DAMASK_EICMD/src/spectral_thermal.f90

395 lines
18 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @author Shaokang Zhang, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Spectral solver for thermal conduction
!--------------------------------------------------------------------------------------------------
module spectral_thermal
#include <petsc/finclude/petscsnes.h>
#include <petsc/finclude/petscdmda.h>
use PETScdmda
use PETScsnes
use prec, only: &
pInt, &
pReal
use math, only: &
math_I3
use spectral_utilities, only: &
tSolutionState, &
tSolutionParams
use numerics, only: &
worldrank, &
worldsize
implicit none
private
character (len=*), parameter, public :: &
spectral_thermal_label = 'spectralthermal'
!--------------------------------------------------------------------------------------------------
! derived types
type(tSolutionParams), private :: params
!--------------------------------------------------------------------------------------------------
! PETSc data
SNES, private :: thermal_snes
Vec, private :: solution
PetscInt, private :: xstart, xend, ystart, yend, zstart, zend
real(pReal), private, dimension(:,:,:), allocatable :: &
temperature_current, & !< field of current temperature
temperature_lastInc, & !< field of previous temperature
temperature_stagInc !< field of staggered temperature
!--------------------------------------------------------------------------------------------------
! reference diffusion tensor, mobility etc.
integer(pInt), private :: totalIter = 0_pInt !< total iteration in current increment
real(pReal), dimension(3,3), private :: D_ref
real(pReal), private :: mobility_ref
public :: &
spectral_thermal_init, &
spectral_thermal_solution, &
spectral_thermal_forward
external :: &
PETScErrorF ! is called in the CHKERRQ macro
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields and fills them with data, potentially from restart info
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_init
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
use, intrinsic :: iso_fortran_env, only: &
compiler_version, &
compiler_options
#endif
use IO, only: &
IO_intOut, &
IO_read_realFile, &
IO_timeStamp
use spectral_utilities, only: &
wgt
use mesh, only: &
grid, &
grid3
use thermal_conduction, only: &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
use material, only: &
mappingHomogenization, &
temperature, &
thermalMapping
implicit none
integer(pInt), dimension(:), allocatable :: localK
integer(pInt) :: proc
integer(pInt) :: i, j, k, cell
DM :: thermal_grid
PetscScalar, dimension(:,:,:), pointer :: x_scal
PetscErrorCode :: ierr
external :: &
SNESsetOptionsPrefix, &
DMDAgetCorners, &
DMDASNESsetFunctionLocal
write(6,'(/,a)') ' <<<+- spectral_thermal init -+>>>'
write(6,'(/,a)') ' Shanthraj et al., Handbook of Mechanics of Materials, volume in press,'
write(6,'(/,a)') ' chapter Spectral Solvers for Crystal Plasticity and Multi-Physics Simulations. Springer, 2018'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
!--------------------------------------------------------------------------------------------------
! initialize solver specific parts of PETSc
call SNESCreate(PETSC_COMM_WORLD,thermal_snes,ierr); CHKERRQ(ierr)
call SNESSetOptionsPrefix(thermal_snes,'thermal_',ierr);CHKERRQ(ierr)
allocate(localK(worldsize), source = 0); localK(worldrank+1) = grid3
do proc = 1, worldsize
call MPI_Bcast(localK(proc),1,MPI_INTEGER,proc-1,PETSC_COMM_WORLD,ierr)
enddo
call DMDACreate3D(PETSC_COMM_WORLD, &
DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, DM_BOUNDARY_NONE, & ! cut off stencil at boundary
DMDA_STENCIL_BOX, & ! Moore (26) neighborhood around central point
grid(1),grid(2),grid(3), & ! global grid
1, 1, worldsize, &
1, 0, & !< #dof (thermal phase field), ghost boundary width (domain overlap)
[grid(1)],[grid(2)],localK, & !< local grid
thermal_grid,ierr) !< handle, error
CHKERRQ(ierr)
call SNESSetDM(thermal_snes,thermal_grid,ierr); CHKERRQ(ierr) ! connect snes to da
call DMsetFromOptions(thermal_grid,ierr); CHKERRQ(ierr)
call DMsetUp(thermal_grid,ierr); CHKERRQ(ierr)
call DMCreateGlobalVector(thermal_grid,solution ,ierr); CHKERRQ(ierr) ! global solution vector (grid x 1, i.e. every def grad tensor)
