DAMASK_EICMD/processing/post/addCumulative.py

96 lines
3.3 KiB
Python
Executable File

#!/usr/bin/env python
# -*- coding: UTF-8 no BOM -*-
import os,sys,string
import numpy as np
from optparse import OptionParser
import damask
scriptID = string.replace('$Id$','\n','\\n')
scriptName = os.path.splitext(scriptID.split()[1])[0]
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
parser = OptionParser(option_class=damask.extendableOption, usage='%prog options [file[s]]', description = """
Add cumulative (sum of first to current row) values for given label(s).
""", version = scriptID)
parser.add_option('-l','--label',
dest='label',
action = 'extend', metavar = '<string LIST>',
help = 'columns to cumulate')
parser.set_defaults(label = [],
)
(options,filenames) = parser.parse_args()
if len(options.label) == 0:
parser.error('no data column(s) specified.')
# --- loop over input files -------------------------------------------------------------------------
if filenames == []: filenames = [None]
for name in filenames:
try:
table = damask.ASCIItable(name = name,
buffered = False)
except: continue
damask.util.report(scriptName,name)
# ------------------------------------------ read header ------------------------------------------
table.head_read()
# ------------------------------------------ sanity checks ----------------------------------------
errors = []
remarks = []
columns = []
dims = []
for what in options.label:
dim = table.label_dimension(what)
if dim < 0: remarks.append('column {} not found...'.format(what))
else:
dims.append(dim)
columns.append(table.label_index(what))
table.labels_append('cum({})'.format(what) if dim == 1 else
['{}_cum({})'.format(i+1,what) for i in xrange(dim)] ) # extend ASCII header with new labels
if remarks != []: damask.util.croak(remarks)
if errors != []:
damask.util.croak(errors)
table.close(dismiss = True)
continue
# ------------------------------------------ assemble header ---------------------------------------
table.info_append(scriptID + '\t' + ' '.join(sys.argv[1:]))
table.head_write()
# ------------------------------------------ process data ------------------------------------------
table.data_readArray()
mask = []
for col,dim in zip(columns,dims): mask += range(col,col+dim) # isolate data columns to cumulate
cumulated = np.zeros((len(table.data),len(mask))) # prepare output field
for i,values in enumerate(table.data[:,mask]):
cumulated[i,:] = cumulated[max(0,i-1),:] + values # cumulate values
table.data = np.hstack((table.data,cumulated))
# ------------------------------------------ output result -----------------------------------------
table.data_writeArray()
# ------------------------------------------ output finalization -----------------------------------
table.close() # close ASCII tables