2544 lines
146 KiB
Fortran
2544 lines
146 KiB
Fortran
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
|
||
!> @brief material subroutine incoprorating dislocation and twinning physics
|
||
!> @details to be done
|
||
!--------------------------------------------------------------------------------------------------
|
||
module plastic_dislotwin
|
||
use prec, only: &
|
||
pReal, &
|
||
pInt
|
||
|
||
implicit none
|
||
private
|
||
integer(pInt), dimension(:), allocatable, public, protected :: &
|
||
plastic_dislotwin_sizePostResults !< cumulative size of post results
|
||
|
||
integer(pInt), dimension(:,:), allocatable, target, public :: &
|
||
plastic_dislotwin_sizePostResult !< size of each post result output
|
||
|
||
character(len=64), dimension(:,:), allocatable, target, public :: &
|
||
plastic_dislotwin_output !< name of each post result output
|
||
|
||
real(pReal), parameter, private :: &
|
||
kB = 1.38e-23_pReal !< Boltzmann constant in J/Kelvin
|
||
|
||
integer(pInt), dimension(:), allocatable, target, public :: &
|
||
plastic_dislotwin_Noutput !< number of outputs per instance of this plasticity
|
||
|
||
integer(pInt), dimension(:), allocatable, public, protected :: &
|
||
plastic_dislotwin_totalNslip, & !< total number of active slip systems for each instance
|
||
plastic_dislotwin_totalNtwin, & !< total number of active twin systems for each instance
|
||
plastic_dislotwin_totalNtrans !< number of active transformation systems
|
||
|
||
integer(pInt), dimension(:,:), allocatable, private :: &
|
||
plastic_dislotwin_Nslip, & !< number of active slip systems for each family and instance
|
||
plastic_dislotwin_Ntwin, & !< number of active twin systems for each family and instance
|
||
plastic_dislotwin_Ntrans !< number of active transformation systems for each family and instance
|
||
|
||
real(pReal), dimension(:), allocatable, private :: &
|
||
plastic_dislotwin_CAtomicVolume, & !< atomic volume in Bugers vector unit
|
||
plastic_dislotwin_D0, & !< prefactor for self-diffusion coefficient
|
||
plastic_dislotwin_Qsd, & !< activation energy for dislocation climb
|
||
plastic_dislotwin_GrainSize, & !< grain size
|
||
plastic_dislotwin_pShearBand, & !< p-exponent in shearband velocity
|
||
plastic_dislotwin_qShearBand, & !< q-exponent in shearband velocity
|
||
plastic_dislotwin_MaxTwinFraction, & !< maximum allowed total twin volume fraction
|
||
plastic_dislotwin_CEdgeDipMinDistance, & !<
|
||
plastic_dislotwin_Cmfptwin, & !<
|
||
plastic_dislotwin_Cthresholdtwin, & !<
|
||
plastic_dislotwin_SolidSolutionStrength, & !< Strength due to elements in solid solution
|
||
plastic_dislotwin_L0_twin, & !< Length of twin nuclei in Burgers vectors
|
||
plastic_dislotwin_L0_trans, & !< Length of trans nuclei in Burgers vectors
|
||
plastic_dislotwin_xc_twin, & !< critical distance for formation of twin nucleus
|
||
plastic_dislotwin_xc_trans, & !< critical distance for formation of trans nucleus
|
||
plastic_dislotwin_VcrossSlip, & !< cross slip volume
|
||
plastic_dislotwin_sbResistance, & !< value for shearband resistance (might become an internal state variable at some point)
|
||
plastic_dislotwin_sbVelocity, & !< value for shearband velocity_0
|
||
plastic_dislotwin_sbQedge, & !< value for shearband systems Qedge
|
||
plastic_dislotwin_SFE_0K, & !< stacking fault energy at zero K
|
||
plastic_dislotwin_dSFE_dT, & !< temperature dependance of stacking fault energy
|
||
plastic_dislotwin_dipoleFormationFactor, & !< scaling factor for dipole formation: 0: off, 1: on. other values not useful
|
||
plastic_dislotwin_aTolRho, & !< absolute tolerance for integration of dislocation density
|
||
plastic_dislotwin_aTolTwinFrac, & !< absolute tolerance for integration of twin volume fraction
|
||
plastic_dislotwin_aTolTransFrac, & !< absolute tolerance for integration of trans volume fraction
|
||
plastic_dislotwin_deltaG, & !< Free energy difference between austensite and martensite
|
||
plastic_dislotwin_Cmfptrans, & !<
|
||
plastic_dislotwin_Cthresholdtrans, & !<
|
||
plastic_dislotwin_transStackHeight !< Stack height of hex nucleus
|
||
|
||
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_Ctwin66 !< twin elasticity matrix in Mandel notation for each instance
|
||
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_Ctwin3333 !< twin elasticity matrix for each instance
|
||
real(pReal), dimension(:,:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_Ctrans66 !< trans elasticity matrix in Mandel notation for each instance
|
||
real(pReal), dimension(:,:,:,:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_Ctrans3333 !< trans elasticity matrix for each instance
|
||
real(pReal), dimension(:,:), allocatable, private :: &
|
||
plastic_dislotwin_rhoEdge0, & !< initial edge dislocation density per slip system for each family and instance
|
||
plastic_dislotwin_rhoEdgeDip0, & !< initial edge dipole density per slip system for each family and instance
|
||
plastic_dislotwin_burgersPerSlipFamily, & !< absolute length of burgers vector [m] for each slip family and instance
|
||
plastic_dislotwin_burgersPerSlipSystem, & !< absolute length of burgers vector [m] for each slip system and instance
|
||
plastic_dislotwin_burgersPerTwinFamily, & !< absolute length of burgers vector [m] for each twin family and instance
|
||
plastic_dislotwin_burgersPerTwinSystem, & !< absolute length of burgers vector [m] for each twin system and instance
|
||
plastic_dislotwin_burgersPerTransFamily, & !< absolute length of burgers vector [m] for each trans family and instance
|
||
plastic_dislotwin_burgersPerTransSystem, & !< absolute length of burgers vector [m] for each trans system and instance
|
||
plastic_dislotwin_QedgePerSlipFamily, & !< activation energy for glide [J] for each slip family and instance
|
||
plastic_dislotwin_QedgePerSlipSystem, & !< activation energy for glide [J] for each slip system and instance
|
||
plastic_dislotwin_v0PerSlipFamily, & !< dislocation velocity prefactor [m/s] for each family and instance
|
||
plastic_dislotwin_v0PerSlipSystem, & !< dislocation velocity prefactor [m/s] for each slip system and instance
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily, & !< Peierls stress [Pa] for each family and instance
|
||
plastic_dislotwin_Ndot0PerTwinFamily, & !< twin nucleation rate [1/m³s] for each twin family and instance
|
||
plastic_dislotwin_Ndot0PerTwinSystem, & !< twin nucleation rate [1/m³s] for each twin system and instance
|
||
plastic_dislotwin_Ndot0PerTransFamily, & !< trans nucleation rate [1/m³s] for each trans family and instance
|
||
plastic_dislotwin_Ndot0PerTransSystem, & !< trans nucleation rate [1/m³s] for each trans system and instance
|
||
plastic_dislotwin_tau_r_twin, & !< stress to bring partial close together for each twin system and instance
|
||
