit none
|
|
integer(pInt), parameter :: &
|
|
FILEUNIT = 200_pInt, &
|
|
MAXNCHUNKS = 2_pInt
|
|
|
|
integer(pInt), dimension(1+2*MAXNCHUNKS) :: positions
|
|
integer(pInt) :: &
|
|
g, & !< grain number
|
|
i, & !< integration point number
|
|
e, & !< element number
|
|
gMax, & !< maximum number of grains
|
|
iMax, & !< maximum number of integration points
|
|
eMax, & !< maximum number of elements
|
|
nMax, & !< maximum number of ip neighbors
|
|
myNgrains, & !< number of grains in current IP
|
|
section = 0_pInt, &
|
|
j, &
|
|
p, &
|
|
output = 0_pInt, &
|
|
mySize
|
|
|
|
character(len=65536) :: &
|
|
tag = '', &
|
|
line= ''
|
|
|
|
mainProcess: if (worldrank == 0) then
|
|
write(6,'(/,a)') ' <<<+- crystallite init -+>>>'
|
|
write(6,'(a)') ' $Id$'
|
|
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
|
#include "compilation_info.f90"
|
|
endif mainProcess
|
|
|
|
gMax = homogenization_maxNgrains
|
|
iMax = mesh_maxNips
|
|
eMax = mesh_NcpElems
|
|
nMax = mesh_maxNipNeighbors
|
|
|
|
|
|
allocate(crystallite_Tstar0_v(6,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedTstar0_v(6,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subTstar0_v(6,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Tstar_v(6,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_P(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_F0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedF0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedF(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subF0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subF(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Fp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedFp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subFp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Fp(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_invFp(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Fi0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedFi0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subFi0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Fi(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_invFi(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Fe(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subFe0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Lp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedLp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subLp0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Lp(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Li0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partionedLi0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subLi0(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_Li(3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_dPdF(3,3,3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_dPdF0(3,3,3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_partioneddPdF0(3,3,3,3,gMax,iMax,eMax),source=0.0_pReal)
|
|
allocate(crystallite_fallbackdPdF(3,3,3,3,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_dt(gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subdt(gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subFrac(gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_subStep(gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_orientation(4,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_orientation0(4,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_rotation(4,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_disorientation(4,nMax,gMax,iMax,eMax), source=0.0_pReal)
|
|
allocate(crystallite_localPlasticity(gMax,iMax,eMax), source=.true.)
|
|
allocate(crystallite_requested(gMax,iMax,eMax), source=.false.)
|
|
allocate(crystallite_todo(gMax,iMax,eMax), source=.false.)
|
|
allocate(crystallite_converged(gMax,iMax,eMax), source=.true.)
|
|
allocate(crystallite_clearToWindForward(iMax,eMax), source=.true.)
|
|
allocate(crystallite_syncSubFrac(iMax,eMax), source=.false.)
|
|
allocate(crystallite_syncSubFracCompleted(iMax,eMax), source=.false.)
|
|
allocate(crystallite_clearToCutback(iMax,eMax), source=.true.)
|
|
allocate(crystallite_neighborEnforcedCutback(iMax,eMax), source=.false.)
|
|
allocate(crystallite_output(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite)) ; crystallite_output = ''
|
|
allocate(crystallite_outputID(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite), source=undefined_ID)
|
|
allocate(crystallite_sizePostResults(material_Ncrystallite),source=0_pInt)
|
|
allocate(crystallite_sizePostResult(maxval(crystallite_Noutput), &
|
|
material_Ncrystallite), source=0_pInt)
|
|
|
|
if (.not. IO_open_jobFile_stat(FILEUNIT,material_localFileExt)) & ! no local material configuration present...
|
|
call IO_open_file(FILEUNIT,material_configFile) ! ...open material.config file
|
|
rewind(FILEUNIT)
|
|
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= material_partCrystallite) ! wind forward to <crystallite>
|
|
line = IO_read(FILEUNIT)
|
|
enddo
|
|
|
|
do while (trim(line) /= IO_EOF) ! read through sections of crystallite part
|
|
line = IO_read(FILEUNIT)
|
|
if (IO_isBlank(line)) cycle ! skip empty lines
|
|
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
|
|
line = IO_read(FILEUNIT, .true.) ! reset IO_read
|
|
exit
|
|
endif
|
|
if (IO_getTag(line,'[',']') /= '') then ! next section
|
|
section = section + 1_pInt
|
|
output = 0_pInt ! reset output counter
|
|
cycle ! skip to next line
|
|
endif
|
|
if (section > 0_pInt) then
|
|
positions = IO_stringPos(line,maxNchunks)
|
|
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
|
|
select case(tag)
|
|
case ('(output)')
|
|
output = output + 1_pInt
|
|
crystallite_output(output,section) = IO_lc(IO_stringValue(line,positions,2_pInt))
|
|
select case(crystallite_output(output,section))
|
|
case ('phase')
|
|
crystallite_outputID(output,section) = phase_ID
|
|
case ('texture')
|
|
crystallite_outputID(output,section) = texture_ID
|
|
case ('volume')
|
|
crystallite_outputID(output,section) = volume_ID
|
|
case ('grainrotationx')
|
|
crystallite_outputID(output,section) = grainrotationx_ID
|
|
case ('grainrotationy')
|
|
crystallite_outputID(output,section) = grainrotationy_ID
|
|
case ('grainrotationz')
|
|
crystallite_outputID(output,section) = grainrotationx_ID
|
|
case ('orientation')
|
|
crystallite_outputID(output,section) = orientation_ID
|
|
case ('grainrotation')
|
|
crystallite_outputID(output,section) = grainrotation_ID
|
|
case ('eulerangles')
|
|
crystallite_outputID(output,section) = eulerangles_ID
|
|
case ('defgrad','f')
|
|
crystallite_outputID(output,section) = defgrad_ID
|
|
case ('fe')
|
|
crystallite_outputID(output,section) = fe_ID
|
|
case ('fp')
|
|
crystallite_outputID(output,section) = fp_ID
|
|
case ('fi')
|
|
crystallite_outputID(output,section) = fi_ID
|
|
case ('lp')
|
|
crystallite_outputID(output,section) = lp_ID
|
|
case ('li')
|
|
crystallite_outputID(output,section) = li_ID
|
|
case ('e')
|
|
crystallite_outputID(output,section) = e_ID
|
|
case ('ee')
|
|
crystallite_outputID(output,section) = ee_ID
|
|
case ('p','firstpiola','1piola')
|
|
crystallite_outputID(output,section) = p_ID
|
|
case ('s','tstar','secondpiola','2ndpiola')
|
|
crystallite_outputID(output,section) = s_ID
|
|
case ('elasmatrix')
|
|
crystallite_outputID(output,section) = elasmatrix_ID
|
|
case ('neighboringip')
|
|
crystallite_outputID(output,section) = neighboringip_ID
|
|
case ('neighboringelement')
|
|
crystallite_outputID(output,section) = neighboringelement_ID
|
|
case default
|
|
call IO_error(105_pInt,ext_msg=IO_stringValue(line,positions,2_pInt)//' (Crystallite)')
|
|
end select
|
|
end select
|
|
endif
|
|
enddo
|
|
|
|
close(FILEUNIT)
|
|
|
|
do i = 1_pInt,material_Ncrystallite
|
|
do j = 1_pInt,crystallite_Noutput(i)
|
|
select case(crystallite_outputID(j,i))
|
|
case(phase_ID,texture_ID,volume_ID,grainrotationx_ID,grainrotationy_ID,grainrotationz_ID)
|
|
mySize = 1_pInt
|
|
case(orientation_ID,grainrotation_ID) ! orientation as quaternion, or deviation from initial grain orientation in axis-angle form (angle in degrees)
|
|
mySize = 4_pInt
|
|
case(eulerangles_ID)
|
|
mySize = 3_pInt
|
|
case(defgrad_ID,fe_ID,fp_ID,fi_ID,lp_ID,li_ID,e_ID,ee_ID,p_ID,s_ID)
|
|
mySize = 9_pInt
|
|
case(elasmatrix_ID)
|
|
mySize = 36_pInt
|
|
case(neighboringip_ID,neighboringelement_ID)
|
|
mySize = mesh_maxNipNeighbors
|
|
case default
|
|
mySize = 0_pInt
|
|
end select
|
|
|
|
outputFound: if (mySize > 0_pInt) then
|
|
crystallite_sizePostResult(j,i) = mySize
|
|
crystallite_sizePostResults(i) = crystallite_sizePostResults(i) + mySize
|
|
endif outputFound
|
|
enddo
|
|
enddo
|
|
|
|
crystallite_maxSizePostResults = 0_pInt
|
|
do j = 1_pInt,material_Nmicrostructure
|
|
if (microstructure_active(j)) &
|
|
crystallite_maxSizePostResults = max(crystallite_maxSizePostResults,&
|
|
crystallite_sizePostResults(microstructure_crystallite(j)))
|
|
enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! write description file for crystallite output
|
|
call IO_write_jobFile(FILEUNIT,'outputCrystallite')
|
|
|
|
do p = 1_pInt,material_Ncrystallite
|
|
write(FILEUNIT,'(/,a,/)') '['//trim(crystallite_name(p))//']'
|
|
do e = 1_pInt,crystallite_Noutput(p)
|
|
write(FILEUNIT,'(a,i4)') trim(crystallite_output(e,p))//char(9),crystallite_sizePostResult(e,p)
|
|
enddo
|
|
enddo
|
|
|
|
close(FILEUNIT)
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2) ! iterate over all cp elements
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e)) ! look up homogenization-->grainCount
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1_pInt:myNgrains)
|
|
crystallite_Fp0(1:3,1:3,g,i,e) = math_EulerToR(material_EulerAngles(1:3,g,i,e)) ! plastic def gradient reflects init orientation
|
|
crystallite_Fi0(1:3,1:3,g,i,e) = math_I3
|
|
crystallite_F0(1:3,1:3,g,i,e) = math_I3
|
|
crystallite_localPlasticity(g,i,e) = phase_localPlasticity(material_phase(g,i,e))
|
|
crystallite_Fe(1:3,1:3,g,i,e) = math_transpose33(crystallite_Fp0(1:3,1:3,g,i,e))
|
|
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_Fp0(1:3,1:3,g,i,e)
|
|
crystallite_Fi(1:3,1:3,g,i,e) = crystallite_Fi0(1:3,1:3,g,i,e)
|
|
crystallite_requested(g,i,e) = .true.
|
|
endforall
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
if(any(.not. crystallite_localPlasticity) .and. .not. usePingPong) call IO_error(601_pInt) ! exit if nonlocal but no ping-pong
|
|
|
|
crystallite_partionedFp0 = crystallite_Fp0
|
|
crystallite_partionedFi0 = crystallite_Fi0
|
|
crystallite_partionedF0 = crystallite_F0
|
|
crystallite_partionedF = crystallite_F0
|
|
|
|
call crystallite_orientations()
|
|
crystallite_orientation0 = crystallite_orientation ! store initial orientations for calculation of grain rotations
|
|
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1_pInt,myNgrains
|
|
call constitutive_microstructure( &
|
|
crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g,i,e) ! update dependent state variables to be consistent with basic states
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
call crystallite_stressAndItsTangent(.true.) ! request elastic answers
|
|
crystallite_fallbackdPdF = crystallite_dPdF ! use initial elastic stiffness as fallback
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! debug output
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fe: ', shape(crystallite_Fe)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp: ', shape(crystallite_Fp)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi: ', shape(crystallite_Fi)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp: ', shape(crystallite_Lp)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li: ', shape(crystallite_Li)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_F0: ', shape(crystallite_F0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fp0: ', shape(crystallite_Fp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Fi0: ', shape(crystallite_Fi0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Lp0: ', shape(crystallite_Lp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Li0: ', shape(crystallite_Li0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF: ', shape(crystallite_partionedF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedF0: ', shape(crystallite_partionedF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFp0: ', shape(crystallite_partionedFp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedFi0: ', shape(crystallite_partionedFi0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLp0: ', shape(crystallite_partionedLp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedLi0: ', shape(crystallite_partionedLi0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF: ', shape(crystallite_subF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subF0: ', shape(crystallite_subF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFe0: ', shape(crystallite_subFe0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFp0: ', shape(crystallite_subFp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFi0: ', shape(crystallite_subFi0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLp0: ', shape(crystallite_subLp0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subLi0: ', shape(crystallite_subLi0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_P: ', shape(crystallite_P)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar_v: ', shape(crystallite_Tstar_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_Tstar0_v: ', shape(crystallite_Tstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partionedTstar0_v: ', shape(crystallite_partionedTstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subTstar0_v: ', shape(crystallite_subTstar0_v)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF: ', shape(crystallite_dPdF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dPdF0: ', shape(crystallite_dPdF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_partioneddPdF0: ', shape(crystallite_partioneddPdF0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_fallbackdPdF: ', shape(crystallite_fallbackdPdF)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation: ', shape(crystallite_orientation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_orientation0: ', shape(crystallite_orientation0)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_rotation: ', shape(crystallite_rotation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_disorientation: ', shape(crystallite_disorientation)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_dt: ', shape(crystallite_dt)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subdt: ', shape(crystallite_subdt)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subFrac: ', shape(crystallite_subFrac)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_subStep: ', shape(crystallite_subStep)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_localPlasticity: ', shape(crystallite_localPlasticity)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_requested: ', shape(crystallite_requested)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_todo: ', shape(crystallite_todo)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_converged: ', shape(crystallite_converged)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResults: ', shape(crystallite_sizePostResults)
|
|
write(6,'(a35,1x,7(i8,1x))') 'crystallite_sizePostResult: ', shape(crystallite_sizePostResult)
|
|
write(6,'(/,a35,1x,i10)') 'Number of nonlocal grains: ',count(.not. crystallite_localPlasticity)
|
|
flush(6)
|
|
endif
|
|
|
|
call debug_info
|
|
call debug_reset
|
|
|
|
end subroutine crystallite_init
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculate stress (P) and tangent (dPdF) for crystallites
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_stressAndItsTangent(updateJaco)
|
|
use numerics, only: &
|
|
subStepMinCryst, &
|
|
subStepSizeCryst, &
|
|
stepIncreaseCryst, &
|
|
pert_Fg, &
|
|
pert_method, &
|
|
nCryst, &
|
|
numerics_integrator, &
|
|
numerics_integrationMode, &
|
|
numerics_timeSyncing, &
|
|
relevantStrain, &
|
|
analyticJaco
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_CrystalliteLoopDistribution
|
|
use IO, only: &
|
|
IO_warning, &
|
|
IO_error
|
|
use math, only: &
|
|
math_inv33, &
|
|
math_identity2nd, &
|
|
math_transpose33, &
|
|
math_mul33x33, &
|
|
math_mul66x6, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_Plain3333to99, &
|
|
math_Plain99to3333, &
|
|
math_I3, &
|
|
math_mul3333xx3333, &
|
|
math_mul33xx33, &
|
|
math_invert, &
|
|
math_det33
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors, &
|
|
FE_geomtype, &
|
|
FE_cellType
|
|
use material, only: &
|
|
homogenization_Ngrains, &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: &
|
|
constitutive_TandItsTangent, &
|
|
constitutive_LpAndItsTangent, &
|
|
constitutive_LiAndItsTangent
|
|
|
|
implicit none
|
|
logical, intent(in) :: &
|
|
updateJaco !< whether to update the Jacobian (stiffness) or not
|
|
real(pReal) :: &
|
|
myPert, & ! perturbation with correct sign
|
|
formerSubStep, &
|
|
subFracIntermediate
|
|
real(pReal), dimension(3,3) :: &
|
|
invFp, & ! inverse of the plastic deformation gradient
|
|
Fe_guess, & ! guess for elastic deformation gradient
|
|
Tstar ! 2nd Piola-Kirchhoff stress tensor
|
|
real(pReal), dimension(3,3,3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
dPdF_perturbation1, &
|
|
dPdF_perturbation2
|
|
real(pReal), dimension(3,3,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
F_backup, &
|
|
Fp_backup, &
|
|
InvFp_backup, &
|
|
Fi_backup, &
|
|
InvFi_backup, &
|
|
Fe_backup, &
|
|
Lp_backup, &
|
|
Li_backup, &
|
|
P_backup
|
|
real(pReal), dimension(6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
Tstar_v_backup
|
|
integer(pInt) :: &
|
|
NiterationCrystallite, & ! number of iterations in crystallite loop
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
k, &
|
|
l, &
|
|
n, startIP, endIP, &
|
|
neighboring_e, &
|
|
neighboring_i, &
|
|
o, &
|
|
p, &
|
|
perturbation , & ! loop counter for forward,backward perturbation mode
|
|
myNgrains
|
|
logical, dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
convergenceFlag_backup
|
|
! local variables used for calculating analytic Jacobian
|
|
real(pReal), dimension(3,3) :: temp_33
|
|
real(pReal), dimension(3,3,3,3) :: dSdFe, &
|
|
dSdF, &
|
|
dSdFi, &
|
|
dLidS, &
|
|
dLidFi, &
|
|
dLpdS, &
|
|
dLpdFi, &
|
|
dFidS, &
|
|
dFpinvdF, &
|
|
rhs_3333, &
|
|
lhs_3333, &
|
|
temp_3333
|
|
real(pReal), dimension(9,9):: temp_99
|
|
logical :: error
|
|
|
|
|
|
if (iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt &
|
|
.and. FEsolving_execElem(1) <= debug_e &
|
|
.and. debug_e <= FEsolving_execElem(2)) then
|
|
write(6,'(/,a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> values at el (elFE) ip g ', &
|
|
debug_e,'(',mesh_element(1,debug_e), ')',debug_i, debug_g
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F0 ', &
|
|
math_transpose33(crystallite_partionedF0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp0', &
|
|
math_transpose33(crystallite_partionedFp0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi0', &
|
|
math_transpose33(crystallite_partionedFi0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Lp0', &
|
|
math_transpose33(crystallite_partionedLp0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Li0', &
|
|
math_transpose33(crystallite_partionedLi0(1:3,1:3,debug_g,debug_i,debug_e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> F ', &
|
|
math_transpose33(crystallite_partionedF(1:3,1:3,debug_g,debug_i,debug_e))
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize to starting condition
|
|
crystallite_subStep = 0.0_pReal
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping1: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), &
|
|
g = 1_pInt:myNgrains, crystallite_requested(g,i,e))
|
|
plasticState(mappingConstitutive(2,g,i,e))%subState0( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%subState0( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%subState0( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%subState0( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%partionedState0(:,mappingConstitutive(1,g,i,e))
|
|
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_partionedFp0(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_partionedLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
|
|
crystallite_subFi0(1:3,1:3,g,i,e) = crystallite_partionedFi0(1:3,1:3,g,i,e) ! ...intermediate def grad
|
|
crystallite_subLi0(1:3,1:3,g,i,e) = crystallite_partionedLi0(1:3,1:3,g,i,e) ! ...intermediate velocity grad
|
|
crystallite_dPdF0(1:3,1:3,1:3,1:3,g,i,e) = crystallite_partioneddPdF0(1:3,1:3,1:3,1:3,g,i,e) ! ...stiffness
|
|
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_partionedF0(1:3,1:3,g,i,e) ! ...def grad
|
|
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_partionedTstar0_v(1:6,g,i,e) !...2nd PK stress
|
|
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(crystallite_subF0(1:3,1:3,g,i,e), &
|
|
math_inv33(crystallite_subFp0(1:3,1:3,g,i,e))), &
|
|
math_inv33(crystallite_subFi0(1:3,1:3,g,i,e)))! only needed later on for stiffness calculation
|
|
crystallite_subFrac(g,i,e) = 0.0_pReal
|
|
crystallite_subStep(g,i,e) = 1.0_pReal/subStepSizeCryst
|
|
crystallite_todo(g,i,e) = .true.