call DMDASNESSetFunctionLocal(thermal_grid,INSERT_VALUES,spectral_thermal_formResidual,&
PETSC_NULL_SNES,ierr) ! residual vector of same shape as solution vector
CHKERRQ(ierr)
call SNESSetFromOptions(thermal_snes,ierr); CHKERRQ(ierr) ! pull it all together with additional CLI arguments
!--------------------------------------------------------------------------------------------------
! init fields
call DMDAGetCorners(thermal_grid,xstart,ystart,zstart,xend,yend,zend,ierr)
CHKERRQ(ierr)
xend = xstart + xend - 1
yend = ystart + yend - 1
zend = zstart + zend - 1
allocate(temperature_current(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(temperature_lastInc(grid(1),grid(2),grid3), source=0.0_pReal)
allocate(temperature_stagInc(grid(1),grid(2),grid3), source=0.0_pReal)
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
temperature_current(i,j,k) = temperature(mappingHomogenization(2,1,cell))% &
p(thermalMapping(mappingHomogenization(2,1,cell))%p(1,cell))
temperature_lastInc(i,j,k) = temperature_current(i,j,k)
temperature_stagInc(i,j,k) = temperature_current(i,j,k)
enddo; enddo; enddo
call DMDAVecGetArrayF90(thermal_grid,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = temperature_current
call DMDAVecRestoreArrayF90(thermal_grid,solution,x_scal,ierr); CHKERRQ(ierr)
!--------------------------------------------------------------------------------------------------
! thermal reference diffusion update
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
end subroutine spectral_thermal_init
!--------------------------------------------------------------------------------------------------
!> @brief solution for the spectral thermal scheme with internal iterations
!--------------------------------------------------------------------------------------------------
type(tSolutionState) function spectral_thermal_solution(timeinc,timeinc_old,loadCaseTime)
use numerics, only: &
itmax, &
err_thermal_tolAbs, &
err_thermal_tolRel
use mesh, only: &
grid, &
grid3
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate
implicit none
!--------------------------------------------------------------------------------------------------
! input data for solution
real(pReal), intent(in) :: &
timeinc, & !< increment in time for current solution
timeinc_old, & !< increment in time of last increment
loadCaseTime !< remaining time of current load case
integer(pInt) :: i, j, k, cell
PetscInt :: position
PetscReal :: minTemperature, maxTemperature, stagNorm, solnNorm
!--------------------------------------------------------------------------------------------------
! PETSc Data
PetscErrorCode :: ierr
SNESConvergedReason :: reason
external :: &
VecMin, &
VecMax, &
SNESSolve
spectral_thermal_solution%converged =.false.
!--------------------------------------------------------------------------------------------------
! set module wide availabe data
params%timeinc = timeinc
params%timeincOld = timeinc_old
call SNESSolve(thermal_snes,PETSC_NULL_VEC,solution,ierr); CHKERRQ(ierr)
call SNESGetConvergedReason(thermal_snes,reason,ierr); CHKERRQ(ierr)
if (reason < 1) then
spectral_thermal_solution%converged = .false.
spectral_thermal_solution%iterationsNeeded = itmax
else
spectral_thermal_solution%converged = .true.
spectral_thermal_solution%iterationsNeeded = totalIter
endif
stagNorm = maxval(abs(temperature_current - temperature_stagInc))
solnNorm = maxval(abs(temperature_current))
call MPI_Allreduce(MPI_IN_PLACE,stagNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
call MPI_Allreduce(MPI_IN_PLACE,solnNorm,1,MPI_DOUBLE,MPI_MAX,PETSC_COMM_WORLD,ierr)
temperature_stagInc = temperature_current
spectral_thermal_solution%stagConverged = stagNorm < err_thermal_tolAbs &
.or. stagNorm < err_thermal_tolRel*solnNorm
!--------------------------------------------------------------------------------------------------
! updating thermal state
cell = 0_pInt !< material point = 0
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k)-temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
call VecMin(solution,position,minTemperature,ierr); CHKERRQ(ierr)
call VecMax(solution,position,maxTemperature,ierr); CHKERRQ(ierr)
if (spectral_thermal_solution%converged) &
write(6,'(/,a)') ' ... thermal conduction converged ..................................'