plastic_dislotwin_tau_r_trans, & !< stress to bring partial close together for each trans system and instance
|
||
plastic_dislotwin_twinsizePerTwinFamily, & !< twin thickness [m] for each twin family and instance
|
||
plastic_dislotwin_twinsizePerTwinSystem, & !< twin thickness [m] for each twin system and instance
|
||
plastic_dislotwin_CLambdaSlipPerSlipFamily, & !< Adj. parameter for distance between 2 forest dislocations for each slip family and instance
|
||
plastic_dislotwin_CLambdaSlipPerSlipSystem, & !< Adj. parameter for distance between 2 forest dislocations for each slip system and instance
|
||
plastic_dislotwin_lamellarsizePerTransFamily, & !< martensite lamellar thickness [m] for each trans family and instance
|
||
plastic_dislotwin_lamellarsizePerTransSystem, & !< martensite lamellar thickness [m] for each trans system and instance
|
||
plastic_dislotwin_interaction_SlipSlip, & !< coefficients for slip-slip interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_SlipTwin, & !< coefficients for slip-twin interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_TwinSlip, & !< coefficients for twin-slip interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_TwinTwin, & !< coefficients for twin-twin interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_SlipTrans, & !< coefficients for slip-trans interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_TransSlip, & !< coefficients for trans-slip interaction for each interaction type and instance
|
||
plastic_dislotwin_interaction_TransTrans, & !< coefficients for trans-trans interaction for each interaction type and instance
|
||
plastic_dislotwin_pPerSlipFamily, & !< p-exponent in glide velocity
|
||
plastic_dislotwin_qPerSlipFamily, & !< q-exponent in glide velocity
|
||
plastic_dislotwin_rPerTwinFamily, & !< r-exponent in twin nucleation rate
|
||
plastic_dislotwin_sPerTransFamily !< s-exponent in trans nucleation rate
|
||
real(pReal), dimension(:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_interactionMatrix_SlipSlip, & !< interaction matrix of the different slip systems for each instance
|
||
plastic_dislotwin_interactionMatrix_SlipTwin, & !< interaction matrix of slip systems with twin systems for each instance
|
||
plastic_dislotwin_interactionMatrix_TwinSlip, & !< interaction matrix of twin systems with slip systems for each instance
|
||
plastic_dislotwin_interactionMatrix_TwinTwin, & !< interaction matrix of the different twin systems for each instance
|
||
plastic_dislotwin_interactionMatrix_SlipTrans, & !< interaction matrix of slip systems with trans systems for each instance
|
||
plastic_dislotwin_interactionMatrix_TransSlip, & !< interaction matrix of trans systems with slip systems for each instance
|
||
plastic_dislotwin_interactionMatrix_TransTrans, & !< interaction matrix of the different trans systems for each instance
|
||
plastic_dislotwin_forestProjectionEdge, & !< matrix of forest projections of edge dislocations for each instance
|
||
plastic_dislotwin_projectionMatrix_Trans !< matrix for projection of slip system shear on fault band (twin) systems for each instance
|
||
|
||
real(pReal), dimension(:,:,:,:,:), allocatable, private :: &
|
||
plastic_dislotwin_sbSv
|
||
|
||
enum, bind(c)
|
||
enumerator :: undefined_ID, &
|
||
edge_density_ID, &
|
||
dipole_density_ID, &
|
||
shear_rate_slip_ID, &
|
||
accumulated_shear_slip_ID, &
|
||
mfp_slip_ID, &
|
||
resolved_stress_slip_ID, &
|
||
threshold_stress_slip_ID, &
|
||
edge_dipole_distance_ID, &
|
||
stress_exponent_ID, &
|
||
twin_fraction_ID, &
|
||
shear_rate_twin_ID, &
|
||
accumulated_shear_twin_ID, &
|
||
mfp_twin_ID, &
|
||
resolved_stress_twin_ID, &
|
||
threshold_stress_twin_ID, &
|
||
resolved_stress_shearband_ID, &
|
||
shear_rate_shearband_ID, &
|
||
sb_eigenvalues_ID, &
|
||
sb_eigenvectors_ID, &
|
||
stress_trans_fraction_ID, &
|
||
strain_trans_fraction_ID, &
|
||
trans_fraction_ID
|
||
end enum
|
||
integer(kind(undefined_ID)), dimension(:,:), allocatable, private :: &
|
||
plastic_dislotwin_outputID !< ID of each post result output
|
||
type, private :: tDislotwinState
|
||
real(pReal), pointer, dimension(:,:) :: &
|
||
rhoEdge, &
|
||
rhoEdgeDip, &
|
||
accshear_slip, &
|
||
twinFraction, &
|
||
accshear_twin, &
|
||
stressTransFraction, &
|
||
strainTransFraction , &
|
||
invLambdaSlip, &
|
||
invLambdaSlipTwin, &
|
||
invLambdaTwin, &
|
||
invLambdaSlipTrans, &
|
||
invLambdaTrans, &
|
||
mfp_slip, &
|
||
mfp_twin, &
|
||
mfp_trans, &
|
||
threshold_stress_slip, &
|
||
threshold_stress_twin, &
|
||
threshold_stress_trans, &
|
||
twinVolume, &
|
||
martensiteVolume
|
||
end type
|
||
type(tDislotwinState), allocatable, dimension(:), private :: &
|
||
state, &
|
||
state0, &
|
||
dotState
|
||
|
||
public :: &
|
||
plastic_dislotwin_init, &
|
||
plastic_dislotwin_homogenizedC, &
|
||
plastic_dislotwin_microstructure, &
|
||
plastic_dislotwin_LpAndItsTangent, &
|
||
plastic_dislotwin_dotState, &
|
||
plastic_dislotwin_postResults
|
||
private :: &
|
||
plastic_dislotwin_stateInit, &
|
||
plastic_dislotwin_aTolState
|
||
|
||
contains
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief module initialization
|
||
!> @details reads in material parameters, allocates arrays, and does sanity checks
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_init(fileUnit)
|
||
#if defined(__GFORTRAN__) || __INTEL_COMPILER >= 1800
|
||
use, intrinsic :: iso_fortran_env, only: &
|
||
compiler_version, &
|
||
compiler_options
|
||
#endif
|
||
use prec, only: &
|
||
dEq0, &
|
||
dNeq0, &
|
||
dNeq
|
||
use debug, only: &
|
||
debug_level,&
|
||
debug_constitutive,&
|
||
debug_levelBasic
|
||
use math, only: &
|
||
math_Mandel3333to66, &
|
||
math_Voigt66to3333, &
|
||
math_mul3x3
|
||
use mesh, only: &
|
||
mesh_maxNips, &
|
||
mesh_NcpElems
|
||
use IO, only: &
|
||
IO_read, &
|
||
IO_lc, &
|
||
IO_getTag, &
|
||
IO_isBlank, &
|
||
IO_stringPos, &
|
||
IO_stringValue, &
|
||
IO_floatValue, &
|
||
IO_intValue, &
|
||
IO_warning, &
|
||
IO_error, &
|
||
IO_timeStamp, &
|
||
IO_EOF
|
||
use material, only: &
|
||
homogenization_maxNgrains, &
|
||
phase_plasticity, &
|
||
phase_plasticityInstance, &
|
||
phase_Noutput, &
|
||
PLASTICITY_DISLOTWIN_label, &
|
||
PLASTICITY_DISLOTWIN_ID, &
|
||
material_phase, &
|
||
plasticState, &
|
||
MATERIAL_partPhase
|
||
use lattice
|
||
use numerics,only: &
|
||
numerics_integrator
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: fileUnit
|
||
|
||
integer(pInt), allocatable, dimension(:) :: chunkPos
|
||
integer(pInt) :: maxNinstance,mySize=0_pInt,phase,maxTotalNslip,maxTotalNtwin,maxTotalNtrans,&
|
||
f,instance,j,k,l,m,n,o,p,q,r,s,ns,nt,nr, &
|
||
Nchunks_SlipSlip = 0_pInt, Nchunks_SlipTwin = 0_pInt, &
|
||
Nchunks_TwinSlip = 0_pInt, Nchunks_TwinTwin = 0_pInt, &
|
||
Nchunks_SlipTrans = 0_pInt, Nchunks_TransSlip = 0_pInt, Nchunks_TransTrans = 0_pInt, &
|
||