|
|
crystallite_converged(g,i,e) = .false. ! pretend failed step of twice the required size
|
|
endforall
|
|
enddo elementLooping1
|
|
!$OMP END PARALLEL DO
|
|
|
|
singleRun: if (FEsolving_execELem(1) == FEsolving_execElem(2) .and. &
|
|
FEsolving_execIP(1,FEsolving_execELem(1))==FEsolving_execIP(2,FEsolving_execELem(1))) then
|
|
startIP = FEsolving_execIP(1,FEsolving_execELem(1))
|
|
endIP = startIP
|
|
else singleRun
|
|
startIP = 1_pInt
|
|
endIP = mesh_maxNips
|
|
endif singleRun
|
|
|
|
NiterationCrystallite = 0_pInt
|
|
numerics_integrationMode = 1_pInt
|
|
cutbackLooping: do while (any(crystallite_todo(:,startIP:endIP,FEsolving_execELem(1):FEsolving_execElem(2))))
|
|
timeSyncing1: if (any(.not. crystallite_localPlasticity) .and. numerics_timeSyncing) then
|
|
|
|
! Time synchronization can only be used for nonlocal calculations, and only there it makes sense.
|
|
! The idea is that in nonlocal calculations often the vast majority of the ips
|
|
! converges in one iteration whereas a small fraction of ips has to do a lot of cutbacks.
|
|
! Hence, we try to minimize the computational effort by just doing a lot of cutbacks
|
|
! in the vicinity of the "bad" ips and leave the easily converged volume more or less as it is.
|
|
! However, some synchronization of the time step has to be done at the border between "bad" ips
|
|
! and the ones that immediately converged.
|
|
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> crystallite iteration ',NiterationCrystallite
|
|
|
|
if (any(crystallite_syncSubFrac)) then
|
|
|
|
! Just did a time synchronization.
|
|
! If all synchronizers converged, then do nothing else than winding them forward.
|
|
! If any of the synchronizers did not converge, something went completely wrong
|
|
! and its not clear how to fix this, so all nonlocals become terminally ill.
|
|
|
|
if (any(crystallite_syncSubFrac .and. .not. crystallite_converged(1,:,:))) then
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (crystallite_syncSubFrac(i,e) .and. .not. crystallite_converged(1,i,e)) &
|
|
write(6,'(a,i8,1x,i2)') '<< CRYST >> time synchronization: failed at el,ip ',e,i
|
|
enddo
|
|
enddo
|
|
endif
|
|
crystallite_syncSubFrac = .false.
|
|
where(.not. crystallite_localPlasticity)
|
|
crystallite_substep = 0.0_pReal
|
|
crystallite_todo = .false.
|
|
endwhere
|
|
else
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
|
|
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: wind forward'
|
|
endif
|
|
|
|
elseif (any(crystallite_syncSubFracCompleted)) then
|
|
|
|
! Just completed a time synchronization.
|
|
! Make sure that the ips that synchronized their time step start non-converged
|
|
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (crystallite_syncSubFracCompleted(i,e)) crystallite_converged(1,i,e) = .false.
|
|
crystallite_syncSubFracCompleted(i,e) = .false.
|
|
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
|
|
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. .not. crystallite_converged(1,i,e)
|
|
enddo
|
|
enddo
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: done, proceed with cutback'
|
|
else
|
|
|
|
! Normal calculation.
|
|
! If all converged and are at the end of the time increment, then just do a final wind forward.
|
|
! If all converged, but not all reached the end of the time increment, then we only wind
|
|
! those forward that are still on their way, all others have to wait.
|
|
! If some did not converge and all are still at the start of the time increment,
|
|
! then all non-convergers force their converged neighbors to also do a cutback.
|
|
! In case that some ips have already wound forward to an intermediate time (subfrac),
|
|
! then all those ips that converged in the first iteration, but now have a non-converged neighbor
|
|
! have to synchronize their time step to the same intermediate time. If such a synchronization
|
|
! takes place, all other ips have to wait and only the synchronizers do a cutback. In the next
|
|
! iteration those will do a wind forward while all others still wait.
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
|
|
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
if (all(crystallite_localPlasticity .or. crystallite_converged)) then
|
|
if (all(crystallite_localPlasticity .or. crystallite_subStep + crystallite_subFrac >= 1.0_pReal)) then
|
|
crystallite_clearToWindForward = .true. ! final wind forward
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> final wind forward'
|
|
else
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_subStep(1,i,e) < 1.0_pReal
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> wind forward'
|
|
endif
|
|
else
|
|
subFracIntermediate = maxval(crystallite_subFrac, mask=.not.crystallite_localPlasticity)
|
|
if (subFracIntermediate == 0.0_pReal) then
|
|
crystallite_neighborEnforcedCutback = .false. ! look for ips that require a cutback because of a nonconverged neighbor
|
|
!$OMP PARALLEL
|
|
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_converged(1,i,e)) then
|
|
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
|
|
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
|
|
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
|
|
crystallite_neighborEnforcedCutback(i,e) = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ', neighboring_e,neighboring_i, &
|
|
' enforced cutback at ',e,i
|
|
#endif
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if(crystallite_neighborEnforcedCutback(i,e)) crystallite_converged(1,i,e) = .false.
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
else
|
|
crystallite_syncSubFrac = .false. ! look for ips that have to do a time synchronization because of a nonconverged neighbor
|
|
!$OMP PARALLEL
|
|
!$OMP DO PRIVATE(neighboring_e,neighboring_i)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if (.not. crystallite_localPlasticity(1,i,e) .and. crystallite_subFrac(1,i,e) == 0.0_pReal) then
|
|
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e))))
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if (neighboring_e > 0_pInt .and. neighboring_i > 0_pInt) then
|
|
if (.not. crystallite_localPlasticity(1,neighboring_i,neighboring_e) &
|
|
.and. .not. crystallite_converged(1,neighboring_i,neighboring_e)) then
|
|
crystallite_syncSubFrac(i,e) = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a12,i5,1x,i2,a,i5,1x,i2)') '<< CRYST >> ',neighboring_e,neighboring_i, &
|
|
' enforced time synchronization at ',e,i
|
|
#endif
|
|
exit
|
|
endif
|
|
endif
|
|
enddo
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if(crystallite_syncSubFrac(i,e)) crystallite_converged(1,i,e) = .false.
|
|
enddo
|
|
enddo
|
|
!$OMP END DO
|
|
!$OMP END PARALLEL
|
|
endif
|
|
where(.not. crystallite_localPlasticity .and. crystallite_subStep < 1.0_pReal) &
|
|
crystallite_converged = .false.
|
|
if (any(crystallite_syncSubFrac)) then ! have to do syncing now, so all wait except for the synchronizers which do a cutback
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
crystallite_clearToWindForward(i,e) = crystallite_localPlasticity(1,i,e)
|
|
crystallite_clearToCutback(i,e) = crystallite_localPlasticity(1,i,e) .or. crystallite_syncSubFrac(i,e)
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> time synchronization: cutback'
|
|
else
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if(.not. crystallite_converged(1,i,e)) crystallite_clearToCutback(i,e) = .true.
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i6)') '<< CRYST >> cutback'
|
|
endif
|
|
endif
|
|
endif
|
|
|
|
! Make sure that all cutbackers start with the same substep
|
|
|
|
where(.not. crystallite_localPlasticity .and. .not. crystallite_converged) &
|
|
crystallite_subStep = minval(crystallite_subStep, mask=.not. crystallite_localPlasticity &
|
|
.and. .not. crystallite_converged)
|
|
|
|
! Those that do neither wind forward nor cutback are not to do
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping2: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
if(.not. crystallite_clearToWindForward(i,e) .and. .not. crystallite_clearToCutback(i,e)) &
|
|
crystallite_todo(1,i,e) = .false.
|
|
enddo
|
|
enddo elementLooping2
|
|
!$OMP END PARALLEL DO
|
|
|
|
endif timeSyncing1
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains,formerSubStep)
|
|
elementLooping3: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
! --- wind forward ---
|
|
|
|
if (crystallite_converged(g,i,e) .and. crystallite_clearToWindForward(i,e)) then
|
|
formerSubStep = crystallite_subStep(g,i,e)
|
|
crystallite_subFrac(g,i,e) = crystallite_subFrac(g,i,e) + crystallite_subStep(g,i,e)
|
|
!$OMP FLUSH(crystallite_subFrac)
|
|
crystallite_subStep(g,i,e) = min(1.0_pReal - crystallite_subFrac(g,i,e), &
|
|
stepIncreaseCryst * crystallite_subStep(g,i,e))
|
|
!$OMP FLUSH(crystallite_subStep)
|
|
if (crystallite_subStep(g,i,e) > 0.0_pReal) then
|
|
crystallite_subF0(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ...def grad
|
|
!$OMP FLUSH(crystallite_subF0)
|
|
crystallite_subLp0(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e) ! ...plastic velocity gradient
|
|
crystallite_subLi0(1:3,1:3,g,i,e) = crystallite_Li(1:3,1:3,g,i,e) ! ...intermediate velocity gradient
|
|
crystallite_subFp0(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
crystallite_subFi0(1:3,1:3,g,i,e) = crystallite_Fi(1:3,1:3,g,i,e) ! ...intermediate def grad
|
|
crystallite_subFe0(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,g,i,e), &
|
|
crystallite_invFp(1:3,1:3,g,i,e)), &
|
|
crystallite_invFi(1:3,1:3,g,i,e)) ! only needed later on for stiffness calculation
|
|
!if abbrevation, make c and p private in omp
|
|
plasticState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
crystallite_subTstar0_v(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e) ! ...2nd PK stress
|
|
if (crystallite_syncSubFrac(i,e)) then ! if we just did a synchronization of states, then we wind forward without any further time integration
|
|
crystallite_syncSubFracCompleted(i,e) = .true.
|
|
crystallite_syncSubFrac(i,e) = .false.
|
|
crystallite_todo(g,i,e) = .false.
|
|
else
|
|
crystallite_todo(g,i,e) = .true.
|
|
endif
|
|
!$OMP FLUSH(crystallite_todo)
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) &
|
|
write(6,'(a,f12.8,a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> winding forward from ', &
|
|
crystallite_subFrac(g,i,e)-formerSubStep,' to current crystallite_subfrac ', &
|
|
crystallite_subFrac(g,i,e),' in crystallite_stressAndItsTangent at el ip g ',e,i,g
|
|
#endif
|
|
else ! this crystallite just converged for the entire timestep
|
|
crystallite_todo(g,i,e) = .false. ! so done here
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt &
|
|
.and. formerSubStep > 0.0_pReal) then
|
|
!$OMP CRITICAL (distributionCrystallite)
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) = &
|
|
debug_CrystalliteLoopDistribution(min(nCryst+1_pInt,NiterationCrystallite)) + 1_pInt
|
|
!$OMP END CRITICAL (distributionCrystallite)
|
|
endif
|
|
endif
|
|
|
|
! --- cutback ---
|
|
|
|
elseif (.not. crystallite_converged(g,i,e) .and. crystallite_clearToCutback(i,e)) then
|
|
if (crystallite_syncSubFrac(i,e)) then ! synchronize time
|
|
crystallite_subStep(g,i,e) = subFracIntermediate
|
|
else
|
|
crystallite_subStep(g,i,e) = subStepSizeCryst * crystallite_subStep(g,i,e) ! cut step in half and restore...
|
|
endif
|
|
!$OMP FLUSH(crystallite_subStep)
|
|
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_subFp0(1:3,1:3,g,i,e) ! ...plastic def grad
|
|
!$OMP FLUSH(crystallite_Fp)
|
|
crystallite_invFp(1:3,1:3,g,i,e) = math_inv33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
!$OMP FLUSH(crystallite_invFp)
|
|
crystallite_Fi(1:3,1:3,g,i,e) = crystallite_subFi0(1:3,1:3,g,i,e) ! ...intermediate def grad
|
|
!$OMP FLUSH(crystallite_Fi)
|
|
crystallite_invFi(1:3,1:3,g,i,e) = math_inv33(crystallite_Fi(1:3,1:3,g,i,e))
|
|
!$OMP FLUSH(crystallite_invFi)
|
|
crystallite_Lp(1:3,1:3,g,i,e) = crystallite_subLp0(1:3,1:3,g,i,e) ! ...plastic velocity grad
|
|
crystallite_Li(1:3,1:3,g,i,e) = crystallite_subLi0(1:3,1:3,g,i,e) ! ...intermediate velocity grad
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
crystallite_Tstar_v(1:6,g,i,e) = crystallite_subTstar0_v(1:6,g,i,e) ! ...2nd PK stress
|
|
|
|
! cant restore dotState here, since not yet calculated in first cutback after initialization
|
|
crystallite_todo(g,i,e) = crystallite_subStep(g,i,e) > subStepMinCryst ! still on track or already done (beyond repair)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelBasic) /= 0_pInt) then
|
|
if (crystallite_todo(g,i,e)) then
|
|
write(6,'(a,f12.8,a,i8,1x,i2,1x,i3,/)') '<< CRYST >> cutback step in crystallite_stressAndItsTangent &
|
|
&with new crystallite_subStep: ',&
|
|
crystallite_subStep(g,i,e),' at el ip g ',e,i,g
|
|
else
|
|
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> reached minimum step size &
|
|
&in crystallite_stressAndItsTangent at el ip g ',e,i,g
|
|
endif
|
|
endif
|
|
#endif
|
|
endif
|
|
|
|
! --- prepare for integration ---
|
|
|
|
if (crystallite_todo(g,i,e) .and. (crystallite_clearToWindForward(i,e) .or. crystallite_clearToCutback(i,e))) then
|
|
crystallite_subF(1:3,1:3,g,i,e) = crystallite_subF0(1:3,1:3,g,i,e) &
|
|
+ crystallite_subStep(g,i,e) &
|
|
* (crystallite_partionedF(1:3,1:3,g,i,e) &
|
|
- crystallite_partionedF0(1:3,1:3,g,i,e))
|
|
!$OMP FLUSH(crystallite_subF)
|
|
crystallite_Fe(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(crystallite_subF (1:3,1:3,g,i,e), &
|
|
crystallite_invFp(1:3,1:3,g,i,e)), &
|
|
crystallite_invFi(1:3,1:3,g,i,e))
|
|
crystallite_subdt(g,i,e) = crystallite_subStep(g,i,e) * crystallite_dt(g,i,e)
|
|
crystallite_converged(g,i,e) = .false. ! start out non-converged
|
|
endif
|
|
|
|
enddo ! grains
|
|
enddo ! IPs
|
|
enddo elementLooping3
|
|
!$OMP END PARALLEL DO
|
|
|
|
timeSyncing2: if(numerics_timeSyncing) then
|
|
if (any(.not. crystallite_localPlasticity .and. .not. crystallite_todo .and. .not. crystallite_converged &
|
|
.and. crystallite_subStep <= subStepMinCryst)) then ! no way of rescuing a nonlocal ip that violated the lower time step limit, ...
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
elementLooping4: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. crystallite_todo(g,i,e) &
|
|
.and. .not. crystallite_converged(g,i,e) .and. crystallite_subStep(g,i,e) <= subStepMinCryst) &
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> nonlocal violated minimum subStep at el,ip,g ',e,i,g
|
|
enddo
|
|
enddo
|
|
enddo elementLooping4
|
|
endif
|
|
where(.not. crystallite_localPlasticity)
|
|
crystallite_todo = .false. ! ... so let all nonlocal ips die peacefully
|
|
crystallite_subStep = 0.0_pReal
|
|
endwhere
|
|
endif
|
|
endif timeSyncing2
|
|
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt) then
|
|
write(6,'(/,a,e12.5)') '<< CRYST >> min(subStep) ',minval(crystallite_subStep)
|
|
write(6,'(a,e12.5)') '<< CRYST >> max(subStep) ',maxval(crystallite_subStep)
|
|
write(6,'(a,e12.5)') '<< CRYST >> min(subFrac) ',minval(crystallite_subFrac)
|
|
write(6,'(a,e12.5,/)') '<< CRYST >> max(subFrac) ',maxval(crystallite_subFrac)
|
|
flush(6)
|
|
endif
|
|
|
|
! --- integrate --- requires fully defined state array (basic + dependent state)
|
|
|
|
if (any(crystallite_todo)) then
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt)
|
|
call crystallite_integrateStateFPI()
|
|
case(2_pInt)
|
|
call crystallite_integrateStateEuler()
|
|
case(3_pInt)
|
|
call crystallite_integrateStateAdaptiveEuler()
|
|
case(4_pInt)
|
|
call crystallite_integrateStateRK4()
|
|
case(5_pInt)
|
|
call crystallite_integrateStateRKCK45()
|
|
end select
|
|
endif
|
|
|
|
where(.not. crystallite_converged .and. crystallite_subStep > subStepMinCryst) & ! do not try non-converged & fully cutbacked any further
|
|
crystallite_todo = .true.