write(6,'(/,a,f8.4,2x,f8.4,2x,f8.4,/)',advance='no') ' Minimum|Maximum|Delta Temperature / K = ',&
minTemperature, maxTemperature, stagNorm
write(6,'(/,a)') ' ==========================================================================='
flush(6)
end function spectral_thermal_solution
!--------------------------------------------------------------------------------------------------
!> @brief forms the spectral thermal residual vector
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_formResidual(in,x_scal,f_scal,dummy,ierr)
use mesh, only: &
grid, &
grid3
use math, only: &
math_mul33x3
use spectral_utilities, only: &
scalarField_real, &
vectorField_real, &
utilities_FFTvectorForward, &
utilities_FFTvectorBackward, &
utilities_FFTscalarForward, &
utilities_FFTscalarBackward, &
utilities_fourierGreenConvolution, &
utilities_fourierScalarGradient, &
utilities_fourierVectorDivergence
use thermal_conduction, only: &
thermal_conduction_getSourceAndItsTangent, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
DMDALocalInfo, dimension(DMDA_LOCAL_INFO_SIZE) :: &
in
PetscScalar, dimension( &
XG_RANGE,YG_RANGE,ZG_RANGE), intent(in) :: &
x_scal
PetscScalar, dimension( &
X_RANGE,Y_RANGE,Z_RANGE), intent(out) :: &
f_scal
PetscObject :: dummy
PetscErrorCode :: ierr
integer(pInt) :: i, j, k, cell
real(pReal) :: Tdot, dTdot_dT
temperature_current = x_scal
!--------------------------------------------------------------------------------------------------
! evaluate polarization field
scalarField_real = 0.0_pReal
scalarField_real(1:grid(1),1:grid(2),1:grid3) = temperature_current
call utilities_FFTscalarForward()
call utilities_fourierScalarGradient() !< calculate gradient of damage field
call utilities_FFTvectorBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
vectorField_real(1:3,i,j,k) = math_mul33x3(thermal_conduction_getConductivity33(1,cell) - D_ref, &
vectorField_real(1:3,i,j,k))
enddo; enddo; enddo
call utilities_FFTvectorForward()
call utilities_fourierVectorDivergence() !< calculate damage divergence in fourier field
call utilities_FFTscalarBackward()
cell = 0_pInt
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
call thermal_conduction_getSourceAndItsTangent(Tdot, dTdot_dT, temperature_current(i,j,k), 1, cell)
scalarField_real(i,j,k) = params%timeinc*scalarField_real(i,j,k) + &
params%timeinc*Tdot + &
thermal_conduction_getMassDensity (1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)*(temperature_lastInc(i,j,k) - &
temperature_current(i,j,k)) + &
mobility_ref*temperature_current(i,j,k)
enddo; enddo; enddo
!--------------------------------------------------------------------------------------------------
! convolution of damage field with green operator
call utilities_FFTscalarForward()
call utilities_fourierGreenConvolution(D_ref, mobility_ref, params%timeinc)
call utilities_FFTscalarBackward()
!--------------------------------------------------------------------------------------------------
! constructing residual
f_scal = temperature_current - scalarField_real(1:grid(1),1:grid(2),1:grid3)
end subroutine spectral_thermal_formResidual
!--------------------------------------------------------------------------------------------------
!> @brief forwarding routine
!--------------------------------------------------------------------------------------------------
subroutine spectral_thermal_forward()
use mesh, only: &
grid, &
grid3
use spectral_utilities, only: &
cutBack, &
wgt
use thermal_conduction, only: &
thermal_conduction_putTemperatureAndItsRate, &
thermal_conduction_getConductivity33, &
thermal_conduction_getMassDensity, &
thermal_conduction_getSpecificHeat
implicit none
integer(pInt) :: i, j, k, cell
DM :: dm_local
PetscScalar, dimension(:,:,:), pointer :: x_scal
PetscErrorCode :: ierr
if (cutBack) then
temperature_current = temperature_lastInc
temperature_stagInc = temperature_lastInc
!--------------------------------------------------------------------------------------------------
! reverting thermal field state
cell = 0_pInt !< material point = 0
call SNESGetDM(thermal_snes,dm_local,ierr); CHKERRQ(ierr)
call DMDAVecGetArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr) !< get the data out of PETSc to work with
x_scal(xstart:xend,ystart:yend,zstart:zend) = temperature_current
call DMDAVecRestoreArrayF90(dm_local,solution,x_scal,ierr); CHKERRQ(ierr)
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt !< material point increase
call thermal_conduction_putTemperatureAndItsRate(temperature_current(i,j,k), &
(temperature_current(i,j,k) - &
temperature_lastInc(i,j,k))/params%timeinc, &
1,cell)
enddo; enddo; enddo
else
!--------------------------------------------------------------------------------------------------
! update rate and forward last inc
temperature_lastInc = temperature_current
cell = 0_pInt
D_ref = 0.0_pReal
mobility_ref = 0.0_pReal
do k = 1_pInt, grid3; do j = 1_pInt, grid(2); do i = 1_pInt,grid(1)
cell = cell + 1_pInt
D_ref = D_ref + thermal_conduction_getConductivity33(1,cell)
mobility_ref = mobility_ref + thermal_conduction_getMassDensity(1,cell)* &
thermal_conduction_getSpecificHeat(1,cell)
enddo; enddo; enddo
D_ref = D_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,D_ref,9,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
mobility_ref = mobility_ref*wgt
call MPI_Allreduce(MPI_IN_PLACE,mobility_ref,1,MPI_DOUBLE,MPI_SUM,PETSC_COMM_WORLD,ierr)
endif
end subroutine spectral_thermal_forward
end module spectral_thermal