Nchunks_SlipFamilies = 0_pInt, Nchunks_TwinFamilies = 0_pInt, Nchunks_TransFamilies = 0_pInt, &
|
||
offset_slip, index_myFamily, index_otherFamily, &
|
||
startIndex, endIndex
|
||
integer(pInt) :: sizeState, sizeDotState, sizeDeltaState
|
||
integer(pInt) :: NofMyPhase
|
||
character(len=65536) :: &
|
||
tag = '', &
|
||
line = ''
|
||
real(pReal), dimension(:), allocatable :: tempPerSlip, tempPerTwin, tempPerTrans
|
||
|
||
write(6,'(/,a)') ' <<<+- constitutive_'//PLASTICITY_DISLOTWIN_label//' init -+>>>'
|
||
write(6,'(/,a)') ' A. Ma and F. Roters, Acta Materialia, 52(12):3603–3612, 2004'
|
||
write(6,'(/,a)') ' https://doi.org/10.1016/j.actamat.2004.04.012'
|
||
write(6,'(/,a)') ' F.Roters et al., Computational Materials Science, 39:91–95, 2007'
|
||
write(6,'(/,a)') ' https://doi.org/10.1016/j.commatsci.2006.04.014'
|
||
write(6,'(/,a)') ' Wong et al., Acta Materialia, 118:140–151, 2016'
|
||
write(6,'(/,a)') ' https://doi.org/10.1016/j.actamat.2016.07.032'
|
||
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
|
||
#include "compilation_info.f90"
|
||
|
||
maxNinstance = int(count(phase_plasticity == PLASTICITY_DISLOTWIN_ID),pInt)
|
||
if (maxNinstance == 0_pInt) return
|
||
|
||
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) &
|
||
write(6,'(a16,1x,i5,/)') '# instances:',maxNinstance
|
||
|
||
allocate(plastic_dislotwin_sizePostResults(maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_sizePostResult(maxval(phase_Noutput),maxNinstance),source=0_pInt)
|
||
allocate(plastic_dislotwin_output(maxval(phase_Noutput),maxNinstance))
|
||
plastic_dislotwin_output = ''
|
||
allocate(plastic_dislotwin_outputID(maxval(phase_Noutput),maxNinstance), source=undefined_ID)
|
||
allocate(plastic_dislotwin_Noutput(maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_Nslip(lattice_maxNslipFamily,maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_Ntwin(lattice_maxNtwinFamily,maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_Ntrans(lattice_maxNtransFamily,maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_totalNslip(maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_totalNtwin(maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_totalNtrans(maxNinstance), source=0_pInt)
|
||
allocate(plastic_dislotwin_CAtomicVolume(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_D0(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Qsd(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_GrainSize(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_pShearBand(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_qShearBand(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_MaxTwinFraction(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_CEdgeDipMinDistance(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Cmfptwin(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Cthresholdtwin(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_SolidSolutionStrength(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_L0_twin(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_L0_trans(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_xc_twin(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_xc_trans(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_VcrossSlip(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_aTolRho(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_aTolTwinFrac(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_aTolTransFrac(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_sbResistance(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_sbVelocity(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_sbQedge(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_SFE_0K(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_dSFE_dT(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_dipoleFormationFactor(maxNinstance), source=1.0_pReal) !should be on by default
|
||
allocate(plastic_dislotwin_deltaG(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Cmfptrans(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Cthresholdtrans(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_transStackHeight(maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_rhoEdge0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_rhoEdgeDip0(lattice_maxNslipFamily,maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_burgersPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_burgersPerTwinFamily(lattice_maxNtwinFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_burgersPerTransFamily(lattice_maxNtransFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_QedgePerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_v0PerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_tau_peierlsPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_pPerSlipFamily(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal)
|
||
allocate(plastic_dislotwin_qPerSlipFamily(lattice_maxNslipFamily,maxNinstance),source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ndot0PerTwinFamily(lattice_maxNtwinFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ndot0PerTransFamily(lattice_maxNtransFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_twinsizePerTwinFamily(lattice_maxNtwinFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_CLambdaSlipPerSlipFamily(lattice_maxNslipFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_rPerTwinFamily(lattice_maxNtwinFamily,maxNinstance),source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_SlipTrans(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_TransSlip(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interaction_TransTrans(lattice_maxNinteraction,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_sbSv(6,6,homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_lamellarsizePerTransFamily(lattice_maxNtransFamily,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_sPerTransFamily(lattice_maxNtransFamily,maxNinstance),source=0.0_pReal)
|
||
|
||
|
||
rewind(fileUnit)
|
||
phase = 0_pInt
|
||
do while (trim(line) /= IO_EOF .and. IO_lc(IO_getTag(line,'<','>')) /= MATERIAL_partPhase) ! wind forward to <phase>
|
||
line = IO_read(fileUnit)
|
||
enddo
|
||
|
||
parsingFile: do while (trim(line) /= IO_EOF) ! read through sections of phase part
|
||
line = IO_read(fileUnit)
|
||
if (IO_isBlank(line)) cycle ! skip empty lines
|
||
if (IO_getTag(line,'<','>') /= '') then ! stop at next part
|
||
line = IO_read(fileUnit, .true.) ! reset IO_read
|
||
exit
|
||
endif
|
||
if (IO_getTag(line,'[',']') /= '') then ! next phase section
|
||
phase = phase + 1_pInt ! advance phase section counter
|
||
if (phase_plasticity(phase) == PLASTICITY_DISLOTWIN_ID) then
|
||
Nchunks_SlipFamilies = count(lattice_NslipSystem(:,phase) > 0_pInt)
|
||
Nchunks_TwinFamilies = count(lattice_NtwinSystem(:,phase) > 0_pInt)
|
||
Nchunks_TransFamilies = count(lattice_NtransSystem(:,phase)> 0_pInt)