|
|
|
|
NiterationCrystallite = NiterationCrystallite + 1_pInt
|
|
|
|
enddo cutbackLooping
|
|
|
|
|
|
! --+>> CHECK FOR NON-CONVERGED CRYSTALLITES <<+--
|
|
|
|
elementLooping5: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1,myNgrains
|
|
if (.not. crystallite_converged(g,i,e)) then ! respond fully elastically (might be not required due to becoming terminally ill anyway)
|
|
if(iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> no convergence: respond fully elastic at el (elFE) ip g ', &
|
|
e,'(',mesh_element(1,e),')',i,g
|
|
invFp = math_inv33(crystallite_partionedFp0(1:3,1:3,g,i,e))
|
|
Fe_guess = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp), &
|
|
math_inv33(crystallite_partionedFi0(1:3,1:3,g,i,e)))
|
|
call constitutive_TandItsTangent(Tstar,dSdFe,dSdFi,Fe_guess,crystallite_partionedFi0(1:3,1:3,g,i,e),g,i,e)
|
|
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(crystallite_partionedF(1:3,1:3,g,i,e), invFp), &
|
|
math_mul33x33(Tstar,transpose(invFp)))
|
|
endif
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> central solution of cryst_StressAndTangent at el ip g ',e,i,g
|
|
write(6,'(/,a,/,3(12x,3(f12.4,1x)/))') '<< CRYST >> P / MPa', &
|
|
math_transpose33(crystallite_P(1:3,1:3,g,i,e))*1.0e-6_pReal
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fp', &
|
|
math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/))') '<< CRYST >> Fi', &
|
|
math_transpose33(crystallite_Fi(1:3,1:3,g,i,e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Lp', &
|
|
math_transpose33(crystallite_Lp(1:3,1:3,g,i,e))
|
|
write(6,'(a,/,3(12x,3(f14.9,1x)/),/)') '<< CRYST >> Li', &
|
|
math_transpose33(crystallite_Li(1:3,1:3,g,i,e))
|
|
flush(6)
|
|
endif
|
|
enddo
|
|
enddo
|
|
enddo elementLooping5
|
|
|
|
|
|
! --+>> STIFFNESS CALCULATION <<+--
|
|
|
|
computeJacobian: if(updateJaco) then
|
|
jacobianMethod: if (analyticJaco) then
|
|
|
|
! --- ANALYTIC JACOBIAN ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(dSdF,dSdFe,dSdFi,dLpdS,dLpdFi,dFpinvdF,dLidS,dLidFi,dFidS,&
|
|
!$OMP rhs_3333,lhs_3333,temp_99,temp_33,temp_3333,myNgrains,error)
|
|
elementLooping6: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e) ! iterate over IPs of this element to be processed
|
|
do g = 1_pInt,myNgrains
|
|
call constitutive_TandItsTangent(temp_33,dSdFe,dSdFi,crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fi(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate elastic stress tangent
|
|
|
|
call constitutive_LiAndItsTangent(temp_33,dLidS,dLidFi,crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fi(1:3,1:3,g,i,e),crystallite_Lp(1:3,1:3,g,i,e), &
|
|
g,i,e) ! call constitutive law to calculate Li tangent in lattice configuration
|
|
if (sum(abs(dLidS)) == 0.0_pReal) then
|
|
dFidS = 0.0_pReal
|
|
else
|
|
temp_33 = math_inv33(crystallite_subFi0(1:3,1:3,g,i,e))
|
|
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
|
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) + &
|
|
crystallite_subdt(g,i,e)*math_mul33x33(temp_33,dLidFi(1:3,1:3,o,p))
|
|
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) + &
|
|
crystallite_invFi(1:3,1:3,g,i,e)*crystallite_invFi(p,o,g,i,e)
|
|
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) - &
|
|
crystallite_subdt(g,i,e)*math_mul33x33(temp_33,dLidS(1:3,1:3,o,p))
|
|
enddo; enddo
|
|
call math_invert(9_pInt,math_Plain3333to99(lhs_3333),temp_99,error)
|
|
if (error) then
|
|
call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=g, &
|
|
ext_msg='inversion error in analytic tangent calculation')
|
|
dFidS = 0.0_pReal
|
|
else
|
|
dFidS = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333)
|
|
endif
|
|
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
|
|
endif
|
|
|
|
call constitutive_LpAndItsTangent(temp_33,dLpdS,dLpdFi,crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fi(1:3,1:3,g,i,e),g,i,e) ! call constitutive law to calculate Lp tangent in lattice configuration
|
|
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
|
|
|
|
temp_33 = math_transpose33(math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e), &
|
|
crystallite_invFi(1:3,1:3,g,i,e)))
|
|
rhs_3333 = 0.0_pReal
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
rhs_3333(p,o,1:3,1:3) = math_mul33x33(dSdFe(p,o,1:3,1:3),temp_33)
|
|
|
|
temp_3333 = 0.0_pReal
|
|
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
|
math_inv33(crystallite_subFp0(1:3,1:3,g,i,e)))
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
temp_3333(1:3,1:3,p,o) = math_mul33x33(math_mul33x33(temp_33,dLpdS(1:3,1:3,p,o)), &
|
|
crystallite_invFi(1:3,1:3,g,i,e))
|
|
|
|
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
|
crystallite_invFp(1:3,1:3,g,i,e)), &
|
|
math_inv33(crystallite_subFi0(1:3,1:3,g,i,e)))
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
temp_3333(1:3,1:3,p,o) = temp_3333(1:3,1:3,p,o) + math_mul33x33(temp_33,dLidS(1:3,1:3,p,o))
|
|
|
|
lhs_3333 = crystallite_subdt(g,i,e)*math_mul3333xx3333(dSdFe,temp_3333) + &
|
|
math_mul3333xx3333(dSdFi,dFidS)
|
|
|
|
call math_invert(9_pInt,math_identity2nd(9_pInt)+math_Plain3333to99(lhs_3333),temp_99,error)
|
|
if (error) then
|
|
call IO_warning(warning_ID=600_pInt,el=e,ip=i,g=g, &
|
|
ext_msg='inversion error in analytic tangent calculation')
|
|
dSdF = rhs_3333
|
|
else
|
|
dSdF = math_mul3333xx3333(math_Plain99to3333(temp_99),rhs_3333)
|
|
endif
|
|
|
|
dFpinvdF = 0.0_pReal
|
|
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
dFpinvdF(1:3,1:3,p,o) = -crystallite_subdt(g,i,e)* &
|
|
math_mul33x33(math_inv33(crystallite_subFp0(1:3,1:3,g,i,e)), &
|
|
math_mul33x33(temp_3333(1:3,1:3,p,o), &
|
|
crystallite_invFi(1:3,1:3,g,i,e)))
|
|
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.0_pReal
|
|
temp_33 = math_mul33x33(crystallite_invFp(1:3,1:3,g,i,e), &
|
|
math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
|
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e))))
|
|
forall(p=1_pInt:3_pInt) &
|
|
crystallite_dPdF(p,1:3,p,1:3,g,i,e) = math_transpose33(temp_33)
|
|
|
|
temp_33 = math_mul33x33(math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)), &
|
|
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
|
math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e),dFpinvdF(1:3,1:3,p,o)),temp_33)
|
|
|
|
temp_33 = math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
|
crystallite_invFp(1:3,1:3,g,i,e))
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
|
math_mul33x33(math_mul33x33(temp_33,dSdF(1:3,1:3,p,o)), &
|
|
math_transpose33(crystallite_invFp(1:3,1:3,g,i,e)))
|
|
|
|
temp_33 = math_mul33x33(math_mul33x33(crystallite_subF(1:3,1:3,g,i,e), &
|
|
crystallite_invFp(1:3,1:3,g,i,e)), &
|
|
math_Mandel6to33(crystallite_Tstar_v(1:6,g,i,e)))
|
|
forall(p=1_pInt:3_pInt, o=1_pInt:3_pInt) &
|
|
crystallite_dPdF(1:3,1:3,p,o,g,i,e) = crystallite_dPdF(1:3,1:3,p,o,g,i,e) + &
|
|
math_mul33x33(temp_33,math_transpose33(dFpinvdF(1:3,1:3,p,o)))
|
|
|
|
enddo; enddo
|
|
enddo elementLooping6
|
|
!$OMP END PARALLEL DO
|
|
|
|
else jacobianMethod
|
|
|
|
! --- STANDARD (PERTURBATION METHOD) FOR JACOBIAN ---
|
|
|
|
numerics_integrationMode = 2_pInt
|
|
|
|
! --- BACKUP ---
|
|
!$OMP PARALLEL DO PRIVATE(myNgrains)
|
|
elementLooping7: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e))
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e))
|
|
|
|
F_backup(1:3,1:3,g,i,e) = crystallite_subF(1:3,1:3,g,i,e) ! ... and kinematics
|
|
Fp_backup(1:3,1:3,g,i,e) = crystallite_Fp(1:3,1:3,g,i,e)
|
|
InvFp_backup(1:3,1:3,g,i,e) = crystallite_invFp(1:3,1:3,g,i,e)
|
|
Fi_backup(1:3,1:3,g,i,e) = crystallite_Fi(1:3,1:3,g,i,e)
|
|
InvFi_backup(1:3,1:3,g,i,e) = crystallite_invFi(1:3,1:3,g,i,e)
|
|
Fe_backup(1:3,1:3,g,i,e) = crystallite_Fe(1:3,1:3,g,i,e)
|
|
Lp_backup(1:3,1:3,g,i,e) = crystallite_Lp(1:3,1:3,g,i,e)
|
|
Li_backup(1:3,1:3,g,i,e) = crystallite_Li(1:3,1:3,g,i,e)
|
|
Tstar_v_backup(1:6,g,i,e) = crystallite_Tstar_v(1:6,g,i,e)
|
|
P_backup(1:3,1:3,g,i,e) = crystallite_P(1:3,1:3,g,i,e)
|
|
convergenceFlag_backup(g,i,e) = crystallite_converged(g,i,e)
|
|
endforall
|
|
enddo elementLooping7
|
|
!$END PARALLEL DO
|
|
! --- CALCULATE STATE AND STRESS FOR PERTURBATION ---
|
|
|
|
dPdF_perturbation1 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
dPdF_perturbation2 = crystallite_dPdF0 ! initialize stiffness with known good values from last increment
|
|
pertubationLoop: do perturbation = 1,2 ! forward and backward perturbation
|
|
if (iand(pert_method,perturbation) > 0_pInt) then ! mask for desired direction
|
|
myPert = -pert_Fg * (-1.0_pReal)**perturbation ! set perturbation step
|
|
do k = 1,3; do l = 1,3 ! ...alter individual components
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite),debug_levelSelective) /= 0_pInt)) &
|
|
write(6,'(a,2(1x,i1),1x,a,/)') '<< CRYST >> [[[[[[ Stiffness perturbation',k,l,']]]]]]'
|
|
! --- INITIALIZE UNPERTURBED STATE ---
|
|
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt)
|
|
!why not OMP? ! Fix-point method: restore to last converged state at end of subinc, since this is probably closest to perturbed state
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
|
|
crystallite_Fp(1:3,1:3,g,i,e) = Fp_backup(1:3,1:3,g,i,e)
|
|
crystallite_invFp(1:3,1:3,g,i,e) = InvFp_backup(1:3,1:3,g,i,e)
|
|
crystallite_Fi(1:3,1:3,g,i,e) = Fi_backup(1:3,1:3,g,i,e)
|
|
crystallite_invFi(1:3,1:3,g,i,e) = InvFi_backup(1:3,1:3,g,i,e)
|
|
crystallite_Fe(1:3,1:3,g,i,e) = Fe_backup(1:3,1:3,g,i,e)
|
|
crystallite_Lp(1:3,1:3,g,i,e) = Lp_backup(1:3,1:3,g,i,e)
|
|
crystallite_Li(1:3,1:3,g,i,e) = Li_backup(1:3,1:3,g,i,e)
|
|
crystallite_Tstar_v(1:6,g,i,e) = Tstar_v_backup(1:6,g,i,e)
|
|
endforall
|
|
enddo
|
|
case(2_pInt,3_pInt) ! explicit Euler methods: nothing to restore (except for F), since we are only doing a stress integration step
|
|
case(4_pInt,5_pInt)
|
|
!why not OMP? ! explicit Runge-Kutta methods: restore to start of subinc, since we are doing a full integration of state and stress
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%subState0(:,mappingConstitutive(1,g,i,e))
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
|
|
crystallite_Fp(1:3,1:3,g,i,e) = crystallite_subFp0(1:3,1:3,g,i,e)
|
|
crystallite_Fi(1:3,1:3,g,i,e) = crystallite_subFi0(1:3,1:3,g,i,e)
|
|
crystallite_Fe(1:3,1:3,g,i,e) = crystallite_subFe0(1:3,1:3,g,i,e)
|
|
crystallite_Lp(1:3,1:3,g,i,e) = crystallite_subLp0(1:3,1:3,g,i,e)
|
|
crystallite_Li(1:3,1:3,g,i,e) = crystallite_subLi0(1:3,1:3,g,i,e)
|
|
crystallite_Tstar_v(1:6,g,i,e) = crystallite_subTstar0_v(1:6,g,i,e)
|
|
endforall
|
|
enddo
|
|
end select
|
|
|
|
! --- PERTURB EITHER FORWARD OR BACKWARD ---
|
|
!why not OMP?
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1,myNgrains
|
|
crystallite_subF(1:3,1:3,g,i,e) = F_backup(1:3,1:3,g,i,e)
|
|
crystallite_subF(k,l,g,i,e) = crystallite_subF(k,l,g,i,e) + myPert
|
|
crystallite_todo(g,i,e) = crystallite_requested(g,i,e) &
|
|
.and. convergenceFlag_backup(g,i,e)
|
|
if (crystallite_todo(g,i,e)) crystallite_converged(g,i,e) = .false. ! start out non-converged
|
|
enddo; enddo; enddo
|
|
|
|
|
|
select case(numerics_integrator(numerics_integrationMode))
|
|
case(1_pInt)
|
|
call crystallite_integrateStateFPI()
|
|
case(2_pInt)
|
|
call crystallite_integrateStateEuler()
|
|
case(3_pInt)
|
|
call crystallite_integrateStateAdaptiveEuler()
|
|
case(4_pInt)
|
|
call crystallite_integrateStateRK4()
|
|
case(5_pInt)
|
|
call crystallite_integrateStateRKCK45()
|
|
end select
|
|
!why not OMP?
|
|
elementLooping8: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
select case(perturbation)
|
|
case(1_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
|
|
dPdF_perturbation1(1:3,1:3,k,l,g,i,e) = &
|
|
(crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
case(2_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. crystallite_converged(g,i,e)) & ! converged state warrants stiffness update
|
|
dPdF_perturbation2(1:3,1:3,k,l,g,i,e) = &
|
|
(crystallite_P(1:3,1:3,g,i,e) - P_backup(1:3,1:3,g,i,e)) / myPert ! tangent dP_ij/dFg_kl
|
|
end select
|
|
enddo elementLooping8
|
|
|
|
enddo; enddo ! k,l component perturbation loop
|
|
|
|
endif
|
|
enddo pertubationLoop
|
|
|
|
! --- STIFFNESS ACCORDING TO PERTURBATION METHOD AND CONVERGENCE ---
|
|
|
|
elementLooping9: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
select case(pert_method)
|
|
case(1_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 1: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e)
|
|
case(2_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 2: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e)
|
|
case(3_pInt)
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. convergenceFlag_backup(g,i,e)) & ! perturbation mode 3: central solution converged
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = 0.5_pReal* ( dPdF_perturbation1(1:3,1:3,1:3,1:3,g,i,e) &
|
|
+ dPdF_perturbation2(1:3,1:3,1:3,1:3,g,i,e))
|
|
end select
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains, &
|
|
crystallite_requested(g,i,e) .and. .not. convergenceFlag_backup(g,i,e)) & ! for any pertubation mode: if central solution did not converge...
|
|
crystallite_dPdF(1:3,1:3,1:3,1:3,g,i,e) = crystallite_fallbackdPdF(1:3,1:3,1:3,1:3,g,i,e) ! ...use (elastic) fallback
|
|
enddo elementLooping9
|
|
|
|
! --- RESTORE ---
|
|
!why not OMP?
|
|
elementLooping10: do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
myNgrains = homogenization_Ngrains(mesh_element(3,e))
|
|
forall (i = FEsolving_execIP(1,e):FEsolving_execIP(2,e), g = 1:myNgrains)
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%state_backup(:,mappingConstitutive(1,g,i,e))
|
|
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
plasticState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
damageState( mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
thermalState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState( :,mappingConstitutive(1,g,i,e)) = &
|
|
vacancyState(mappingConstitutive(2,g,i,e))%dotState_backup(:,mappingConstitutive(1,g,i,e))
|
|
|
|
crystallite_subF(1:3,1:3,g,i,e) = F_backup(1:3,1:3,g,i,e)
|
|
crystallite_Fp(1:3,1:3,g,i,e) = Fp_backup(1:3,1:3,g,i,e)
|
|
crystallite_invFp(1:3,1:3,g,i,e) = InvFp_backup(1:3,1:3,g,i,e)
|
|
crystallite_Fi(1:3,1:3,g,i,e) = Fi_backup(1:3,1:3,g,i,e)
|
|
crystallite_invFi(1:3,1:3,g,i,e) = InvFi_backup(1:3,1:3,g,i,e)
|
|
crystallite_Fe(1:3,1:3,g,i,e) = Fe_backup(1:3,1:3,g,i,e)
|
|
crystallite_Lp(1:3,1:3,g,i,e) = Lp_backup(1:3,1:3,g,i,e)
|
|
crystallite_Li(1:3,1:3,g,i,e) = Li_backup(1:3,1:3,g,i,e)
|
|
crystallite_Tstar_v(1:6,g,i,e) = Tstar_v_backup(1:6,g,i,e)
|
|
crystallite_P(1:3,1:3,g,i,e) = P_backup(1:3,1:3,g,i,e)
|
|
crystallite_converged(g,i,e) = convergenceFlag_backup(g,i,e)
|
|
endforall
|
|
enddo elementLooping10
|
|
|
|
endif jacobianMethod
|
|
endif computeJacobian
|
|
!why not OMP?
|
|
|
|
end subroutine crystallite_stressAndItsTangent
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with 4th order explicit Runge Kutta method
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_integrateStateRK4()
|
|
use numerics, only: &
|
|
numerics_integrationMode
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_Ngrains, &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: &
|
|
constitutive_collectDotState, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
real(pReal), dimension(4), parameter :: &
|
|
TIMESTEPFRACTION = [0.5_pReal, 0.5_pReal, 1.0_pReal, 1.0_pReal] ! factor giving the fraction of the original timestep used for Runge Kutta Integration
|
|
real(pReal), dimension(4), parameter :: &
|
|
WEIGHT = [1.0_pReal, 2.0_pReal, 2.0_pReal, 1.0_pReal/6.0_pReal] ! weight of slope used for Runge Kutta integration (final weight divided by 6)
|
|
|
|
integer(pInt) :: e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
p, & ! phase loop
|
|
c, &
|
|
n, &
|
|
mySizePlasticDotState, &
|
|
mySizeDamageDotState, &
|
|
mySizeThermalDotState, &
|
|
mySizeVacancyDotState
|
|
integer(pInt), dimension(2) :: eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
logical :: singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
|
|
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize dotState
|
|
if (.not. singleRun) then
|
|
forall(p = 1_pInt:size(plasticState)) plasticState(p)%RK4dotState = 0.0_pReal
|
|
forall(p = 1_pInt:size(damageState)) damageState(p)%RK4dotState = 0.0_pReal
|
|
forall(p = 1_pInt:size(thermalState)) thermalState(p)%RK4dotState = 0.0_pReal
|
|
forall(p = 1_pInt:size(vacancyState)) vacancyState(p)%RK4dotState = 0.0_pReal
|
|
else
|
|
e = eIter(1)
|
|
i = iIter(1,e)
|
|
do g = iIter(1,e), iIter(2,e)
|
|
plasticState(mappingConstitutive(2,g,i,e))%RK4dotState(:,mappingConstitutive(1,g,i,e)) = 0.0_pReal
|
|
damageState( mappingConstitutive(2,g,i,e))%RK4dotState(:,mappingConstitutive(1,g,i,e)) = 0.0_pReal
|
|
thermalState(mappingConstitutive(2,g,i,e))%RK4dotState(:,mappingConstitutive(1,g,i,e)) = 0.0_pReal
|
|
vacancyState(mappingConstitutive(2,g,i,e))%RK4dotState(:,mappingConstitutive(1,g,i,e)) = 0.0_pReal
|
|
enddo
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! first Runge-Kutta step
|
|
!$OMP PARALLEL
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
c = mappingConstitutive(1,g,i,e)
|
|
p = mappingConstitutive(2,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or.&
|
|
any(damageState(p)%dotState(:,c) /= damageState(p)%dotState(:,c)) .or.&
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or.&
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
!--------------------------------------------------------------------------------------------------
|
|
! --- SECOND TO FOURTH RUNGE KUTTA STEP PLUS FINAL INTEGRATION ---
|
|
|
|
do n = 1_pInt,4_pInt
|
|
! --- state update ---
|
|
|
|
!$OMP PARALLEL
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
|
|
plasticState(p)%RK4dotState(:,c) = plasticState(p)%RK4dotState(:,c) &
|
|
+ weight(n)*plasticState(p)%dotState(:,c)
|
|
damageState(p)%RK4dotState(:,c) = damageState(p)%RK4dotState(:,c) &
|
|
+ weight(n)*damageState(p)%dotState(:,c)
|
|
thermalState(p)%RK4dotState(:,c) = thermalState(p)%RK4dotState(:,c) &
|
|
+ weight(n)*thermalState(p)%dotState(:,c)
|
|
vacancyState(p)%RK4dotState(:,c) = vacancyState(p)%RK4dotState(:,c) &
|
|
+ weight(n)*vacancyState(p)%dotState(:,c)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState(p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = plasticState(p)%subState0(1:mySizePlasticDotState,c) &
|
|
+ plasticState(p)%dotState (1:mySizePlasticDotState,c) &
|
|
* crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
damageState( p)%state(1:mySizeDamageDotState,c) = damageState(p)%subState0(1:mySizeDamageDotState,c) &
|
|
+ damageState(p)%dotState (1:mySizeDamageDotState,c) &
|
|
* crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
thermalState(p)%state(1:mySizeThermalDotState,c) = thermalState(p)%subState0(1:mySizeThermalDotState,c) &
|
|
+ thermalState(p)%dotState (1:mySizeThermalDotState,c) &
|
|
* crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,c) = vacancyState(p)%subState0(1:mySizeVacancyDotState,c) &
|
|
+ vacancyState(p)%dotState (1:mySizeVacancyDotState,c) &
|
|
* crystallite_subdt(g,i,e) * timeStepFraction(n)
|
|
|
|
#ifndef _OPENMP
|
|
if (n == 4 &
|
|
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then ! final integration step
|
|
|
|
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c)
|
|
endif
|
|
#endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- state jump ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,timeStepFraction(n)) ! fraction of original times step
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
|
|
first3steps: if (n < 4) then
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
timeStepFraction(n)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or.&
|
|
any(damageState(p)%dotState(:,c) /= damageState(p)%dotState(:,c)) .or.&
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or.&
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
endif first3steps
|
|
!$OMP END PARALLEL
|
|
|
|
enddo
|
|
|
|
|
|
! --- SET CONVERGENCE FLAG ---
|
|
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(4,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(4,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
|
|
|
|
! --- CHECK NONLOCAL CONVERGENCE ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) then ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateRK4
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with 5th order Runge-Kutta Cash-Karp method with
|
|
!> adaptive step size (use 5th order solution to advance = "local extrapolation")
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_integrateStateRKCK45()
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: &
|
|
rTol_crystalliteState, &
|
|
numerics_integrationMode
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_Ngrains, &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: &
|
|
constitutive_collectDotState, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_damage_maxSizeDotState, &
|
|
constitutive_thermal_maxSizeDotState, &
|
|
constitutive_vacancy_maxSizeDotState, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
real(pReal), dimension(5,5), parameter :: &
|
|
A = reshape([&
|
|
.2_pReal, .075_pReal, .3_pReal, -11.0_pReal/54.0_pReal, 1631.0_pReal/55296.0_pReal, &
|
|
.0_pReal, .225_pReal, -.9_pReal, 2.5_pReal, 175.0_pReal/512.0_pReal, &
|
|
.0_pReal, .0_pReal, 1.2_pReal, -70.0_pReal/27.0_pReal, 575.0_pReal/13824.0_pReal, &
|
|
.0_pReal, .0_pReal, .0_pReal, 35.0_pReal/27.0_pReal, 44275.0_pReal/110592.0_pReal, &
|
|
.0_pReal, .0_pReal, .0_pReal, .0_pReal, 253.0_pReal/4096.0_pReal], &
|
|
[5,5], order=[2,1]) !< coefficients in Butcher tableau (used for preliminary integration in stages 2 to 6)
|
|
|
|
real(pReal), dimension(6), parameter :: &
|
|
B = &
|
|
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
|
|
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], & !< coefficients in Butcher tableau (used for final integration and error estimate)
|
|
DB = B - &
|
|
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
|
|
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 0.25_pReal] !< coefficients in Butcher tableau (used for final integration and error estimate)
|
|
|
|
real(pReal), dimension(5), parameter :: &
|
|
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal] !< coefficients in Butcher tableau (fractions of original time step in stages 2 to 6)
|
|
|
|
integer(pInt) :: &
|
|
e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
stage, & ! stage index in integration stage loop
|
|
s, & ! state index
|
|
n, &
|
|
p, &
|
|
cc, &
|
|
mySizePlasticDotState, & ! size of dot States
|
|
mySizeDamageDotState, &
|
|
mySizeThermalDotState, &
|
|
mySizeVacancyDotState
|
|
integer(pInt), dimension(2) :: &
|
|
eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: &
|
|
iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in microstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_damage_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
damageStateResiduum, & ! residuum from evolution in microstructure
|
|
relDamageStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_thermal_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
thermalStateResiduum, & ! residuum from evolution in microstructure
|
|
relThermalStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_vacancy_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
vacancyStateResiduum, & ! residuum from evolution in microstructure
|
|
relVacancyStateResiduum ! relative residuum from evolution in microstructure
|
|
logical :: &
|
|
singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
eIter = FEsolving_execElem(1:2)
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',1
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
|
|
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
|
|
|
|
|
|
|
|
! --- FIRST RUNGE KUTTA STEP ---
|
|
|
|
!$OMP PARALLEL
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
p = mappingConstitutive(2,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,cc) /= plasticState(p)%dotState(:,cc)) .or.&
|
|
any(damageState(p)%dotState(:,cc) /= damageState(p)%dotState(:,cc)) .or.&
|
|
any(thermalState(p)%dotState(:,cc) /= thermalState(p)%dotState(:,cc)) .or.&
|
|
any(vacancyState(p)%dotState(:,cc) /= vacancyState(p)%dotState(:,cc))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- SECOND TO SIXTH RUNGE KUTTA STEP ---
|
|
|
|
do stage = 1_pInt,5_pInt
|
|
|
|
! --- state update ---
|
|
|
|
!$OMP PARALLEL
|
|
!$OMP DO PRIVATE(p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
plasticState(p)%RKCK45dotState(stage,:,cc) = plasticState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
damageState(p)%RKCK45dotState(stage,:,cc) = damageState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
thermalState(p)%RKCK45dotState(stage,:,cc) = thermalState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
vacancyState(p)%RKCK45dotState(stage,:,cc) = vacancyState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(p,cc,n)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
|
|
plasticState(p)%dotState(:,cc) = A(1,stage) * plasticState(p)%RKCK45dotState(1,:,cc)
|
|
damageState( p)%dotState(:,cc) = A(1,stage) * damageState( p)%RKCK45dotState(1,:,cc)
|
|
thermalState(p)%dotState(:,cc) = A(1,stage) * thermalState(p)%RKCK45dotState(1,:,cc)
|
|
vacancyState(p)%dotState(:,cc) = A(1,stage) * vacancyState(p)%RKCK45dotState(1,:,cc)
|
|
do n = 2_pInt, stage
|
|
plasticState(p)%dotState(:,cc) = &
|
|
plasticState(p)%dotState(:,cc) + A(n,stage) * plasticState(p)%RKCK45dotState(n,:,cc)
|
|
damageState( p)%dotState(:,cc) = &
|
|
damageState( p)%dotState(:,cc) + A(n,stage) * damageState( p)%RKCK45dotState(n,:,cc)
|
|
thermalState(p)%dotState(:,cc) = &
|
|
thermalState(p)%dotState(:,cc) + A(n,stage) * thermalState(p)%RKCK45dotState(n,:,cc)
|
|
vacancyState(p)%dotState(:,cc) = &
|
|
vacancyState(p)%dotState(:,cc) + A(n,stage) * vacancyState(p)%RKCK45dotState(n,:,cc)
|
|
enddo
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
plasticState(p)%state(1:mySizePlasticDotState,cc) = plasticState(p)%subState0(1:mySizePlasticDotState,cc) &
|
|
+ plasticState(p)%dotState (1:mySizePlasticDotState,cc) &
|
|
* crystallite_subdt(g,i,e)
|
|
damageState(p)%state(1:mySizeDamageDotState,cc) = damageState(p)%subState0( 1:mySizeDamageDotState,cc) &
|
|
+ damageState(p)%dotState ( 1:mySizeDamageDotState,cc) &
|
|
* crystallite_subdt(g,i,e)
|
|
thermalState(p)%state(1:mySizeThermalDotState,cc) = thermalState(p)%subState0(1:mySizeThermalDotState,cc) &
|
|
+ thermalState(p)%dotState (1:mySizeThermalDotState,cc) &
|
|
* crystallite_subdt(g,i,e)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,cc) = vacancyState(p)%subState0(1:mySizeVacancyDotState,cc) &
|
|
+ vacancyState(p)%dotState (1:mySizeVacancyDotState,cc) &
|
|
* crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- state jump ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- update dependent states ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- stress integration ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e,C(stage)) ! fraction of original time step
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- dot state and RK dot state---
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,1x,i1)') '<< CRYST >> Runge--Kutta step',stage+1_pInt
|
|
#endif
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
C(stage)*crystallite_subdt(g,i,e), & ! fraction of original timestep
|
|
crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,cc) /= plasticState(p)%dotState(:,cc)) .or.&
|
|
any(damageState(p)%dotState(:,cc) /= damageState(p)%dotState(:,cc)) .or.&
|
|
any(thermalState(p)%dotState(:,cc) /= thermalState(p)%dotState(:,cc)) .or.&
|
|
any(vacancyState(p)%dotState(:,cc) /= vacancyState(p)%dotState(:,cc))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
enddo
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! --- STATE UPDATE WITH ERROR ESTIMATE FOR STATE ---
|
|
|
|
relStateResiduum = 0.0_pReal
|
|
relDamageStateResiduum = 0.0_pReal
|
|
relThermalStateResiduum = 0.0_pReal
|
|
relVacancyStateResiduum = 0.0_pReal
|
|
!$OMP PARALLEL
|
|
!$OMP DO PRIVATE(p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
plasticState(p)%RKCK45dotState(6,:,cc) = plasticState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
damageState( p)%RKCK45dotState(6,:,cc) = damageState( p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
thermalState(p)%RKCK45dotState(6,:,cc) = thermalState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
vacancyState(p)%RKCK45dotState(6,:,cc) = vacancyState(p)%dotState(:,cc) ! store Runge-Kutta dotState
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
|
|
! --- absolute residuum in state ---
|
|
! NEED TO DO THE ADDITION IN THIS LENGTHY WAY BECAUSE OF PARALLELIZATION
|
|
! CAN'T USE A REDUCTION CLAUSE ON A POINTER OR USER DEFINED TYPE
|
|
|
|
stateResiduum(1:mySizePlasticDotState,g,i,e) = &
|
|
( DB(1) * plasticState(p)%RKCK45dotState(1,1:mySizePlasticDotState,cc) &
|
|
+ DB(2) * plasticState(p)%RKCK45dotState(2,1:mySizePlasticDotState,cc) &
|
|
+ DB(3) * plasticState(p)%RKCK45dotState(3,1:mySizePlasticDotState,cc) &
|
|
+ DB(4) * plasticState(p)%RKCK45dotState(4,1:mySizePlasticDotState,cc) &
|
|
+ DB(5) * plasticState(p)%RKCK45dotState(5,1:mySizePlasticDotState,cc) &
|
|
+ DB(6) * plasticState(p)%RKCK45dotState(6,1:mySizePlasticDotState,cc) &
|
|
) * crystallite_subdt(g,i,e)
|
|
damageStateResiduum(1:mySizeDamageDotState,g,i,e) = &
|
|
( DB(1) * damageState(p)%RKCK45dotState(1,1:mySizeDamageDotState,cc) &
|
|
+ DB(2) * damageState(p)%RKCK45dotState(2,1:mySizeDamageDotState,cc) &
|
|
+ DB(3) * damageState(p)%RKCK45dotState(3,1:mySizeDamageDotState,cc) &
|
|
+ DB(4) * damageState(p)%RKCK45dotState(4,1:mySizeDamageDotState,cc) &
|
|
+ DB(5) * damageState(p)%RKCK45dotState(5,1:mySizeDamageDotState,cc) &
|
|
+ DB(6) * damageState(p)%RKCK45dotState(6,1:mySizeDamageDotState,cc) &
|
|
) * crystallite_subdt(g,i,e)
|
|
thermalStateResiduum(1:mySizeThermalDotState,g,i,e) = &
|
|
( DB(1) * thermalState(p)%RKCK45dotState(1,1:mySizeThermalDotState,cc) &
|
|
+ DB(2) * thermalState(p)%RKCK45dotState(2,1:mySizeThermalDotState,cc) &
|
|
+ DB(3) * thermalState(p)%RKCK45dotState(3,1:mySizeThermalDotState,cc) &
|
|
+ DB(4) * thermalState(p)%RKCK45dotState(4,1:mySizeThermalDotState,cc) &
|
|
+ DB(5) * thermalState(p)%RKCK45dotState(5,1:mySizeThermalDotState,cc) &
|
|
+ DB(6) * thermalState(p)%RKCK45dotState(6,1:mySizeThermalDotState,cc) &
|
|
) * crystallite_subdt(g,i,e)
|
|
vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e) = &
|
|
( DB(1) * vacancyState(p)%RKCK45dotState(1,1:mySizeVacancyDotState,cc) &
|
|
+ DB(2) * vacancyState(p)%RKCK45dotState(2,1:mySizeVacancyDotState,cc) &
|
|
+ DB(3) * vacancyState(p)%RKCK45dotState(3,1:mySizeVacancyDotState,cc) &
|
|
+ DB(4) * vacancyState(p)%RKCK45dotState(4,1:mySizeVacancyDotState,cc) &
|
|
+ DB(5) * vacancyState(p)%RKCK45dotState(5,1:mySizeVacancyDotState,cc) &
|
|
+ DB(6) * vacancyState(p)%RKCK45dotState(6,1:mySizeVacancyDotState,cc) &
|
|
) * crystallite_subdt(g,i,e)
|
|
|
|
! --- dot state ---
|
|
|
|
plasticState(p)%dotState (:,cc) = B(1) * plasticState(p)%RKCK45dotState(1,:,cc) &
|
|
+ B(2) * plasticState(p)%RKCK45dotState(2,:,cc) &
|
|
+ B(3) * plasticState(p)%RKCK45dotState(3,:,cc) &
|
|
+ B(4) * plasticState(p)%RKCK45dotState(4,:,cc) &
|
|
+ B(5) * plasticState(p)%RKCK45dotState(5,:,cc) &
|
|
+ B(6) * plasticState(p)%RKCK45dotState(6,:,cc)
|
|
damageState(p)%dotState (:,cc) = B(1) * damageState( p)%RKCK45dotState(1,:,cc) &
|
|
+ B(2) * damageState( p)%RKCK45dotState(2,:,cc) &
|
|
+ B(3) * damageState( p)%RKCK45dotState(3,:,cc) &
|
|
+ B(4) * damageState( p)%RKCK45dotState(4,:,cc) &
|
|
+ B(5) * damageState( p)%RKCK45dotState(5,:,cc) &
|
|
+ B(6) * damageState( p)%RKCK45dotState(6,:,cc)
|
|
thermalState(p)%dotState (:,cc) = B(1) * thermalState(p)%RKCK45dotState(1,:,cc) &
|
|
+ B(2) * thermalState(p)%RKCK45dotState(2,:,cc) &
|
|
+ B(3) * thermalState(p)%RKCK45dotState(3,:,cc) &
|
|
+ B(4) * thermalState(p)%RKCK45dotState(4,:,cc) &
|
|
+ B(5) * thermalState(p)%RKCK45dotState(5,:,cc) &
|
|
+ B(6) * thermalState(p)%RKCK45dotState(6,:,cc)
|
|
vacancyState(p)%dotState (:,cc) = B(1) * vacancyState(p)%RKCK45dotState(1,:,cc) &
|
|
+ B(2) * vacancyState(p)%RKCK45dotState(2,:,cc) &
|
|
+ B(3) * vacancyState(p)%RKCK45dotState(3,:,cc) &
|
|
+ B(4) * vacancyState(p)%RKCK45dotState(4,:,cc) &
|
|
+ B(5) * vacancyState(p)%RKCK45dotState(5,:,cc) &
|
|
+ B(6) * vacancyState(p)%RKCK45dotState(6,:,cc)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- state and update ---
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,cc)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
plasticState(p)%state(1:mySizePlasticDotState,cc) = plasticState(p)%subState0(1:mySizePlasticDotState,cc)&
|
|
+ plasticState(p)%dotState (1:mySizePlasticDotState,cc)&
|
|
* crystallite_subdt(g,i,e)
|
|
damageState(p)%state (1:mySizeDamageDotState,cc) = damageState(p)%subState0(1:mySizeDamageDotState,cc)&
|
|
+ damageState(p)%dotState (1:mySizeDamageDotState,cc)&
|
|
* crystallite_subdt(g,i,e)
|
|
thermalState(p)%state(1:mySizeThermalDotState,cc) = thermalState(p)%subState0(1:mySizeThermalDotState,cc)&
|
|
+ thermalState(p)%dotState (1:mySizeThermalDotState,cc)&
|
|
* crystallite_subdt(g,i,e)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,cc) = vacancyState(p)%subState0(1:mySizeVacancyDotState,cc)&
|
|
+ vacancyState(p)%dotState (1:mySizeVacancyDotState,cc)&
|
|
* crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- relative residui and state convergence ---
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,cc,s)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
cc = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%state(s,cc)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / plasticState(p)%state(s,cc)
|
|
forall (s = 1_pInt:mySizeDamageDotState, abs(damageState( p)%state(s,cc)) > 0.0_pReal) &
|
|
relDamageStateResiduum(s,g,i,e) = damageStateResiduum(s,g,i,e) / damageState(p)%state(s,cc)
|
|
forall (s = 1_pInt:mySizeThermalDotState, abs(thermalState(p)%state(s,cc)) > 0.0_pReal) &
|
|
relThermalStateResiduum(s,g,i,e) = thermalStateResiduum(s,g,i,e) / thermalState(p)%state(s,cc)
|
|
forall (s = 1_pInt:mySizeVacancyDotState, abs(vacancyState(p)%state(s,cc)) > 0.0_pReal) &
|
|
relVacancyStateResiduum(s,g,i,e) = vacancyStateResiduum(s,g,i,e) / vacancyState(p)%state(s,cc)
|
|
!$OMP FLUSH(relStateResiduum)
|
|
!$OMP FLUSH(relDamageStateResiduum)
|
|
!$OMP FLUSH(relThermalStateResiduum)
|
|
!$OMP FLUSH(relVacancyStateResiduum)
|
|
! @Martin: do we need flushing? why..?