|
||
Nchunks_SlipSlip = maxval(lattice_interactionSlipSlip(:,:,phase))
|
||
Nchunks_SlipTwin = maxval(lattice_interactionSlipTwin(:,:,phase))
|
||
Nchunks_TwinSlip = maxval(lattice_interactionTwinSlip(:,:,phase))
|
||
Nchunks_TwinTwin = maxval(lattice_interactionTwinTwin(:,:,phase))
|
||
Nchunks_SlipTrans = maxval(lattice_interactionSlipTrans(:,:,phase))
|
||
Nchunks_TransSlip = maxval(lattice_interactionTransSlip(:,:,phase))
|
||
Nchunks_TransTrans = maxval(lattice_interactionTransTrans(:,:,phase))
|
||
if(allocated(tempPerSlip)) deallocate(tempPerSlip)
|
||
if(allocated(tempPerTwin)) deallocate(tempPerTwin)
|
||
if(allocated(tempPerTrans)) deallocate(tempPerTrans)
|
||
allocate(tempPerSlip(Nchunks_SlipFamilies))
|
||
allocate(tempPerTwin(Nchunks_TwinFamilies))
|
||
allocate(tempPerTrans(Nchunks_TransFamilies))
|
||
endif
|
||
cycle ! skip to next line
|
||
endif
|
||
|
||
if (phase > 0_pInt ) then; if (phase_plasticity(phase) == PLASTICITY_DISLOTWIN_ID) then ! do not short-circuit here (.and. with next if statemen). It's not safe in Fortran
|
||
instance = phase_plasticityInstance(phase) ! which instance of my plasticity is present phase
|
||
chunkPos = IO_stringPos(line)
|
||
tag = IO_lc(IO_stringValue(line,chunkPos,1_pInt)) ! extract key
|
||
select case(tag)
|
||
case ('(output)')
|
||
select case(IO_lc(IO_stringValue(line,chunkPos,2_pInt)))
|
||
case ('edge_density')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = edge_density_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('dipole_density')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = dipole_density_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('shear_rate_slip','shearrate_slip')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = shear_rate_slip_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('accumulated_shear_slip')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = accumulated_shear_slip_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('mfp_slip')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = mfp_slip_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('resolved_stress_slip')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = resolved_stress_slip_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('threshold_stress_slip')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = threshold_stress_slip_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('edge_dipole_distance')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = edge_dipole_distance_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('stress_exponent')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = stress_exponent_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('twin_fraction')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = twin_fraction_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('shear_rate_twin','shearrate_twin')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = shear_rate_twin_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('accumulated_shear_twin')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = accumulated_shear_twin_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('mfp_twin')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = mfp_twin_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('resolved_stress_twin')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = resolved_stress_twin_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('threshold_stress_twin')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = threshold_stress_twin_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('resolved_stress_shearband')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = resolved_stress_shearband_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('shear_rate_shearband','shearrate_shearband')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = shear_rate_shearband_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('sb_eigenvalues')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = sb_eigenvalues_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('sb_eigenvectors')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = sb_eigenvectors_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('stress_trans_fraction')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = stress_trans_fraction_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('strain_trans_fraction')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = strain_trans_fraction_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
case ('trans_fraction','total_trans_fraction')
|
||
plastic_dislotwin_Noutput(instance) = plastic_dislotwin_Noutput(instance) + 1_pInt
|
||
plastic_dislotwin_outputID(plastic_dislotwin_Noutput(instance),instance) = trans_fraction_ID
|
||
plastic_dislotwin_output(plastic_dislotwin_Noutput(instance),instance) = &
|
||
IO_lc(IO_stringValue(line,chunkPos,2_pInt))
|
||
end select
|
||
!--------------------------------------------------------------------------------------------------
|
||
! parameters depending on number of slip system families
|
||
case ('nslip')
|
||
if (chunkPos(1) < Nchunks_SlipFamilies + 1_pInt) &
|
||
call IO_warning(50_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (chunkPos(1) > Nchunks_SlipFamilies + 1_pInt) &
|
||
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
Nchunks_SlipFamilies = chunkPos(1) - 1_pInt
|
||
do j = 1_pInt, Nchunks_SlipFamilies
|
||
plastic_dislotwin_Nslip(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('rhoedge0','rhoedgedip0','slipburgers','qedge','v0','clambdaslip','tau_peierls','p_slip','q_slip')
|
||
do j = 1_pInt, Nchunks_SlipFamilies
|
||
tempPerSlip(j) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
select case(tag)
|
||
case ('rhoedge0')
|
||
plastic_dislotwin_rhoEdge0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('rhoedgedip0')
|
||
plastic_dislotwin_rhoEdgeDip0(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('slipburgers')
|
||
plastic_dislotwin_burgersPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('qedge')
|
||
plastic_dislotwin_QedgePerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('v0')
|
||
plastic_dislotwin_v0PerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('clambdaslip')
|
||
plastic_dislotwin_CLambdaSlipPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('tau_peierls')
|
||
if (lattice_structure(phase) /= LATTICE_bcc_ID) &
|
||
call IO_warning(42_pInt,ext_msg=trim(tag)//' for non-bcc ('//PLASTICITY_DISLOTWIN_label//')')
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('p_slip')
|
||
plastic_dislotwin_pPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
case ('q_slip')
|
||
plastic_dislotwin_qPerSlipFamily(1:Nchunks_SlipFamilies,instance) = tempPerSlip(1:Nchunks_SlipFamilies)
|
||
end select
|
||
!--------------------------------------------------------------------------------------------------