|
|
crystallite_todo(g,i,e) = &
|
|
( all(abs(relStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(stateResiduum(1:mySizePlasticDotState,g,i,e)) < &
|
|
plasticState(p)%aTolState(1:mySizePlasticDotState)) &
|
|
.and. all(abs(relDamageStateResiduum(1:mySizeDamageDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(damageStateResiduum(1:mySizeDamageDotState,g,i,e)) < &
|
|
damageState(p)%aTolState(1:mySizeDamageDotState)) &
|
|
.and. all(abs(relThermalStateResiduum(1:mySizeThermalDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(thermalStateResiduum(1:mySizeThermalDotState,g,i,e)) < &
|
|
thermalState(p)%aTolState(1:mySizeThermalDotState)) &
|
|
.and. all(abs(relVacancyStateResiduum(1:mySizeVacancyDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e)) < &
|
|
vacancyState(p)%aTolState(1:mySizeVacancyDotState)))
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt&
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i3,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', &
|
|
stateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', &
|
|
relStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', &
|
|
plasticState(p)%dotState(1:mySizePlasticDotState,cc)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', &
|
|
plasticState(p)%state(1:mySizePlasticDotState,cc)
|
|
endif
|
|
#endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! --- UPDATE DEPENDENT STATES IF RESIDUUM BELOW TOLERANCE ---
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! --- FINAL STRESS INTEGRATION STEP IF RESIDUUM BELOW TOLERANCE ---
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! --- SET CONVERGENCE FLAG ---
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definition
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(6,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(6,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- nonlocal convergence check ---
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged' ! if not requesting Integration of just a single IP
|
|
if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
|
|
end subroutine crystallite_integrateStateRKCK45
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_integrateStateAdaptiveEuler()
|
|
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: &
|
|
rTol_crystalliteState, &
|
|
numerics_integrationMode
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems, &
|
|
mesh_maxNips
|
|
use material, only: &
|
|
homogenization_Ngrains, &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_maxNgrains
|
|
use constitutive, only: &
|
|
constitutive_collectDotState, &
|
|
constitutive_microstructure, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_damage_maxSizeDotState, &
|
|
constitutive_thermal_maxSizeDotState, &
|
|
constitutive_vacancy_maxSizeDotState
|
|
|
|
implicit none
|
|
integer(pInt) :: &
|
|
e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
s, & ! state index
|
|
p, &
|
|
c, &
|
|
mySizePlasticDotState, & ! size of dot states
|
|
mySizeDamageDotState, &
|
|
mySizeThermalDotState, &
|
|
mySizeVacancyDotState
|
|
integer(pInt), dimension(2) :: &
|
|
eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: &
|
|
iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal), dimension(constitutive_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
stateResiduum, & ! residuum from evolution in micrstructure
|
|
relStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_damage_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
damageStateResiduum, & ! residuum from evolution in micrstructure
|
|
relDamageStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_thermal_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
thermalStateResiduum, & ! residuum from evolution in micrstructure
|
|
relThermalStateResiduum ! relative residuum from evolution in microstructure
|
|
real(pReal), dimension(constitutive_vacancy_maxSizeDotState,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: &
|
|
vacancyStateResiduum, & ! residuum from evolution in micrstructure
|
|
relVacancyStateResiduum ! relative residuum from evolution in microstructure
|
|
|
|
logical :: &
|
|
singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
! --- LOOP ITERATOR FOR ELEMENT, GRAIN, IP ---
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
|
|
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
|
|
|
|
|
|
stateResiduum = 0.0_pReal
|
|
relStateResiduum = 0.0_pReal
|
|
damageStateResiduum = 0.0_pReal
|
|
relDamageStateResiduum = 0.0_pReal
|
|
thermalStateResiduum = 0.0_pReal
|
|
relThermalStateResiduum = 0.0_pReal
|
|
vacancyStateResiduum = 0.0_pReal
|
|
relVacancyStateResiduum = 0.0_pReal
|
|
|
|
|
|
integrationMode: if (numerics_integrationMode == 1_pInt) then
|
|
|
|
!$OMP PARALLEL
|
|
! --- DOT STATE (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or. &
|
|
any(damageState( p)%dotState(:,c) /= damageState( p)%dotState(:,c)) .or. &
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or.&
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE UPDATE (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
stateResiduum(1:mySizePlasticDotState,g,i,e) = - 0.5_pReal &
|
|
* plasticState(p)%dotstate(1:mySizePlasticDotState,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
damageStateResiduum(1:mySizeDamageDotState,g,i,e) = - 0.5_pReal &
|
|
* damageState(p)%dotstate(1:mySizeDamageDotState,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
thermalStateResiduum(1:mySizeThermalDotState,g,i,e) = - 0.5_pReal &
|
|
* thermalState(p)%dotstate(1:mySizeThermalDotState,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e) = - 0.5_pReal &
|
|
* vacancyState(p)%dotstate(1:mySizeVacancyDotState,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = plasticState(p)%state(1:mySizePlasticDotState,c) &
|
|
+ plasticState(p)%dotstate(1:mySizePlasticDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
damageState(p)%state(1:mySizeDamageDotState,c) = damageState(p)%state(1:mySizeDamageDotState,c) &
|
|
+ damageState(p)%dotstate(1:mySizeDamageDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
thermalState(p)%state(1:mySizeThermalDotState,c) = thermalState(p)%state(1:mySizeThermalDotState,c) &
|
|
+ thermalState(p)%dotstate(1:mySizeThermalDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,c) = vacancyState(p)%state(1:mySizeVacancyDotState,c) &
|
|
+ vacancyState(p)%dotstate(1:mySizeVacancyDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES (EULER INTEGRATION) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
endif integrationMode
|
|
|
|
|
|
! --- STRESS INTEGRATION (EULER INTEGRATION) ---
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
if (numerics_integrationMode == 1_pInt) then
|
|
|
|
!$OMP PARALLEL
|
|
! --- DOT STATE (HEUN METHOD) ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or.&
|
|
any(damageState( p)%dotState(:,c) /= damageState( p)%dotState(:,c)) .or.&
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or.&
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- ERROR ESTIMATE FOR STATE (HEUN METHOD) ---
|
|
|
|
!$OMP SINGLE
|
|
relStateResiduum = 0.0_pReal
|
|
relDamageStateResiduum = 0.0_pReal
|
|
relThermalStateResiduum = 0.0_pReal
|
|
relVacancyStateResiduum = 0.0_pReal
|
|
!$OMP END SINGLE
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,c,s)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState(p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
! --- contribution of heun step to absolute residui ---
|
|
|
|
stateResiduum(1:mySizePlasticDotState,g,i,e) = stateResiduum(1:mySizePlasticDotState,g,i,e) &
|
|
+ 0.5_pReal * plasticState(p)%dotState(:,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
damageStateResiduum(1:mySizeDamageDotState,g,i,e) = damageStateResiduum(1:mySizeDamageDotState,g,i,e) &
|
|
+ 0.5_pReal * damageState(p)%dotState(:,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
thermalStateResiduum(1:mySizeThermalDotState,g,i,e) = thermalStateResiduum(1:mySizeThermalDotState,g,i,e) &
|
|
+ 0.5_pReal * thermalState(p)%dotState(:,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e) = vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e) &
|
|
+ 0.5_pReal * vacancyState(p)%dotState(:,c) &
|
|
* crystallite_subdt(g,i,e) ! contribution to absolute residuum in state
|
|
|
|
!$OMP FLUSH(stateResiduum)
|
|
!$OMP FLUSH(damageStateResiduum)
|
|
!$OMP FLUSH(thermalStateResiduum)
|
|
!$OMP FLUSH(vacancyStateResiduum)
|
|
|
|
! --- relative residui ---
|
|
forall (s = 1_pInt:mySizePlasticDotState, abs(plasticState(p)%dotState(s,c)) > 0.0_pReal) &
|
|
relStateResiduum(s,g,i,e) = stateResiduum(s,g,i,e) / plasticState(p)%dotState(s,c)
|
|
forall (s = 1_pInt:mySizeDamageDotState, abs(damageState(p)%dotState(s,c)) > 0.0_pReal) &
|
|
relDamageStateResiduum(s,g,i,e) = damageStateResiduum(s,g,i,e) / damageState(p)%dotState(s,c)
|
|
forall (s = 1_pInt:mySizeThermalDotState, abs(thermalState(p)%dotState(s,c)) > 0.0_pReal) &
|
|
relThermalStateResiduum(s,g,i,e) = thermalStateResiduum(s,g,i,e) / thermalState(p)%dotState(s,c)
|
|
forall (s = 1_pInt:mySizeVacancyDotState, abs(vacancyState(p)%dotState(s,c)) > 0.0_pReal) &
|
|
relVacancyStateResiduum(s,g,i,e) = vacancyStateResiduum(s,g,i,e) / vacancyState(p)%dotState(s,c)
|
|
!$OMP FLUSH(relStateResiduum)
|
|
!$OMP FLUSH(relDamageStateResiduum)
|
|
!$OMP FLUSH(relthermalStateResiduum)
|
|
!$OMP FLUSH(relVacancyStateResiduum)
|
|
|
|
#ifndef _OPENMP
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> updateState at el ip g ',e,i,g
|
|
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> absolute residuum tolerance', &
|
|
stateResiduum(1:mySizePlasticDotState,g,i,e) / plasticState(p)%aTolState(1:mySizePlasticDotState)
|
|
write(6,'(a,/,(12x,12(f12.1,1x)),/)') '<< CRYST >> relative residuum tolerance', &
|
|
relStateResiduum(1:mySizePlasticDotState,g,i,e) / rTol_crystalliteState
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState(1:mySizePlasticDotState,c) &
|
|
- 2.0_pReal * stateResiduum(1:mySizePlasticDotState,g,i,e) / crystallite_subdt(g,i,e) ! calculate former dotstate from higher order solution and state residuum
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state(1:mySizePlasticDotState,c)
|
|
endif
|
|
#endif
|
|
|
|
! --- converged ? ---
|
|
if ( all(abs(relStateResiduum(1:mySizePlasticDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(stateResiduum(1:mySizePlasticDotState,g,i,e)) < &
|
|
plasticState(p)%aTolState(1:mySizePlasticDotState)) &
|
|
.and. all(abs(relDamageStateResiduum(1:mySizeDamageDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(damageStateResiduum(1:mySizeDamageDotState,g,i,e)) < &
|
|
damageState(p)%aTolState(1:mySizeDamageDotState)) &
|
|
.and. all(abs(relThermalStateResiduum(1:mySizeThermalDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(thermalStateResiduum(1:mySizeThermalDotState,g,i,e)) < &
|
|
thermalState(p)%aTolState(1:mySizeThermalDotState)) &
|
|
.and. all(abs(relVacancyStateResiduum(1:mySizeVacancyDotState,g,i,e)) < &
|
|
rTol_crystalliteState .or. &
|
|
abs(vacancyStateResiduum(1:mySizeVacancyDotState,g,i,e)) < &
|
|
vacancyState(p)%aTolState(1:mySizeVacancyDotState))) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
elseif (numerics_integrationMode > 1) then ! stiffness calculation
|
|
|
|
!$OMP PARALLEL DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(2,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
endif
|
|
|
|
|
|
|
|
! --- NONLOCAL CONVERGENCE CHECK ---
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), ' grains converged'
|
|
if ((.not. singleRun) .and. any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
|
|
|
|
end subroutine crystallite_integrateStateAdaptiveEuler
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, and state with 1st order explicit Euler method
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_integrateStateEuler()
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: &
|
|
numerics_integrationMode, &
|
|
numerics_timeSyncing
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_collectDotState, &
|
|
constitutive_microstructure
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: &
|
|
e, & ! element index in element loop
|
|
i, & ! integration point index in ip loop
|
|
g, & ! grain index in grain loop
|
|
p, & ! phase loop
|
|
c, &
|
|
mySizePlasticDotState, &
|
|
mySizeDamageDotState, &
|
|
mySizeThermalDotState, &
|
|
mySizeVacancyDotState
|
|
integer(pInt), dimension(2) :: &
|
|
eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: &
|
|
iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
logical :: &
|
|
singleRun ! flag indicating computation for single (g,i,e) triple
|
|
|
|
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
|
|
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
|
|
|
|
if (numerics_integrationMode == 1_pInt) then
|
|
!$OMP PARALLEL
|
|
|
|
! --- DOT STATE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
c = mappingConstitutive(1,g,i,e)
|
|
p = mappingConstitutive(2,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or. &
|
|
any(damageState( p)%dotState(:,c) /= damageState( p)%dotState(:,c)) .or. &
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or. &
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
if (.not. crystallite_localPlasticity(g,i,e) .and. .not. numerics_timeSyncing) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! if broken local...
|
|
crystallite_todo(g,i,e) = .false. ! ... skip this one next time
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE STATE ---
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = plasticState(p)%state( 1:mySizePlasticDotState,c) &
|
|
+ plasticState(p)%dotState(1:mySizePlasticDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
damageState( p)%state(1:mySizeDamageDotState,c) = damageState( p)%state( 1:mySizeDamageDotState,c) &
|
|
+ damageState( p)%dotState(1:mySizeDamageDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
thermalState(p)%state(1:mySizeThermalDotState,c) = thermalState(p)%state( 1:mySizeThermalDotState,c) &
|
|
+ thermalState(p)%dotState(1:mySizeThermalDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,c) = vacancyState(p)%state( 1:mySizeVacancyDotState,c) &
|
|
+ vacancyState(p)%dotState(1:mySizeVacancyDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> dotState', plasticState(p)%dotState (1:mySizePlasticDotState,c)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state (1:mySizePlasticDotState,c)
|
|
endif
|
|
#endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
|
|
.and. .not. numerics_timeSyncing) then
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
endif
|
|
|
|
|
|
!$OMP PARALLEL
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e) & ! if broken non-local...
|
|
.and. .not. numerics_timeSyncing) then
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
|
|
! --- SET CONVERGENCE FLAG ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_converged(g,i,e) = .true. ! if still "to do" then converged per definitionem
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(1,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(1,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
|
|
! --- CHECK NON-LOCAL CONVERGENCE ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity) & ! any non-local not yet converged (or broken)...
|
|
.and. .not. numerics_timeSyncing) &
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
|
|
end subroutine crystallite_integrateStateEuler
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
|
|
!> using Fixed Point Iteration to adapt the stepsize
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_integrateStateFPI()
|
|
use debug, only: &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_level,&
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_StateLoopDistribution
|
|
use numerics, only: &
|
|
nState, &
|
|
numerics_integrationMode, &
|
|
rTol_crystalliteState
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
mappingConstitutive, &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_collectDotState, &
|
|
constitutive_microstructure, &
|
|
constitutive_maxSizeDotState, &
|
|
constitutive_damage_maxSizeDotState, &
|
|
constitutive_thermal_maxSizeDotState, &
|
|
constitutive_vacancy_maxSizeDotState
|
|
|
|
implicit none
|
|
|
|
integer(pInt) :: &
|
|
NiterationState, & !< number of iterations in state loop
|
|
e, & !< element index in element loop
|
|
i, & !< integration point index in ip loop
|
|
g, & !< grain index in grain loop
|
|
p, &
|
|
c, &
|
|
mySizePlasticDotState, & ! size of dot states
|
|
mySizeDamageDotState, &
|
|
mySizeThermalDotState, &
|
|
mySizeVacancyDotState
|
|
integer(pInt), dimension(2) :: &
|
|
eIter ! bounds for element iteration
|
|
integer(pInt), dimension(2,mesh_NcpElems) :: &
|
|
iIter, & ! bounds for ip iteration
|
|
gIter ! bounds for grain iteration
|
|
real(pReal) :: &
|
|
dot_prod12, &
|
|
dot_prod22, &
|
|
stateDamper, & ! damper for integration of state
|
|
damageStateDamper, &
|
|
thermalStateDamper, &
|
|
vacancyStateDamper
|
|
real(pReal), dimension(constitutive_maxSizeDotState) :: &
|
|
stateResiduum, &
|
|
tempState
|
|
real(pReal), dimension(constitutive_damage_maxSizeDotState) :: &
|
|
damageStateResiduum, & ! residuum from evolution in micrstructure
|
|
tempDamageState
|
|
real(pReal), dimension(constitutive_thermal_maxSizeDotState) :: &
|
|
thermalStateResiduum, & ! residuum from evolution in micrstructure
|
|
tempThermalState
|
|
real(pReal), dimension(constitutive_vacancy_maxSizeDotState) :: &
|
|
vacancyStateResiduum, & ! residuum from evolution in micrstructure
|
|
tempVacancyState
|
|
logical :: &
|
|
singleRun, & ! flag indicating computation for single (g,i,e) triple
|
|
doneWithIntegration
|
|
|
|
eIter = FEsolving_execElem(1:2)
|
|
do e = eIter(1),eIter(2)
|
|
iIter(1:2,e) = FEsolving_execIP(1:2,e)
|
|
gIter(1:2,e) = [ 1_pInt,homogenization_Ngrains(mesh_element(3,e))]
|
|
enddo
|
|
|
|
singleRun = (eIter(1) == eIter(2) .and. iIter(1,eIter(1)) == iIter(2,eIter(2)))
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! initialize dotState
|
|
if (.not. singleRun) then
|
|
forall(p = 1_pInt:size(plasticState))
|
|
plasticState(p)%previousDotState = 0.0_pReal
|
|
plasticState(p)%previousDotState2 = 0.0_pReal
|
|
end forall
|
|
forall(p = 1_pInt:size(damageState))
|
|
damageState(p)%previousDotState = 0.0_pReal
|
|
damageState(p)%previousDotState2 = 0.0_pReal
|
|
end forall
|
|
forall(p = 1_pInt:size(thermalState))
|
|
thermalState(p)%previousDotState = 0.0_pReal
|
|
thermalState(p)%previousDotState2 = 0.0_pReal
|
|
end forall
|
|
forall(p = 1_pInt:size(vacancyState))
|
|
vacancyState(p)%previousDotState = 0.0_pReal
|
|
vacancyState(p)%previousDotState2 = 0.0_pReal
|
|
end forall
|
|
else
|
|
e = eIter(1)
|
|
i = iIter(1,e)
|
|
do g = gIter(1,e), gIter(2,e)
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
plasticState(p)%previousDotState (:,c) = 0.0_pReal
|
|
plasticState(p)%previousDotState2(:,c) = 0.0_pReal
|
|
damageState( p)%previousDotState (:,c) = 0.0_pReal
|
|
damageState( p)%previousDotState2(:,c) = 0.0_pReal
|
|
thermalState(p)%previousDotState (:,c) = 0.0_pReal
|
|
thermalState(p)%previousDotState2(:,c) = 0.0_pReal
|
|
vacancyState(p)%previousDotState (:,c) = 0.0_pReal
|
|
vacancyState(p)%previousDotState2(:,c) = 0.0_pReal
|
|
enddo
|
|
endif
|
|
|
|
! --+>> PREGUESS FOR STATE <<+--
|
|
|
|
! --- DOT STATES ---
|
|
|
|
!$OMP PARALLEL
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
|
|
!$OMP ENDDO
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or. &
|
|
any(damageState( p)%dotState(:,c) /= damageState( p)%dotState(:,c)) .or. &
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or. &
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then !NaN occured in dotState
|
|
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken is a non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals done (and broken)
|
|
!$OMP END CRITICAL (checkTodo)
|
|
else ! broken one was local...
|
|
crystallite_todo(g,i,e) = .false. ! ... done (and broken)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- UPDATE STATE ---
|
|
|
|
!$OMP DO PRIVATE(mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState,p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = plasticState(p)%subState0(1:mySizePlasticDotState,c) &
|
|
+ plasticState(p)%dotState (1:mySizePlasticDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
damageState( p)%state(1:mySizeDamageDotState,c) = damageState( p)%subState0(1:mySizeDamageDotState,c) &
|
|
+ damageState( p)%dotState (1:mySizeDamageDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
thermalState(p)%state(1:mySizeThermalDotState,c) = thermalState(p)%subState0(1:mySizeThermalDotState,c) &
|
|
+ thermalState(p)%dotState (1:mySizeThermalDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,c) = vacancyState(p)%subState0(1:mySizeVacancyDotState,c) &
|
|
+ vacancyState(p)%dotState (1:mySizeVacancyDotState,c) &
|
|
* crystallite_subdt(g,i,e)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP END PARALLEL
|
|
|
|
! --+>> STATE LOOP <<+--
|
|
|
|
NiterationState = 0_pInt
|
|
doneWithIntegration = .false.
|
|
crystalliteLooping: do while (.not. doneWithIntegration .and. NiterationState < nState)
|
|
NiterationState = NiterationState + 1_pInt
|
|
|
|
!$OMP PARALLEL
|
|
|
|
! --- UPDATE DEPENDENT STATES ---
|
|
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
|
|
call constitutive_microstructure(crystallite_Tstar_v(1:6,g,i,e), &
|
|
crystallite_Fe(1:3,1:3,g,i,e), &
|
|
crystallite_Fp(1:3,1:3,g,i,e), &
|
|
crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_subdt(g,i,e), g, i, e) ! update dependent state variables to be consistent with basic states
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
plasticState(p)%previousDotState2(:,c) = plasticState(p)%previousDotState(:,c)
|
|
damageState( p)%previousDotState2(:,c) = damageState( p)%previousDotState(:,c)
|
|
thermalState(p)%previousDotState2(:,c) = thermalState(p)%previousDotState(:,c)
|
|
vacancyState(p)%previousDotState2(:,c) = vacancyState(p)%previousDotState(:,c)
|
|
plasticState(p)%previousDotState (:,c) = plasticState(p)%dotState(:,c)
|
|
damageState( p)%previousDotState (:,c) = damageState( p)%dotState(:,c)
|
|
thermalState(p)%previousDotState (:,c) = thermalState(p)%dotState(:,c)
|
|
vacancyState(p)%previousDotState (:,c) = vacancyState(p)%dotState(:,c)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- STRESS INTEGRATION ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
crystallite_todo(g,i,e) = crystallite_integrateStress(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e) .and. .not. crystallite_localPlasticity(g,i,e)) then ! broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ... then all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP SINGLE
|
|
!$OMP CRITICAL (write2out)
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_todo(:,:,:)),' grains todo after stress integration'
|
|
!$OMP END CRITICAL (write2out)
|
|
!$OMP END SINGLE
|
|
|
|
|
|
! --- DOT STATE ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) &
|
|
call constitutive_collectDotState(crystallite_Tstar_v(1:6,g,i,e), crystallite_Lp(1:3,1:3,g,i,e), &
|
|
crystallite_Fe, &
|
|
crystallite_Fp, &
|
|
crystallite_subdt(g,i,e), crystallite_subFrac, g,i,e)
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
!$OMP DO PRIVATE(p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if ( any(plasticState(p)%dotState(:,c) /= plasticState(p)%dotState(:,c)) .or. &
|
|
any(damageState( p)%dotState(:,c) /= damageState( p)%dotState(:,c)) .or. &
|
|
any(thermalState(p)%dotState(:,c) /= thermalState(p)%dotState(:,c)) .or. &
|
|
any(vacancyState(p)%dotState(:,c) /= vacancyState(p)%dotState(:,c))) then ! NaN occured in dotState
|
|
crystallite_todo(g,i,e) = .false. ! ... skip me next time
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if me is non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
|
|
endif
|
|
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
|
|
! --- UPDATE STATE ---
|
|
|
|
!$OMP DO PRIVATE(dot_prod12,dot_prod22, &
|
|
!$OMP& mySizePlasticDotState,mySizeDamageDotState,mySizeThermalDotState,mySizeVacancyDotState, &
|
|
!$OMP& stateResiduum, damageStateResiduum,thermalStateResiduum,vacancyStateResiduum, &
|
|
!$OMP& statedamper, damageStateDamper,thermalStateDamper,vacancyStateDamper, &
|
|
!$OMP& tempState, tempDamageState,tempThermalState,tempVacancyState,p,c)
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
mySizeDamageDotState = damageState( p)%sizeDotState
|
|
mySizeThermalDotState = thermalState(p)%sizeDotState
|
|
mySizeVacancyDotState = vacancyState(p)%sizeDotState
|
|
|
|
dot_prod12 = dot_product(plasticState(p)%dotState(:,c) - plasticState(p)%previousDotState(:,c), &
|
|
plasticState(p)%previousDotState(:,c) - plasticState(p)%previousDotState2(:,c))
|
|
dot_prod22 = dot_product(plasticState(p)%previousDotState(:,c) - plasticState(p)%previousDotState2(:,c), &
|
|
plasticState(p)%previousDotState(:,c) - plasticState(p)%previousDotState2(:,c))
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(plasticState(p)%dotState(:,c), &
|
|
plasticState(p)%previousDotState(:,c)) < 0.0_pReal) ) then
|
|
stateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
stateDamper = 1.0_pReal
|
|
endif
|
|
|
|
dot_prod12 = dot_product(damageState(p)%dotState(:,c) - damageState(p)%previousDotState(:,c), &
|
|
damageState(p)%previousDotState(:,c) - damageState(p)%previousDotState2(:,c))
|
|
dot_prod22 = dot_product(damageState(p)%previousDotState(:,c) - damageState(p)%previousDotState2(:,c), &
|
|
damageState(p)%previousDotState(:,c) - damageState(p)%previousDotState2(:,c))
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(damageState(p)%dotState(:,c), &
|
|
damageState(p)%previousDotState(:,c)) < 0.0_pReal) ) then
|
|
damageStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
damageStateDamper = 1.0_pReal
|
|
endif
|
|
|
|
dot_prod12 = dot_product(thermalState(p)%dotState(:,c) - thermalState(p)%previousDotState(:,c), &
|
|
thermalState(p)%previousDotState(:,c) - thermalState(p)%previousDotState2(:,c))
|
|
dot_prod22 = dot_product(thermalState(p)%previousDotState(:,c) - thermalState(p)%previousDotState2(:,c), &
|
|
thermalState(p)%previousDotState(:,c) - thermalState(p)%previousDotState2(:,c))
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(thermalState(p)%dotState(:,c), &
|
|
thermalState(p)%previousDotState(:,c)) < 0.0_pReal) ) then
|
|
thermalStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
thermalStateDamper = 1.0_pReal
|
|
endif
|
|
|
|
dot_prod12 = dot_product(vacancyState(p)%dotState(:,c) - vacancyState(p)%previousDotState(:,c), &
|
|
vacancyState(p)%previousDotState(:,c) - vacancyState(p)%previousDotState2(:,c))
|
|
dot_prod22 = dot_product(vacancyState(p)%previousDotState(:,c) - vacancyState(p)%previousDotState2(:,c), &
|
|
vacancyState(p)%previousDotState(:,c) - vacancyState(p)%previousDotState2(:,c))
|
|
if ( dot_prod22 > 0.0_pReal &
|
|
.and. ( dot_prod12 < 0.0_pReal &
|
|
.or. dot_product(vacancyState(p)%dotState(:,c), &
|
|
vacancyState(p)%previousDotState(:,c)) < 0.0_pReal) ) then
|
|
vacancyStateDamper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
vacancyStateDamper = 1.0_pReal
|
|
endif
|
|
! --- get residui ---
|
|
|
|
stateResiduum(1:mySizePlasticDotState) = plasticState(p)%state(1:mySizePlasticDotState,c) &
|
|
- plasticState(p)%subState0(1:mySizePlasticDotState,c) &
|
|
- (plasticState(p)%dotState(1:mySizePlasticDotState,c) * stateDamper &
|
|
+ plasticState(p)%previousDotState(1:mySizePlasticDotState,c) &
|
|
* (1.0_pReal - stateDamper)) * crystallite_subdt(g,i,e)
|
|
|
|
damageStateResiduum(1:mySizeDamageDotState) = damageState(p)%state(1:mySizeDamageDotState,c) &
|
|
- damageState(p)%subState0(1:mySizeDamageDotState,c) &
|
|
- (damageState(p)%dotState(1:mySizeDamageDotState,c) * damageStateDamper &
|
|
+ damageState(p)%previousDotState(1:mySizeDamageDotState,c) &
|
|
* (1.0_pReal - damageStateDamper)) * crystallite_subdt(g,i,e)
|
|
|
|
thermalStateResiduum(1:mySizeThermalDotState) = thermalState(p)%state(1:mySizeThermalDotState,c) &
|
|
- thermalState(p)%subState0(1:mySizeThermalDotState,c) &
|
|
- (thermalState(p)%dotState(1:mySizeThermalDotState,c) * thermalStateDamper &
|
|
+ thermalState(p)%previousDotState(1:mySizeThermalDotState,c) &
|
|
* (1.0_pReal - thermalStateDamper)) * crystallite_subdt(g,i,e)
|
|
vacancyStateResiduum(1:mySizeVacancyDotState) = vacancyState(p)%state(1:mySizeVacancyDotState,c) &
|
|
- vacancyState(p)%subState0(1:mySizeVacancyDotState,c) &
|
|
- (vacancyState(p)%dotState(1:mySizeVacancyDotState,c) * vacancyStateDamper &
|
|
+ vacancyState(p)%previousDotState(1:mySizeVacancyDotState,c) &
|
|
* (1.0_pReal - vacancyStateDamper)) * crystallite_subdt(g,i,e)
|
|
! --- correct state with residuum ---
|
|
tempState(1:mySizePlasticDotState) = plasticState(p)%state(1:mySizePlasticDotState,c) &
|
|
- stateResiduum(1:mySizePlasticDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
|
|
tempDamageState(1:mySizeDamageDotState) = damageState(p)%state(1:mySizeDamageDotState,c) &
|
|
- damageStateResiduum(1:mySizeDamageDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
|
|
tempThermalState(1:mySizeThermalDotState) = thermalState(p)%state(1:mySizeThermalDotState,c) &
|
|
- thermalStateResiduum(1:mySizeThermalDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
|
|
tempVacancyState(1:mySizeVacancyDotState) = vacancyState(p)%state(1:mySizeVacancyDotState,c) &
|
|
- vacancyStateResiduum(1:mySizeVacancyDotState) ! need to copy to local variable, since we cant flush a pointer in openmp
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3,/)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,'(a,f6.1,/)') '<< CRYST >> statedamper ',statedamper
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> state residuum',stateResiduum(1:mySizePlasticDotState)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state',tempState(1:mySizePlasticDotState)
|
|
endif
|
|
#endif
|
|
! --- store corrected dotState --- (cannot do this before state update, because not sure how to flush pointers in openmp)
|
|
|
|
plasticState(p)%dotState(:,c) = plasticState(p)%dotState(:,c) * stateDamper &
|
|
+ plasticState(p)%previousDotState(:,c) &
|
|
* (1.0_pReal - stateDamper)
|
|
damageState( p)%dotState(:,c) = damageState(p)%dotState(:,c) * damageStateDamper &
|
|
+ damageState(p)%previousDotState(:,c) &
|
|
* (1.0_pReal - damageStateDamper)
|
|
thermalState(p)%dotState(:,c) = thermalState(p)%dotState(:,c) * thermalStateDamper &
|
|
+ thermalState(p)%previousDotState(:,c) &
|
|
* (1.0_pReal - thermalStateDamper)
|
|
vacancyState(p)%dotState(:,c) = vacancyState(p)%dotState(:,c) * vacancyStateDamper &
|
|
+ vacancyState(p)%previousDotState(:,c) &
|
|
* (1.0_pReal - vacancyStateDamper)
|
|
! --- converged ? ---
|
|
if ( all( abs(stateResiduum(1:mySizePlasticDotState)) < plasticState(p)%aTolState(1:mySizePlasticDotState) &
|
|
.or. abs(stateResiduum(1:mySizePlasticDotState)) < rTol_crystalliteState &
|
|
* abs(tempState(1:mySizePlasticDotState)) ) &
|
|
.and. all( abs(damageStateResiduum(1:mySizeDamageDotState)) < damageState(p)%aTolState(1:mySizeDamageDotState) &
|
|
.or. abs(damageStateResiduum(1:mySizeDamageDotState)) < rTol_crystalliteState &
|
|
* abs(tempDamageState(1:mySizeDamageDotState)) ) &
|
|
.and. all( abs(thermalStateResiduum(1:mySizeThermalDotState)) < thermalState(p)%aTolState(1:mySizeThermalDotState) &
|
|
.or. abs(thermalStateResiduum(1:mySizeThermalDotState)) < rTol_crystalliteState &
|
|
* abs(tempThermalState(1:mySizeThermalDotState)) ) &
|
|
.and. all( abs(vacancyStateResiduum(1:mySizeVacancyDotState)) < vacancyState(p)%aTolState(1:mySizeVacancyDotState) &
|
|
.or. abs(vacancyStateResiduum(1:mySizeVacancyDotState)) < rTol_crystalliteState &
|
|
* abs(tempVacancyState(1:mySizeVacancyDotState)) )) then
|
|
crystallite_converged(g,i,e) = .true. ! ... converged per definition
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionState)
|
|
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) = &
|
|
debug_StateLoopDistribution(NiterationState,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionState)
|
|
endif
|
|
endif
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = tempState(1:mySizePlasticDotState)
|
|
damageState( p)%state(1:mySizeDamageDotState, c) = tempDamageState(1:mySizeDamageDotState)
|
|
thermalState(p)%state(1:mySizeThermalDotState,c) = tempThermalState(1:mySizeThermalDotState)
|
|
vacancyState(p)%state(1:mySizeVacancyDotState,c) = tempVacancyState(1:mySizeVacancyDotState)
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
! --- STATE JUMP ---
|
|
|
|
!$OMP DO
|
|
do e = eIter(1),eIter(2); do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (crystallite_todo(g,i,e) .and. crystallite_converged(g,i,e)) then ! converged and still alive...
|
|
crystallite_todo(g,i,e) = crystallite_stateJump(g,i,e)
|
|
!$OMP FLUSH(crystallite_todo)
|
|
if (.not. crystallite_todo(g,i,e)) then ! if state jump fails, then convergence is broken
|
|
crystallite_converged(g,i,e) = .false.
|
|
if (.not. crystallite_localPlasticity(g,i,e)) then ! if broken non-local...
|
|
!$OMP CRITICAL (checkTodo)
|
|
crystallite_todo = crystallite_todo .and. crystallite_localPlasticity ! ...all non-locals skipped
|
|
!$OMP END CRITICAL (checkTodo)
|
|
endif
|
|
endif
|
|
endif
|
|
enddo; enddo; enddo
|
|
!$OMP ENDDO
|
|
!$OMP END PARALLEL
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) &
|
|
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
|
|
' grains converged after state integration #', NiterationState
|
|
|
|
|
|
! --- NON-LOCAL CONVERGENCE CHECK ---
|
|
|
|
if (.not. singleRun) then ! if not requesting Integration of just a single IP
|
|
if (any(.not. crystallite_converged .and. .not. crystallite_localPlasticity)) & ! any non-local not yet converged (or broken)...
|
|
crystallite_converged = crystallite_converged .and. crystallite_localPlasticity ! ...restart all non-local as not converged
|
|
endif
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt) then
|
|
write(6,'(a,i8,a)') '<< CRYST >> ', count(crystallite_converged(:,:,:)), &
|
|
' grains converged after non-local check'
|
|
write(6,'(a,i8,a,i2,/)') '<< CRYST >> ', count(crystallite_todo(:,:,:)), &
|
|
' grains todo after state integration #', NiterationState
|
|
endif
|
|
! --- CHECK IF DONE WITH INTEGRATION ---
|
|
|
|
doneWithIntegration = .true.
|
|
elemLoop: do e = eIter(1),eIter(2)
|
|
do i = iIter(1,e),iIter(2,e); do g = gIter(1,e),gIter(2,e) ! iterate over elements, ips and grains
|
|
if (crystallite_todo(g,i,e) .and. .not. crystallite_converged(g,i,e)) then
|
|
doneWithIntegration = .false.
|
|
exit elemLoop
|
|
endif
|
|
enddo; enddo
|
|
enddo elemLoop
|
|
|
|
enddo crystalliteLooping
|
|
end subroutine crystallite_integrateStateFPI
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates a jump in the state according to the current state and the current stress
|
|
!> returns true, if state jump was successfull or not needed. false indicates NaN in delta state
|
|
!--------------------------------------------------------------------------------------------------
|
|
logical function crystallite_stateJump(g,i,e)
|
|
use debug, only: &
|
|
debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_NcpElems
|
|
use material, only: &
|
|
plasticState, &
|
|
mappingConstitutive, &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_collectDeltaState
|
|
|
|
implicit none
|
|
integer(pInt), intent(in):: &
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
|
|
integer(pInt) :: &
|
|
c, &
|
|
p, &
|
|
mySizePlasticDotState
|
|
|
|
c = mappingConstitutive(1,g,i,e)
|
|
p = mappingConstitutive(2,g,i,e)
|
|
if (constitutive_collectDeltaState(crystallite_Tstar_v(1:6,g,i,e), g,i,e)) then
|
|
mySizePlasticDotState = plasticState(p)%sizeDotState
|
|
if( any(plasticState(p)%deltaState(:,c) /= plasticState(p)%deltaState(:,c))) then ! NaN occured in deltaState
|
|
crystallite_stateJump = .false.