|
||
! parameters depending on slip number of twin families
|
||
case ('ntwin')
|
||
if (chunkPos(1) < Nchunks_TwinFamilies + 1_pInt) &
|
||
call IO_warning(51_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (chunkPos(1) > Nchunks_TwinFamilies + 1_pInt) &
|
||
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
Nchunks_TwinFamilies = chunkPos(1) - 1_pInt
|
||
do j = 1_pInt, Nchunks_TwinFamilies
|
||
plastic_dislotwin_Ntwin(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('ndot0_twin','twinsize','twinburgers','r_twin')
|
||
do j = 1_pInt, Nchunks_TwinFamilies
|
||
tempPerTwin(j) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
select case(tag)
|
||
case ('ndot0_twin')
|
||
if (lattice_structure(phase) == LATTICE_fcc_ID) &
|
||
call IO_warning(42_pInt,ext_msg=trim(tag)//' for fcc ('//PLASTICITY_DISLOTWIN_label//')')
|
||
plastic_dislotwin_Ndot0PerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
||
case ('twinsize')
|
||
plastic_dislotwin_twinsizePerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
||
case ('twinburgers')
|
||
plastic_dislotwin_burgersPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
||
case ('r_twin')
|
||
plastic_dislotwin_rPerTwinFamily(1:Nchunks_TwinFamilies,instance) = tempPerTwin(1:Nchunks_TwinFamilies)
|
||
end select
|
||
!--------------------------------------------------------------------------------------------------
|
||
! parameters depending on number of transformation system families
|
||
case ('ntrans')
|
||
if (chunkPos(1) < Nchunks_TransFamilies + 1_pInt) &
|
||
call IO_warning(53_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (chunkPos(1) > Nchunks_TransFamilies + 1_pInt) &
|
||
call IO_error(150_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
Nchunks_TransFamilies = chunkPos(1) - 1_pInt
|
||
do j = 1_pInt, Nchunks_TransFamilies
|
||
plastic_dislotwin_Ntrans(j,instance) = IO_intValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('ndot0_trans','lamellarsize','transburgers','s_trans')
|
||
do j = 1_pInt, Nchunks_TransFamilies
|
||
tempPerTrans(j) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
select case(tag)
|
||
case ('ndot0_trans')
|
||
if (lattice_structure(phase) == LATTICE_fcc_ID) &
|
||
call IO_warning(42_pInt,ext_msg=trim(tag)//' for fcc ('//PLASTICITY_DISLOTWIN_label//')')
|
||
plastic_dislotwin_Ndot0PerTransFamily(1:Nchunks_TransFamilies,instance) = tempPerTrans(1:Nchunks_TransFamilies)
|
||
case ('lamellarsize')
|
||
plastic_dislotwin_lamellarsizePerTransFamily(1:Nchunks_TransFamilies,instance) = tempPerTrans(1:Nchunks_TransFamilies)
|
||
case ('transburgers')
|
||
plastic_dislotwin_burgersPerTransFamily(1:Nchunks_TransFamilies,instance) = tempPerTrans(1:Nchunks_TransFamilies)
|
||
case ('s_trans')
|
||
plastic_dislotwin_sPerTransFamily(1:Nchunks_TransFamilies,instance) = tempPerTrans(1:Nchunks_TransFamilies)
|
||
end select
|
||
!--------------------------------------------------------------------------------------------------
|
||
! parameters depending on number of interactions
|
||
case ('interaction_slipslip','interactionslipslip')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_SlipSlip) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_SlipSlip
|
||
plastic_dislotwin_interaction_SlipSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_sliptwin','interactionsliptwin')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_SlipTwin) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_SlipTwin
|
||
plastic_dislotwin_interaction_SlipTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_twinslip','interactiontwinslip')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_TwinSlip) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_TwinSlip
|
||
plastic_dislotwin_interaction_TwinSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_twintwin','interactiontwintwin')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_TwinTwin) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_TwinTwin
|
||
plastic_dislotwin_interaction_TwinTwin(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_sliptrans','interactionsliptrans')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_SlipTrans) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_SlipTrans
|
||
plastic_dislotwin_interaction_SlipTrans(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_transslip','interactiontransslip')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_TransSlip) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_TransSlip
|
||
plastic_dislotwin_interaction_TransSlip(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
case ('interaction_transtrans','interactiontranstrans')
|
||
if (chunkPos(1) < 1_pInt + Nchunks_TransTrans) &
|
||
call IO_warning(52_pInt,ext_msg=trim(tag)//' ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do j = 1_pInt, Nchunks_TransTrans
|
||
plastic_dislotwin_interaction_TransTrans(j,instance) = IO_floatValue(line,chunkPos,1_pInt+j)
|
||
enddo
|
||
!--------------------------------------------------------------------------------------------------
|
||
! parameters independent of number of slip/twin/trans systems
|
||
case ('grainsize')
|
||
plastic_dislotwin_GrainSize(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('maxtwinfraction')
|
||
plastic_dislotwin_MaxTwinFraction(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('p_shearband')
|
||
plastic_dislotwin_pShearBand(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('q_shearband')
|
||
plastic_dislotwin_qShearBand(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('d0')
|
||
plastic_dislotwin_D0(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('qsd')
|
||
plastic_dislotwin_Qsd(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('atol_rho')
|
||
plastic_dislotwin_aTolRho(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('atol_twinfrac')
|
||
plastic_dislotwin_aTolTwinFrac(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('atol_transfrac')
|
||
plastic_dislotwin_aTolTransFrac(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('cmfptwin')
|
||
plastic_dislotwin_Cmfptwin(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('cthresholdtwin')
|
||
plastic_dislotwin_Cthresholdtwin(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('solidsolutionstrength')
|
||
plastic_dislotwin_SolidSolutionStrength(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('l0_twin')
|
||
plastic_dislotwin_L0_twin(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('l0_trans')
|
||
plastic_dislotwin_L0_trans(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('xc_twin')
|
||
plastic_dislotwin_xc_twin(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('xc_trans')
|
||
plastic_dislotwin_xc_trans(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('vcrossslip')
|
||
plastic_dislotwin_VcrossSlip(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('cedgedipmindistance')