|
|
return
|
|
endif
|
|
plasticState(p)%state(1:mySizePlasticDotState,c) = plasticState(p)%state(1:mySizePlasticDotState,c) + &
|
|
plasticState(p)%deltaState(1:mySizePlasticDotState,c)
|
|
|
|
#ifndef _OPENMP
|
|
p = mappingConstitutive(2,g,i,e)
|
|
c = mappingConstitutive(1,g,i,e)
|
|
if (any(plasticState(p)%deltaState(1:mySizePlasticDotState,c) /= 0.0_pReal) &
|
|
.and. iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3, /)') '<< CRYST >> update state at el ip g ',e,i,g
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> deltaState', plasticState(p)%deltaState(1:mySizePlasticDotState,c)
|
|
write(6,'(a,/,(12x,12(e12.5,1x)),/)') '<< CRYST >> new state', plasticState(p)%state (1:mySizePlasticDotState,c)
|
|
endif
|
|
#endif
|
|
endif
|
|
|
|
crystallite_stateJump = .true.
|
|
|
|
end function crystallite_stateJump
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Map 2nd order tensor to reference config
|
|
!--------------------------------------------------------------------------------------------------
|
|
function crystallite_push33ToRef(g,i,e, tensor33)
|
|
use math, only: &
|
|
math_inv33
|
|
|
|
implicit none
|
|
real(pReal), dimension(3,3) :: crystallite_push33ToRef
|
|
real(pReal), dimension(3,3), intent(in) :: tensor33
|
|
real(pReal), dimension(3,3) :: invFp
|
|
integer(pInt), intent(in):: &
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
|
|
invFp = math_inv33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
crystallite_push33ToRef = matmul(invFp,matmul(tensor33,transpose(invFp)))
|
|
|
|
end function crystallite_push33ToRef
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
|
|
!> intermediate acceleration of the Newton-Raphson correction
|
|
!--------------------------------------------------------------------------------------------------
|
|
logical function crystallite_integrateStress(&
|
|
g,& ! grain number
|
|
i,& ! integration point number
|
|
e,& ! element number
|
|
timeFraction &
|
|
)
|
|
use prec, only: pLongInt
|
|
use numerics, only: nStress, &
|
|
aTol_crystalliteStress, &
|
|
rTol_crystalliteStress, &
|
|
iJacoLpresiduum, &
|
|
numerics_integrationMode
|
|
use debug, only: debug_level, &
|
|
debug_crystallite, &
|
|
debug_levelBasic, &
|
|
debug_levelExtensive, &
|
|
debug_levelSelective, &
|
|
debug_e, &
|
|
debug_i, &
|
|
debug_g, &
|
|
debug_cumLpCalls, &
|
|
debug_cumLpTicks, &
|
|
debug_StressLoopLpDistribution, &
|
|
debug_StressLoopLiDistribution
|
|
use constitutive, only: constitutive_LpAndItsTangent, &
|
|
constitutive_LiAndItsTangent, &
|
|
constitutive_TandItsTangent
|
|
use math, only: math_mul33x33, &
|
|
math_mul33xx33, &
|
|
math_mul3333xx3333, &
|
|
math_mul66x6, &
|
|
math_mul99x99, &
|
|
math_transpose33, &
|
|
math_inv33, &
|
|
math_invert33, &
|
|
math_invert, &
|
|
math_det33, &
|
|
math_norm33, &
|
|
math_I3, &
|
|
math_identity2nd, &
|
|
math_Mandel66to3333, &
|
|
math_Mandel6to33, &
|
|
math_Mandel33to6, &
|
|
math_Plain3333to99, &
|
|
math_Plain33to9, &
|
|
math_Plain9to33, &
|
|
math_Plain99to3333
|
|
use mesh, only: mesh_element
|
|
|
|
implicit none
|
|
integer(pInt), intent(in):: e, & ! element index
|
|
i, & ! integration point index
|
|
g ! grain index
|
|
real(pReal), optional, intent(in) :: timeFraction ! fraction of timestep
|
|
|
|
!*** local variables ***!
|
|
real(pReal), dimension(3,3):: Fg_new, & ! deformation gradient at end of timestep
|
|
Fp_current, & ! plastic deformation gradient at start of timestep
|
|
Fi_current, & ! intermediate deformation gradient at start of timestep
|
|
Fp_new, & ! plastic deformation gradient at end of timestep
|
|
Fe_new, & ! elastic deformation gradient at end of timestep
|
|
invFp_new, & ! inverse of Fp_new
|
|
Fi_new, & ! gradient of intermediate deformation stages
|
|
invFi_new, &
|
|
invFp_current, & ! inverse of Fp_current
|
|
invFi_current, & ! inverse of Fp_current
|
|
Lpguess, & ! current guess for plastic velocity gradient
|
|
Lpguess_old, & ! known last good guess for plastic velocity gradient
|
|
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
|
|
residuumLp, & ! current residuum of plastic velocity gradient
|
|
residuumLp_old, & ! last residuum of plastic velocity gradient
|
|
deltaLp, & ! direction of next guess
|
|
Liguess, & ! current guess for intermediate velocity gradient
|
|
Liguess_old, & ! known last good guess for intermediate velocity gradient
|
|
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
|
|
residuumLi, & ! current residuum of intermediate velocity gradient
|
|
residuumLi_old, & ! last residuum of intermediate velocity gradient
|
|
deltaLi, & ! direction of next guess
|
|
Tstar, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
|
|
A, &
|
|
B, &
|
|
Fe, & ! elastic deformation gradient
|
|
temp_33
|
|
real(pReal), dimension(6):: Tstar_v ! 2nd Piola-Kirchhoff Stress in Mandel-Notation
|
|
real(pReal), dimension(9):: work ! needed for matrix inversion by LAPACK
|
|
integer(pInt), dimension(9) :: ipiv ! needed for matrix inversion by LAPACK
|
|
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for NEwton-Raphson scheme)
|
|
dRLp_dLp2, & ! working copy of dRdLp
|
|
dRLi_dLi ! partial derivative of residuumI (Jacobian for NEwton-Raphson scheme)
|
|
real(pReal), dimension(3,3,3,3):: dT_dFe3333, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
|
dT_dFi3333, &
|
|
dFe_dLp3333, & ! partial derivative of elastic deformation gradient
|
|
dFe_dLi3333, &
|
|
dFi_dLi3333, &
|
|
dLp_dFi3333, &
|
|
dLi_dFi3333, &
|
|
dLp_dT3333, &
|
|
dLi_dT3333
|
|
real(pReal) det, & ! determinant
|
|
detInvFi, &
|
|
steplengthLp0, &
|
|
steplengthLp, &
|
|
steplengthLi0, &
|
|
steplengthLi, &
|
|
dt, & ! time increment
|
|
aTolLp, &
|
|
aTolLi
|
|
logical error ! flag indicating an error
|
|
integer(pInt) NiterationStressLp, & ! number of stress integrations
|
|
NiterationStressLi, & ! number of inner stress integrations
|
|
ierr, & ! error indicator for LAPACK
|
|
o, &
|
|
p, &
|
|
jacoCounterLp, &
|
|
jacoCounterLi ! counters to check for Jacobian update
|
|
integer(pLongInt) tick, &
|
|
tock, &
|
|
tickrate, &
|
|
maxticks
|
|
|
|
external :: &
|
|
#if(FLOAT==8)
|
|
dgesv
|
|
#elif(FLOAT==4)
|
|
sgesv
|
|
#endif
|
|
|
|
!* be pessimistic
|
|
crystallite_integrateStress = .false.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i8,1x,i2,1x,i3)') '<< CRYST >> integrateStress at el ip g ',e,i,g
|
|
endif
|
|
#endif
|
|
|
|
|
|
!* only integrate over fraction of timestep?
|
|
|
|
if (present(timeFraction)) then
|
|
dt = crystallite_subdt(g,i,e) * timeFraction
|
|
Fg_new = crystallite_subF0(1:3,1:3,g,i,e) &
|
|
+ (crystallite_subF(1:3,1:3,g,i,e) - crystallite_subF0(1:3,1:3,g,i,e)) * timeFraction
|
|
else
|
|
dt = crystallite_subdt(g,i,e)
|
|
Fg_new = crystallite_subF(1:3,1:3,g,i,e)
|
|
endif
|
|
|
|
|
|
!* feed local variables
|
|
|
|
Fp_current = crystallite_subFp0(1:3,1:3,g,i,e) ! "Fp_current" is only used as temp var here...
|
|
Lpguess = crystallite_Lp (1:3,1:3,g,i,e) ! ... and take it as first guess
|
|
Fi_current = crystallite_subFi0(1:3,1:3,g,i,e) ! intermediate configuration, assume decomposition as F = Fe Fi Fp
|
|
Liguess = crystallite_Li (1:3,1:3,g,i,e) ! ... and take it as first guess
|
|
Liguess_old = Liguess
|
|
|
|
|
|
!* inversion of Fp_current...
|
|
|
|
invFp_current = math_inv33(Fp_current)
|
|
if (all(invFp_current == 0.0_pReal)) then ! ... failed?
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fp_current at el (elFE) ip g ',&
|
|
e,'(',mesh_element(1,e),')',i,g
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) &
|
|
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fp_current(1:3,1:3))
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
A = math_mul33x33(Fg_new,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
|
|
|
|
!* inversion of Fi_current...
|
|
|
|
invFi_current = math_inv33(Fi_current)
|
|
if (all(invFi_current == 0.0_pReal)) then ! ... failed?
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3)') '<< CRYST >> integrateStress failed on inversion of Fi_current at el (elFE) ip g ',&
|
|
e,'(',mesh_element(1,e),')',i,g
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) > 0_pInt) &
|
|
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp_current',math_transpose33(Fi_current(1:3,1:3))
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
|
|
!* start LpLoop with normal step length
|
|
|
|
NiterationStressLi = 0_pInt
|
|
jacoCounterLi = 0_pInt
|
|
steplengthLi0 = 1.0_pReal
|
|
steplengthLi = steplengthLi0
|
|
residuumLi_old = 0.0_pReal
|
|
|
|
LiLoop: do
|
|
NiterationStressLi = NiterationStressLi + 1_pInt
|
|
IloopsExeced: if (NiterationStressLi > nStress) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached inelastic loop limit',nStress, &
|
|
' at el (elFE) ip g ', e,mesh_element(1,e),i,g
|
|
#endif
|
|
return
|
|
endif IloopsExeced
|
|
|
|
invFi_new = math_mul33x33(invFi_current,math_I3 - dt*Liguess)
|
|
Fi_new = math_inv33(invFi_new)
|
|
detInvFi = math_det33(invFi_new)
|
|
|
|
NiterationStressLp = 0_pInt
|
|
jacoCounterLp = 0_pInt
|
|
steplengthLp0 = 1.0_pReal
|
|
steplengthLp = steplengthLp0
|
|
residuumLp_old = 0.0_pReal
|
|
Lpguess_old = Lpguess
|
|
|
|
LpLoop: do ! inner stress integration loop for consistency with Fi
|
|
NiterationStressLp = NiterationStressLp + 1_pInt
|
|
loopsExeced: if (NiterationStressLp > nStress) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a,i3,a,i8,1x,a,i8,a,1x,i2,1x,i3,/)') '<< CRYST >> integrateStress reached loop limit',nStress, &
|
|
' at el (elFE) ip g ', e,mesh_element(1,e),i,g
|
|
#endif
|
|
return
|
|
endif loopsExeced
|
|
|
|
!* calculate (elastic) 2nd Piola--Kirchhoff stress tensor and its tangent from constitutive law
|
|
|
|
B = math_I3 - dt*Lpguess
|
|
Fe = math_mul33x33(math_mul33x33(A,B), invFi_new) ! current elastic deformation tensor
|
|
call constitutive_TandItsTangent(Tstar, dT_dFe3333, dT_dFi3333, Fe, Fi_new, g, i, e) ! call constitutive law to calculate 2nd Piola-Kirchhoff stress and its derivative in unloaded configuration
|
|
Tstar_v = math_Mandel33to6(Tstar)
|
|
|
|
!* calculate plastic velocity gradient and its tangent from constitutive law
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
call system_clock(count=tick,count_rate=tickrate,count_max=maxticks)
|
|
endif
|
|
|
|
call constitutive_LpAndItsTangent(Lp_constitutive, dLp_dT3333, dLp_dFi3333, &
|
|
Tstar_v, Fi_new, g, i, e)
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
call system_clock(count=tock,count_rate=tickrate,count_max=maxticks)
|
|
!$OMP CRITICAL (debugTimingLpTangent)
|
|
debug_cumLpCalls = debug_cumLpCalls + 1_pInt
|
|
debug_cumLpTicks = debug_cumLpTicks + tock-tick
|
|
!$OMP FLUSH (debug_cumLpTicks)
|
|
if (tock < tick) debug_cumLpTicks = debug_cumLpTicks + maxticks
|
|
!$OMP END CRITICAL (debugTimingLpTangent)
|
|
endif
|
|
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,i3,/)') '<< CRYST >> iteration ', NiterationStressLp
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive', math_transpose33(Lp_constitutive)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess', math_transpose33(Lpguess)
|
|
endif
|
|
#endif
|
|
|
|
|
|
!* update current residuum and check for convergence of loop
|
|
|
|
aTolLp = max(rTol_crystalliteStress * max(math_norm33(Lpguess),math_norm33(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
|
|
aTol_crystalliteStress) ! minimum lower cutoff
|
|
residuumLp = Lpguess - Lp_constitutive
|
|
|
|
if (any(residuumLp /= residuumLp)) then ! NaN in residuum...
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) &
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3,a)') '<< CRYST >> integrateStress encountered NaN at el (elFE) ip g ', &
|
|
e,mesh_element(1,e),i,g, &
|
|
' ; iteration ', NiterationStressLp,&
|
|
' >> returning..!'
|
|
#endif
|
|
return ! ...me = .false. to inform integrator about problem
|
|
elseif (math_norm33(residuumLp) < aTolLp) then ! converged if below absolute tolerance
|
|
exit LpLoop ! ...leave iteration loop
|
|
elseif ( NiterationStressLp == 1_pInt &
|
|
.or. math_norm33(residuumLp) < math_norm33(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
|
|
residuumLp_old = residuumLp ! ...remember old values and...
|
|
Lpguess_old = Lpguess
|
|
steplengthLp = steplengthLp0 ! ...proceed with normal step length (calculate new search direction)
|
|
else ! not converged and residuum not improved...
|
|
steplengthLp = 0.5_pReal * steplengthLp ! ...try with smaller step length in same direction
|
|
Lpguess = Lpguess_old + steplengthLp * deltaLp
|
|
cycle LpLoop
|
|
endif
|
|
|
|
|
|
!* calculate Jacobian for correction term
|
|
|
|
if (mod(jacoCounterLp, iJacoLpresiduum) == 0_pInt) then
|
|
dFe_dLp3333 = 0.0_pReal
|
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
dFe_dLp3333(o,1:3,p,1:3) = A(o,p)*math_transpose33(invFi_new) ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
|
|
enddo; enddo
|
|
dFe_dLp3333 = - dt * dFe_dLp3333
|
|
dRLp_dLp = math_identity2nd(9_pInt) &
|
|
- math_Plain3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dT3333,dT_dFe3333),dFe_dLp3333))
|
|
dRLp_dLp2 = dRLp_dLp ! will be overwritten in first call to LAPACK routine
|
|
work = math_plain33to9(residuumLp)
|
|
#if(FLOAT==8)
|
|
call dgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
|
#elif(FLOAT==4)
|
|
call sgesv(9,1,dRLp_dLp2,9,ipiv,work,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
|
#endif
|
|
if (ierr /= 0_pInt) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on dR/dLp inversion at el ip g ', &
|
|
e,mesh_element(1,e),i,g
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g)&
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,*)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dR_dLp',transpose(dRLp_dLp)
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dFe_dLp',transpose(math_Plain3333to99(dFe_dLp3333))
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dT_dFe_constitutive',transpose(math_Plain3333to99(dT_dFe3333))
|
|
write(6,'(a,/,9(12x,9(e15.3,1x)/))') '<< CRYST >> dLp_dT_constitutive',transpose(math_Plain3333to99(dLp_dT3333))
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> A',math_transpose33(A)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> B',math_transpose33(B)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lp_constitutive',math_transpose33(Lp_constitutive)
|
|
write(6,'(a,/,3(12x,3(e20.7,1x)/))') '<< CRYST >> Lpguess',math_transpose33(Lpguess)
|
|
endif
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
deltaLp = - math_plain9to33(work)
|
|
endif
|
|
jacoCounterLp = jacoCounterLp + 1_pInt ! increase counter for jaco update
|
|
|
|
Lpguess = Lpguess + steplengthLp * deltaLp
|
|
|
|
enddo LpLoop
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionStress)
|
|
debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) = &
|
|
debug_StressLoopLpDistribution(NiterationStressLp,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionStress)
|
|
endif
|
|
|
|
!* calculate intermediate velocity gradient and its tangent from constitutive law
|
|
|
|
call constitutive_LiAndItsTangent(Li_constitutive, dLi_dT3333, dLi_dFi3333, &
|
|
Tstar_v, Fi_new, Lpguess, g, i, e)
|
|
|
|
!* update current residuum and check for convergence of loop
|
|
|
|
aTolLi = max(rTol_crystalliteStress * max(math_norm33(Liguess),math_norm33(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
|
|
aTol_crystalliteStress) ! minimum lower cutoff
|
|
residuumLi = Liguess - Li_constitutive
|
|
if (any(residuumLi /= residuumLi)) then ! NaN in residuum...
|
|
return ! ...me = .false. to inform integrator about problem
|
|
elseif (math_norm33(residuumLi) < aTolLi) then ! converged if below absolute tolerance
|
|
exit LiLoop ! ...leave iteration loop
|
|
elseif ( NiterationStressLi == 1_pInt &
|
|
.or. math_norm33(residuumLi) < math_norm33(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
|
|
residuumLi_old = residuumLi ! ...remember old values and...
|
|
Liguess_old = Liguess
|
|
steplengthLi = steplengthLi0 ! ...proceed with normal step length (calculate new search direction)
|
|
else ! not converged and residuum not improved...
|
|
steplengthLi = 0.5_pReal * steplengthLi ! ...try with smaller step length in same direction
|
|
Liguess = Liguess_old + steplengthLi * deltaLi
|
|
cycle LiLoop
|
|
endif
|
|
|
|
!* calculate Jacobian for correction term
|
|
|
|
if (mod(jacoCounterLi, iJacoLpresiduum) == 0_pInt) then
|
|
temp_33 = math_mul33x33(math_mul33x33(A,B),invFi_current)
|
|
dFe_dLi3333 = 0.0_pReal
|
|
dFi_dLi3333 = 0.0_pReal
|
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
dFe_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -dt * A(i,k) invFi(l,j)
|
|
dFi_dLi3333(1:3,o,1:3,p) = -dt*math_I3(o,p)*invFi_current
|
|
enddo; enddo
|
|
do o=1_pInt,3_pInt; do p=1_pInt,3_pInt
|
|
dFi_dLi3333(1:3,1:3,o,p) = math_mul33x33(math_mul33x33(Fi_new,dFi_dLi3333(1:3,1:3,o,p)),Fi_new)
|
|
enddo; enddo
|
|
|
|
dRLi_dLi = math_identity2nd(9_pInt) &
|
|
- math_Plain3333to99(math_mul3333xx3333(dLi_dT3333, math_mul3333xx3333(dT_dFe3333, dFe_dLi3333) + &
|
|
math_mul3333xx3333(dT_dFi3333, dFi_dLi3333))) &
|
|
- math_Plain3333to99(math_mul3333xx3333(dLi_dFi3333, dFi_dLi3333))
|
|
work = math_plain33to9(residuumLi)
|
|
#if(FLOAT==8)
|
|
call dgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
|
#elif(FLOAT==4)
|
|
call sgesv(9,1,dRLi_dLi,9,ipiv,work,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
|
#endif
|
|
if (ierr /= 0_pInt) then
|
|
return
|
|
endif
|
|
deltaLi = - math_plain9to33(work)
|
|
endif
|
|
jacoCounterLi = jacoCounterLi + 1_pInt ! increase counter for jaco update
|
|
|
|
Liguess = Liguess + steplengthLi * deltaLi
|
|
enddo LiLoop
|
|
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
!$OMP CRITICAL (distributionStress)
|
|
debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) = &
|
|
debug_StressLoopLiDistribution(NiterationStressLi,numerics_integrationMode) + 1_pInt
|
|
!$OMP END CRITICAL (distributionStress)
|
|
endif
|
|
|
|
!* calculate new plastic and elastic deformation gradient
|
|
|
|
invFp_new = math_mul33x33(invFp_current,B)
|
|
invFp_new = invFp_new / math_det33(invFp_new)**(1.0_pReal/3.0_pReal) ! regularize by det
|
|
call math_invert33(invFp_new,Fp_new,det,error)
|
|
if (error .or. any(Fp_new /= Fp_new)) then
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite), debug_levelBasic) /= 0_pInt) then
|
|
write(6,'(a,i8,1x,a,i8,a,1x,i2,1x,i3,a,i3)') '<< CRYST >> integrateStress failed on invFp_new inversion at el ip g ',&
|
|
e,mesh_element(1,e),i,g, ' ; iteration ', NiterationStressLp
|
|
if (iand(debug_level(debug_crystallite), debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) &
|
|
write(6,'(/,a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> invFp_new',math_transpose33(invFp_new)
|
|
endif
|
|
#endif
|
|
return
|
|
endif
|
|
Fe_new = math_mul33x33(math_mul33x33(Fg_new,invFp_new),invFi_new) ! calc resulting Fe
|
|
|
|
!* calculate 1st Piola-Kirchhoff stress
|
|
|
|
crystallite_P(1:3,1:3,g,i,e) = math_mul33x33(math_mul33x33(Fg_new,invFp_new), &
|
|
math_mul33x33(math_Mandel6to33(Tstar_v), &
|
|
math_transpose33(invFp_new)))
|
|
|
|
!* store local values in global variables
|
|
|
|
crystallite_Lp(1:3,1:3,g,i,e) = Lpguess
|
|
crystallite_Li(1:3,1:3,g,i,e) = Liguess
|
|
crystallite_Tstar_v(1:6,g,i,e) = Tstar_v
|
|
crystallite_Fp(1:3,1:3,g,i,e) = Fp_new
|
|
crystallite_Fi(1:3,1:3,g,i,e) = Fi_new
|
|
crystallite_Fe(1:3,1:3,g,i,e) = Fe_new
|
|
crystallite_invFp(1:3,1:3,g,i,e) = invFp_new
|
|
crystallite_invFi(1:3,1:3,g,i,e) = invFi_new
|
|
|
|
!* set return flag to true
|
|
|
|
crystallite_integrateStress = .true.
|
|
#ifndef _OPENMP
|
|
if (iand(debug_level(debug_crystallite),debug_levelExtensive) /= 0_pInt &
|
|
.and. ((e == debug_e .and. i == debug_i .and. g == debug_g) &
|
|
.or. .not. iand(debug_level(debug_crystallite), debug_levelSelective) /= 0_pInt)) then
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> P / MPa',math_transpose33(crystallite_P(1:3,1:3,g,i,e))*1.0e-6_pReal
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Cauchy / MPa', &
|
|
math_mul33x33(crystallite_P(1:3,1:3,g,i,e), math_transpose33(Fg_new)) * 1.0e-6_pReal / math_det33(Fg_new)
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fe Lp Fe^-1', &
|
|
math_transpose33(math_mul33x33(Fe_new, math_mul33x33(crystallite_Lp(1:3,1:3,g,i,e), math_inv33(Fe_new)))) ! transpose to get correct print out order
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fp',math_transpose33(crystallite_Fp(1:3,1:3,g,i,e))
|
|
write(6,'(a,/,3(12x,3(f12.7,1x)/))') '<< CRYST >> Fi',math_transpose33(crystallite_Fi(1:3,1:3,g,i,e))
|
|
endif
|
|
#endif
|
|
|
|
end function crystallite_integrateStress
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculates orientations and disorientations (in case of single grain ips)
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine crystallite_orientations
|
|
use math, only: &
|
|
math_pDecomposition, &
|
|
math_RtoQ, &
|
|
math_qConj
|
|
use FEsolving, only: &
|
|
FEsolving_execElem, &
|
|
FEsolving_execIP
|
|
use IO, only: &
|
|
IO_warning
|
|
use material, only: &
|
|
material_phase, &
|
|
homogenization_Ngrains, &
|
|
plasticState
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors, &
|
|
FE_geomtype, &
|
|
FE_celltype
|
|
use lattice, only: &
|
|
lattice_qDisorientation, &
|
|
lattice_structure
|
|
use plastic_nonlocal, only: &
|
|
plastic_nonlocal_updateCompatibility
|
|
|
|
|
|
implicit none
|
|
integer(pInt) &
|
|
e, & ! element index
|
|
i, & ! integration point index
|
|
g, & ! grain index
|
|
n, & ! neighbor index
|
|
neighboring_e, & ! element index of my neighbor
|
|
neighboring_i, & ! integration point index of my neighbor
|
|
myPhase, & ! phase
|
|
neighboringPhase
|
|
real(pReal), dimension(3,3) :: &
|
|
U, &
|
|
R
|
|
real(pReal), dimension(4) :: &
|
|
orientation
|
|
logical &
|
|
error
|
|
|
|
! --- CALCULATE ORIENTATION AND LATTICE ROTATION ---
|
|
|
|
!$OMP PARALLEL DO PRIVATE(error,U,R,orientation)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
do g = 1_pInt,homogenization_Ngrains(mesh_element(3,e))
|
|
! somehow this subroutine is not threadsafe, so need critical statement here; not clear, what exactly the problem is
|
|
!$OMP CRITICAL (polarDecomp)
|
|
call math_pDecomposition(crystallite_Fe(1:3,1:3,g,i,e), U, R, error) ! polar decomposition of Fe
|
|
!$OMP END CRITICAL (polarDecomp)
|
|
if (error) then
|
|
call IO_warning(650_pInt, e, i, g)
|
|
orientation = [1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! fake orientation
|
|
else
|
|
orientation = math_RtoQ(transpose(R))
|
|
endif
|
|
crystallite_rotation(1:4,g,i,e) = lattice_qDisorientation(crystallite_orientation0(1:4,g,i,e), & ! active rotation from ori0
|
|
orientation) ! to current orientation (with no symmetry)
|
|
crystallite_orientation(1:4,g,i,e) = orientation
|
|
enddo
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
|
|
! --- UPDATE SOME ADDITIONAL VARIABLES THAT ARE NEEDED FOR NONLOCAL MATERIAL ---
|
|
! --- we use crystallite_orientation from above, so need a separate loop
|
|
|
|
!$OMP PARALLEL DO PRIVATE(myPhase,neighboring_e,neighboring_i,neighboringPhase)
|
|
do e = FEsolving_execElem(1),FEsolving_execElem(2)
|
|
do i = FEsolving_execIP(1,e),FEsolving_execIP(2,e)
|
|
myPhase = material_phase(1,i,e) ! get my phase (non-local models make no sense with more than one grain per material point)
|
|
if (plasticState(myPhase)%nonLocal) then ! if nonlocal model
|
|
! --- calculate disorientation between me and my neighbor ---
|
|
|
|
do n = 1_pInt,FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,e)))) ! loop through my neighbors
|
|
neighboring_e = mesh_ipNeighborhood(1,n,i,e)
|
|
neighboring_i = mesh_ipNeighborhood(2,n,i,e)
|
|
if (neighboring_e > 0 .and. neighboring_i > 0) then ! if neighbor exists
|
|
neighboringPhase = material_phase(1,neighboring_i,neighboring_e) ! get my neighbor's phase
|
|
if (plasticState(neighboringPhase)%nonLocal) then ! neighbor got also nonlocal plasticity
|
|
if (lattice_structure(myPhase) == lattice_structure(neighboringPhase)) then ! if my neighbor has same crystal structure like me
|
|
crystallite_disorientation(:,n,1,i,e) = &
|
|
lattice_qDisorientation( crystallite_orientation(1:4,1,i,e), &
|
|
crystallite_orientation(1:4,1,neighboring_i,neighboring_e), &
|
|
lattice_structure(myPhase)) ! calculate disorientation for given symmetry
|
|
else ! for neighbor with different phase
|
|
crystallite_disorientation(:,n,1,i,e) = [0.0_pReal, 1.0_pReal, 0.0_pReal, 0.0_pReal] ! 180 degree rotation about 100 axis
|
|
endif
|
|
else ! for neighbor with local plasticity
|
|
crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! homomorphic identity
|
|
endif
|
|
else ! no existing neighbor
|
|
crystallite_disorientation(:,n,1,i,e) = [-1.0_pReal, 0.0_pReal, 0.0_pReal, 0.0_pReal] ! homomorphic identity
|
|
endif
|
|
enddo
|
|
|
|
|
|
! --- calculate compatibility and transmissivity between me and my neighbor ---
|
|
|
|
call plastic_nonlocal_updateCompatibility(crystallite_orientation,i,e)
|
|
|
|
endif
|
|
enddo
|
|
enddo
|
|
!$OMP END PARALLEL DO
|
|
|
|
end subroutine crystallite_orientations
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief return results of particular grain
|
|
!--------------------------------------------------------------------------------------------------
|
|
function crystallite_postResults(ipc, ip, el)
|
|
use math, only: &
|
|
math_qToEuler, &
|
|
math_qToEulerAxisAngle, &
|
|
math_mul33x33, &
|
|
math_transpose33, &
|
|
math_det33, &
|
|
math_I3, &
|
|
inDeg, &
|
|
math_Mandel6to33, &
|
|
math_qMul, &
|
|
math_qConj
|
|
use mesh, only: &
|
|
mesh_element, &
|
|
mesh_ipVolume, &
|
|
mesh_ipCoordinates, &
|
|
mesh_maxNipNeighbors, &
|
|
mesh_ipNeighborhood, &
|
|
FE_NipNeighbors, &
|
|
FE_geomtype, &
|
|
FE_celltype
|
|
use material, only: &
|
|
plasticState, &
|
|
damageState, &
|
|
thermalState, &
|
|
vacancyState, &
|
|
microstructure_crystallite, &
|
|
crystallite_Noutput, &
|
|
material_phase, &
|
|
material_texture, &
|
|
homogenization_Ngrains
|
|
use constitutive, only: &
|
|
constitutive_homogenizedC, &
|
|
constitutive_postResults
|
|
|
|
implicit none
|
|
integer(pInt), intent(in):: &
|
|
el, & !< element index
|
|
ip, & !< integration point index
|
|
ipc !< grain index
|
|
|
|
#ifdef multiphysicsOut
|
|
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,el))) + &
|
|
1+plasticState(material_phase(ipc,ip,el))%sizePostResults + &
|
|
damageState( material_phase(ipc,ip,el))%sizePostResults + &
|
|
thermalState(material_phase(ipc,ip,el))%sizePostResults + &
|
|
vacancyState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
|
crystallite_postResults
|
|
#else
|
|
real(pReal), dimension(1+crystallite_sizePostResults(microstructure_crystallite(mesh_element(4,el)))+ &
|
|
1+plasticState(material_phase(ipc,ip,el))%sizePostResults) :: &
|
|
crystallite_postResults
|
|
#endif
|
|
real(pReal), dimension(3,3) :: &
|
|
Ee
|
|
real(pReal), dimension(4) :: &
|
|
rotation
|
|
real(pReal) :: &
|
|
detF
|
|
integer(pInt) :: &
|
|
o, &
|
|
c, &
|
|
crystID, &
|
|
mySize, &
|
|
n
|
|
|
|
|
|
crystID = microstructure_crystallite(mesh_element(4,el))
|
|
|
|
crystallite_postResults = 0.0_pReal
|
|
c = 0_pInt
|
|
crystallite_postResults(c+1) = real(crystallite_sizePostResults(crystID),pReal) ! size of results from cryst
|
|
c = c + 1_pInt
|
|
|
|
do o = 1_pInt,crystallite_Noutput(crystID)
|
|
mySize = 0_pInt
|
|
select case(crystallite_outputID(o,crystID))
|
|
case (phase_ID)
|
|
mySize = 1_pInt
|
|
crystallite_postResults(c+1) = real(material_phase(ipc,ip,el),pReal) ! phaseID of grain
|
|
case (texture_ID)
|
|
mySize = 1_pInt
|
|
crystallite_postResults(c+1) = real(material_texture(ipc,ip,el),pReal) ! textureID of grain
|
|
case (volume_ID)
|
|
mySize = 1_pInt
|
|
detF = math_det33(crystallite_partionedF(1:3,1:3,ipc,ip,el)) ! V_current = det(F) * V_reference
|
|
crystallite_postResults(c+1) = detF * mesh_ipVolume(ip,el) &
|
|
/ homogenization_Ngrains(mesh_element(3,el)) ! grain volume (not fraction but absolute)
|
|
case (orientation_ID)
|
|
mySize = 4_pInt
|
|
crystallite_postResults(c+1:c+mySize) = crystallite_orientation(1:4,ipc,ip,el) ! grain orientation as quaternion
|
|
case (eulerangles_ID)
|
|
mySize = 3_pInt
|
|
crystallite_postResults(c+1:c+mySize) = inDeg &
|
|
* math_qToEuler(crystallite_orientation(1:4,ipc,ip,el)) ! grain orientation as Euler angles in degree
|
|
case (grainrotation_ID)
|
|
mySize = 4_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+4) = inDeg * crystallite_postResults(c+4) ! angle in degree
|
|
case (grainrotationx_ID)
|
|
mySize = 1_pInt
|
|
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(1) * rotation(4) ! angle in degree
|
|
case (grainrotationy_ID)
|
|
mySize = 1_pInt
|
|
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(2) * rotation(4) ! angle in degree
|
|
case (grainrotationz_ID)
|
|
mySize = 1_pInt
|
|
rotation = math_qToEulerAxisAngle(crystallite_rotation(1:4,ipc,ip,el)) ! grain rotation away from initial orientation as axis-angle in sample reference coordinates
|
|
crystallite_postResults(c+1) = inDeg * rotation(3) * rotation(4) ! angle in degree
|
|
|
|
! remark: tensor output is of the form 11,12,13, 21,22,23, 31,32,33
|
|
! thus row index i is slow, while column index j is fast. reminder: "row is slow"
|
|
|
|
case (defgrad_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_partionedF(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (e_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = 0.5_pReal * reshape((math_mul33x33( &
|
|
math_transpose33(crystallite_partionedF(1:3,1:3,ipc,ip,el)), &
|
|
crystallite_partionedF(1:3,1:3,ipc,ip,el)) - math_I3),[mySize])
|
|
case (fe_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_Fe(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (ee_ID)
|
|
Ee = 0.5_pReal *(math_mul33x33(math_transpose33(crystallite_Fe(1:3,1:3,ipc,ip,el)), &
|
|
crystallite_Fe(1:3,1:3,ipc,ip,el)) - math_I3)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(Ee,[mySize])
|
|
case (fp_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_Fp(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (fi_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_Fi(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (lp_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_Lp(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (li_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_Li(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (p_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_transpose33(crystallite_P(1:3,1:3,ipc,ip,el)),[mySize])
|
|
case (s_ID)
|
|
mySize = 9_pInt
|
|
crystallite_postResults(c+1:c+mySize) = &
|
|
reshape(math_Mandel6to33(crystallite_Tstar_v(1:6,ipc,ip,el)),[mySize])
|
|
case (elasmatrix_ID)
|
|
mySize = 36_pInt
|
|
crystallite_postResults(c+1:c+mySize) = reshape(constitutive_homogenizedC(ipc,ip,el),[mySize])
|
|
case(neighboringelement_ID)
|
|
mySize = mesh_maxNipNeighbors
|
|
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
|
|
forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) &
|
|
crystallite_postResults(c+n) = real(mesh_ipNeighborhood(1,n,ip,el),pReal)
|
|
case(neighboringip_ID)
|
|
mySize = mesh_maxNipNeighbors
|
|
crystallite_postResults(c+1:c+mySize) = 0.0_pReal
|
|
forall (n = 1_pInt:FE_NipNeighbors(FE_celltype(FE_geomtype(mesh_element(2,el))))) &
|
|
crystallite_postResults(c+n) = real(mesh_ipNeighborhood(2,n,ip,el),pReal)
|
|
end select
|
|
c = c + mySize
|
|
enddo
|
|
|
|
crystallite_postResults(c+1) = real(plasticState(material_phase(ipc,ip,el))%sizePostResults,pReal) ! size of constitutive results
|
|
c = c + 1_pInt
|
|
if (size(crystallite_postResults)-c > 0_pInt) &
|
|
crystallite_postResults(c+1:size(crystallite_postResults)) = &
|
|
constitutive_postResults(crystallite_Tstar_v(1:6,ipc,ip,el), crystallite_Fe, &
|
|
ipc, ip, el)
|
|
|
|
end function crystallite_postResults
|
|
|
|
|
|
end module crystallite
|