|
||
plastic_dislotwin_CEdgeDipMinDistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('catomicvolume')
|
||
plastic_dislotwin_CAtomicVolume(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('sfe_0k')
|
||
plastic_dislotwin_SFE_0K(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('dsfe_dt')
|
||
plastic_dislotwin_dSFE_dT(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('dipoleformationfactor')
|
||
plastic_dislotwin_dipoleFormationFactor(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('shearbandresistance')
|
||
plastic_dislotwin_sbResistance(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('shearbandvelocity')
|
||
plastic_dislotwin_sbVelocity(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('qedgepersbsystem')
|
||
plastic_dislotwin_sbQedge(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('deltag')
|
||
plastic_dislotwin_deltaG(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('cmfptrans')
|
||
plastic_dislotwin_Cmfptrans(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('cthresholdtrans')
|
||
plastic_dislotwin_Cthresholdtrans(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
case ('transstackheight')
|
||
plastic_dislotwin_transStackHeight(instance) = IO_floatValue(line,chunkPos,2_pInt)
|
||
end select
|
||
endif; endif
|
||
enddo parsingFile
|
||
|
||
sanityChecks: do phase = 1_pInt, size(phase_plasticity)
|
||
myPhase: if (phase_plasticity(phase) == PLASTICITY_dislotwin_ID) then
|
||
instance = phase_plasticityInstance(phase)
|
||
|
||
if (sum(plastic_dislotwin_Nslip(:,instance)) < 0_pInt) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='Nslip ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (sum(plastic_dislotwin_Ntwin(:,instance)) < 0_pInt) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='Ntwin ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (sum(plastic_dislotwin_Ntrans(:,instance)) < 0_pInt) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='Ntrans ('//PLASTICITY_DISLOTWIN_label//')')
|
||
do f = 1_pInt,lattice_maxNslipFamily
|
||
if (plastic_dislotwin_Nslip(f,instance) > 0_pInt) then
|
||
if (plastic_dislotwin_rhoEdge0(f,instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='rhoEdge0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_rhoEdgeDip0(f,instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='rhoEdgeDip0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_burgersPerSlipFamily(f,instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='slipBurgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_v0PerSlipFamily(f,instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='v0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='tau_peierls ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
enddo
|
||
do f = 1_pInt,lattice_maxNtwinFamily
|
||
if (plastic_dislotwin_Ntwin(f,instance) > 0_pInt) then
|
||
if (plastic_dislotwin_burgersPerTwinFamily(f,instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='twinburgers ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_Ndot0PerTwinFamily(f,instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='ndot0_twin ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
enddo
|
||
if (plastic_dislotwin_CAtomicVolume(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='cAtomicVolume ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_D0(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='D0 ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_Qsd(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='Qsd ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (sum(plastic_dislotwin_Ntwin(:,instance)) > 0_pInt) then
|
||
if (dEq0(plastic_dislotwin_SFE_0K(instance)) .and. &
|
||
dEq0(plastic_dislotwin_dSFE_dT(instance)) .and. &
|
||
lattice_structure(phase) == LATTICE_fcc_ID) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_aTolRho(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='aTolRho ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_aTolTwinFrac(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='aTolTwinFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
if (sum(plastic_dislotwin_Ntrans(:,instance)) > 0_pInt) then
|
||
if (dEq0(plastic_dislotwin_SFE_0K(instance)) .and. &
|
||
dEq0(plastic_dislotwin_dSFE_dT(instance)) .and. &
|
||
lattice_structure(phase) == LATTICE_fcc_ID) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='SFE0K ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_aTolTransFrac(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='aTolTransFrac ('//PLASTICITY_DISLOTWIN_label//')')
|
||
endif
|
||
if (plastic_dislotwin_sbResistance(instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='sbResistance ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_sbVelocity(instance) < 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='sbVelocity ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. &
|
||
plastic_dislotwin_pShearBand(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='pShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (dNeq0(plastic_dislotwin_dipoleFormationFactor(instance)) .and. &
|
||
dNeq(plastic_dislotwin_dipoleFormationFactor(instance), 1.0_pReal)) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='dipoleFormationFactor ('//PLASTICITY_DISLOTWIN_label//')')
|
||
if (plastic_dislotwin_sbVelocity(instance) > 0.0_pReal .and. &
|
||
plastic_dislotwin_qShearBand(instance) <= 0.0_pReal) &
|
||
call IO_error(211_pInt,el=instance,ext_msg='qShearBand ('//PLASTICITY_DISLOTWIN_label//')')
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! Determine total number of active slip or twin systems
|
||
plastic_dislotwin_Nslip(:,instance) = min(lattice_NslipSystem(:,phase),plastic_dislotwin_Nslip(:,instance))
|
||
plastic_dislotwin_Ntwin(:,instance) = min(lattice_NtwinSystem(:,phase),plastic_dislotwin_Ntwin(:,instance))
|
||
plastic_dislotwin_Ntrans(:,instance)= min(lattice_NtransSystem(:,phase),plastic_dislotwin_Ntrans(:,instance))
|
||
plastic_dislotwin_totalNslip(instance) = sum(plastic_dislotwin_Nslip(:,instance))
|
||
plastic_dislotwin_totalNtwin(instance) = sum(plastic_dislotwin_Ntwin(:,instance))
|
||
plastic_dislotwin_totalNtrans(instance) = sum(plastic_dislotwin_Ntrans(:,instance))
|
||
endif myPhase
|
||
enddo sanityChecks
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! allocation of variables whose size depends on the total number of active slip systems
|
||
maxTotalNslip = maxval(plastic_dislotwin_totalNslip)
|
||
maxTotalNtwin = maxval(plastic_dislotwin_totalNtwin)
|
||
maxTotalNtrans = maxval(plastic_dislotwin_totalNtrans)
|
||
|
||
allocate(plastic_dislotwin_burgersPerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_burgersPerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_burgersPerTransSystem(maxTotalNtrans, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_QedgePerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_v0PerSlipSystem(maxTotalNslip, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ndot0PerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ndot0PerTransSystem(maxTotalNtrans, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_tau_r_twin(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_tau_r_trans(maxTotalNtrans, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_twinsizePerTwinSystem(maxTotalNtwin, maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_CLambdaSlipPerSlipSystem(maxTotalNslip, maxNinstance),source=0.0_pReal)
|
||
allocate(plastic_dislotwin_lamellarsizePerTransSystem(maxTotalNtrans, maxNinstance),source=0.0_pReal)
|
||
|
||
allocate(plastic_dislotwin_interactionMatrix_SlipSlip(maxval(plastic_dislotwin_totalNslip),& ! slip resistance from slip activity
|
||
maxval(plastic_dislotwin_totalNslip),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_SlipTwin(maxval(plastic_dislotwin_totalNslip),& ! slip resistance from twin activity
|
||
maxval(plastic_dislotwin_totalNtwin),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_TwinSlip(maxval(plastic_dislotwin_totalNtwin),& ! twin resistance from slip activity
|
||
maxval(plastic_dislotwin_totalNslip),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_TwinTwin(maxval(plastic_dislotwin_totalNtwin),& ! twin resistance from twin activity
|
||
maxval(plastic_dislotwin_totalNtwin),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_SlipTrans(maxval(plastic_dislotwin_totalNslip),& ! slip resistance from trans activity
|
||
maxval(plastic_dislotwin_totalNtrans),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_TransSlip(maxval(plastic_dislotwin_totalNtrans),& ! trans resistance from slip activity
|
||
maxval(plastic_dislotwin_totalNslip),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_interactionMatrix_TransTrans(maxval(plastic_dislotwin_totalNtrans),& ! trans resistance from trans activity
|
||
maxval(plastic_dislotwin_totalNtrans),&
|
||
maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_forestProjectionEdge(maxTotalNslip,maxTotalNslip,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_projectionMatrix_Trans(maxTotalNtrans,maxTotalNslip,maxNinstance), &
|
||
source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ctwin66(6,6,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ctwin3333(3,3,3,3,maxTotalNtwin,maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ctrans66(6,6,maxTotalNtrans,maxNinstance), source=0.0_pReal)
|
||
allocate(plastic_dislotwin_Ctrans3333(3,3,3,3,maxTotalNtrans,maxNinstance), source=0.0_pReal)
|
||
|
||
allocate(state(maxNinstance))
|
||
allocate(state0(maxNinstance))
|
||
allocate(dotState(maxNinstance))
|
||
|
||
initializeInstances: do phase = 1_pInt, size(phase_plasticity)
|
||
myPhase2: if (phase_plasticity(phase) == PLASTICITY_dislotwin_ID) then
|
||
NofMyPhase=count(material_phase==phase)
|
||
instance = phase_plasticityInstance(phase)
|
||
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! Determine size of postResults array
|
||
outputsLoop: do o = 1_pInt,plastic_dislotwin_Noutput(instance)
|
||
select case(plastic_dislotwin_outputID(o,instance))
|
||
case(edge_density_ID, &
|
||
dipole_density_ID, &
|
||
shear_rate_slip_ID, &
|
||
accumulated_shear_slip_ID, &
|
||
mfp_slip_ID, &
|
||
resolved_stress_slip_ID, &
|
||
threshold_stress_slip_ID, &
|
||
edge_dipole_distance_ID, &
|
||
stress_exponent_ID &
|
||
)
|
||
mySize = ns
|
||
case(twin_fraction_ID, &
|
||
shear_rate_twin_ID, &
|
||
accumulated_shear_twin_ID, &
|
||
mfp_twin_ID, &
|
||
resolved_stress_twin_ID, &
|
||
threshold_stress_twin_ID &
|
||
)
|
||
mySize = nt
|
||
case(resolved_stress_shearband_ID, &
|
||
shear_rate_shearband_ID &
|
||
)
|
||
mySize = 6_pInt
|
||
case(sb_eigenvalues_ID)
|
||
mySize = 3_pInt
|
||
case(sb_eigenvectors_ID)
|
||
mySize = 9_pInt
|
||
case(stress_trans_fraction_ID, &
|
||
strain_trans_fraction_ID, &
|
||
trans_fraction_ID &
|
||
)
|
||
mySize = nr
|
||
end select
|
||
|
||
if (mySize > 0_pInt) then ! any meaningful output found
|
||
plastic_dislotwin_sizePostResult(o,instance) = mySize
|
||
plastic_dislotwin_sizePostResults(instance) = plastic_dislotwin_sizePostResults(instance) + mySize
|
||
endif
|
||
enddo outputsLoop
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! allocate state arrays
|
||
|
||
sizeDotState = int(size(['rhoEdge ','rhoEdgeDip ','accshearslip']),pInt) * ns &
|
||
+ int(size(['twinFraction','accsheartwin']),pInt) * nt &
|
||
+ int(size(['stressTransFraction','strainTransFraction']),pInt) * nr
|
||
sizeDeltaState = 0_pInt
|
||
sizeState = sizeDotState &
|
||
+ int(size(['invLambdaSlip ','invLambdaSlipTwin ','invLambdaSlipTrans',&
|
||
'meanFreePathSlip ','tauSlipThreshold ']),pInt) * ns &
|
||
+ int(size(['invLambdaTwin ','meanFreePathTwin','tauTwinThreshold',&
|
||
'twinVolume ']),pInt) * nt &
|
||
+ int(size(['invLambdaTrans ','meanFreePathTrans','tauTransThreshold', &
|
||
'martensiteVolume ']),pInt) * nr
|
||
|
||
plasticState(phase)%sizeState = sizeState
|
||
plasticState(phase)%sizeDotState = sizeDotState
|
||
plasticState(phase)%sizeDeltaState = sizeDeltaState
|
||
plasticState(phase)%sizePostResults = plastic_dislotwin_sizePostResults(instance)
|
||
plasticState(phase)%nSlip = plastic_dislotwin_totalNslip(instance)
|
||
plasticState(phase)%nTwin = plastic_dislotwin_totalNtwin(instance)
|
||
plasticState(phase)%nTrans= plastic_dislotwin_totalNtrans(instance)
|
||
allocate(plasticState(phase)%aTolState (sizeState), source=0.0_pReal)
|
||
allocate(plasticState(phase)%state0 (sizeState,NofMyPhase), source=0.0_pReal)
|
||
allocate(plasticState(phase)%partionedState0 (sizeState,NofMyPhase), source=0.0_pReal)
|
||
allocate(plasticState(phase)%subState0 (sizeState,NofMyPhase), source=0.0_pReal)
|
||
allocate(plasticState(phase)%state (sizeState,NofMyPhase), source=0.0_pReal)
|
||
|
||
allocate(plasticState(phase)%dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
||
allocate(plasticState(phase)%deltaState (sizeDeltaState,NofMyPhase), source=0.0_pReal)
|
||
if (any(numerics_integrator == 1_pInt)) then
|
||
allocate(plasticState(phase)%previousDotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
||
allocate(plasticState(phase)%previousDotState2 (sizeDotState,NofMyPhase), source=0.0_pReal)
|
||
endif
|
||
if (any(numerics_integrator == 4_pInt)) &
|
||
allocate(plasticState(phase)%RK4dotState (sizeDotState,NofMyPhase), source=0.0_pReal)
|
||
if (any(numerics_integrator == 5_pInt)) &
|
||
allocate(plasticState(phase)%RKCK45dotState (6,sizeDotState,NofMyPhase),source=0.0_pReal)
|
||
offset_slip = 2_pInt*plasticState(phase)%nslip
|
||
plasticState(phase)%slipRate => &
|
||
plasticState(phase)%dotState(offset_slip+1:offset_slip+plasticState(phase)%nslip,1:NofMyPhase)
|
||
plasticState(phase)%accumulatedSlip => &
|
||
plasticState(phase)%state (offset_slip+1:offset_slip+plasticState(phase)%nslip,1:NofMyPhase)
|
||
|
||
!* Process slip related parameters ------------------------------------------------
|
||
slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily
|
||
index_myFamily = sum(plastic_dislotwin_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list
|
||
slipSystemsLoop: do j = 1_pInt,plastic_dislotwin_Nslip(f,instance)
|
||
|
||
!* Burgers vector,
|
||
! dislocation velocity prefactor,
|
||
! mean free path prefactor,
|
||
! and minimum dipole distance
|
||
|
||
plastic_dislotwin_burgersPerSlipSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_burgersPerSlipFamily(f,instance)
|
||
|
||
plastic_dislotwin_QedgePerSlipSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_QedgePerSlipFamily(f,instance)
|
||
|
||
plastic_dislotwin_v0PerSlipSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_v0PerSlipFamily(f,instance)
|
||
|
||
plastic_dislotwin_CLambdaSlipPerSlipSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_CLambdaSlipPerSlipFamily(f,instance)
|
||
|
||
!* Calculation of forest projections for edge dislocations
|
||
!* Interaction matrices
|
||
do o = 1_pInt,lattice_maxNslipFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Nslip(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Nslip(o,instance) ! loop over (active) systems in other family (slip)
|
||
plastic_dislotwin_forestProjectionEdge(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
abs(math_mul3x3(lattice_sn(:,sum(lattice_NslipSystem(1:f-1,phase))+j,phase), &
|
||
lattice_st(:,sum(lattice_NslipSystem(1:o-1,phase))+k,phase)))
|
||
plastic_dislotwin_interactionMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_SlipSlip(lattice_interactionSlipSlip( &
|
||
sum(lattice_NslipSystem(1:f-1,phase))+j, &
|
||
sum(lattice_NslipSystem(1:o-1,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
do o = 1_pInt,lattice_maxNtwinFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Ntwin(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Ntwin(o,instance) ! loop over (active) systems in other family (twin)
|
||
plastic_dislotwin_interactionMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_SlipTwin(lattice_interactionSlipTwin( &
|
||
sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
do o = 1_pInt,lattice_maxNtransFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Ntrans(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Ntrans(o,instance) ! loop over (active) systems in other family (trans)
|
||
plastic_dislotwin_interactionMatrix_SlipTrans(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_SlipTrans(lattice_interactionSlipTrans( &
|
||
sum(lattice_NslipSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NtransSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
enddo slipSystemsLoop
|
||
enddo slipFamiliesLoop
|
||
|
||
!* Process twin related parameters ------------------------------------------------
|
||
twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily
|
||
index_myFamily = sum(plastic_dislotwin_Ntwin(1:f-1_pInt,instance)) ! index in truncated twin system list
|
||
twinSystemsLoop: do j = 1_pInt,plastic_dislotwin_Ntwin(f,instance)
|
||
|
||
!* Burgers vector,
|
||
! nucleation rate prefactor,
|
||
! and twin size
|
||
|
||
plastic_dislotwin_burgersPerTwinSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_burgersPerTwinFamily(f,instance)
|
||
|
||
plastic_dislotwin_Ndot0PerTwinSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_Ndot0PerTwinFamily(f,instance)
|
||
|
||
plastic_dislotwin_twinsizePerTwinSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_twinsizePerTwinFamily(f,instance)
|
||
|
||
!* Rotate twin elasticity matrices
|
||
index_otherFamily = sum(lattice_NtwinSystem(1:f-1_pInt,phase)) ! index in full lattice twin list
|
||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||
do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt
|
||
plastic_dislotwin_Ctwin3333(l,m,n,o,index_myFamily+j,instance) = &
|
||
plastic_dislotwin_Ctwin3333(l,m,n,o,index_myFamily+j,instance) + &
|
||
lattice_C3333(p,q,r,s,phase) * &
|
||
lattice_Qtwin(l,p,index_otherFamily+j,phase) * &
|
||
lattice_Qtwin(m,q,index_otherFamily+j,phase) * &
|
||
lattice_Qtwin(n,r,index_otherFamily+j,phase) * &
|
||
lattice_Qtwin(o,s,index_otherFamily+j,phase)
|
||
enddo; enddo; enddo; enddo
|
||
enddo; enddo; enddo; enddo
|
||
plastic_dislotwin_Ctwin66(1:6,1:6,index_myFamily+j,instance) = &
|
||
math_Mandel3333to66(plastic_dislotwin_Ctwin3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance))
|
||
|
||
!* Interaction matrices
|
||
do o = 1_pInt,lattice_maxNslipFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Nslip(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Nslip(o,instance) ! loop over (active) systems in other family (slip)
|
||
plastic_dislotwin_interactionMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_TwinSlip(lattice_interactionTwinSlip( &
|
||
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
do o = 1_pInt,lattice_maxNtwinFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Ntwin(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Ntwin(o,instance) ! loop over (active) systems in other family (twin)
|
||
plastic_dislotwin_interactionMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_TwinTwin(lattice_interactionTwinTwin( &
|
||
sum(lattice_NtwinSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NtwinSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
enddo twinSystemsLoop
|
||
enddo twinFamiliesLoop
|
||
|
||
!* Process transformation related parameters ------------------------------------------------
|
||
transFamiliesLoop: do f = 1_pInt,lattice_maxNtransFamily
|
||
index_myFamily = sum(plastic_dislotwin_Ntrans(1:f-1_pInt,instance)) ! index in truncated trans system list
|
||
transSystemsLoop: do j = 1_pInt,plastic_dislotwin_Ntrans(f,instance)
|
||
|
||
!* Burgers vector,
|
||
! nucleation rate prefactor,
|
||
! and martensite size
|
||
|
||
plastic_dislotwin_burgersPerTransSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_burgersPerTransFamily(f,instance)
|
||
|
||
plastic_dislotwin_Ndot0PerTransSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_Ndot0PerTransFamily(f,instance)
|
||
|
||
plastic_dislotwin_lamellarsizePerTransSystem(index_myFamily+j,instance) = &
|
||
plastic_dislotwin_lamellarsizePerTransFamily(f,instance)
|
||
|
||
!* Rotate trans elasticity matrices
|
||
index_otherFamily = sum(lattice_NtransSystem(1:f-1_pInt,phase)) ! index in full lattice trans list
|
||
do l = 1_pInt,3_pInt; do m = 1_pInt,3_pInt; do n = 1_pInt,3_pInt; do o = 1_pInt,3_pInt
|
||
do p = 1_pInt,3_pInt; do q = 1_pInt,3_pInt; do r = 1_pInt,3_pInt; do s = 1_pInt,3_pInt
|
||
plastic_dislotwin_Ctrans3333(l,m,n,o,index_myFamily+j,instance) = &
|
||
plastic_dislotwin_Ctrans3333(l,m,n,o,index_myFamily+j,instance) + &
|
||
lattice_trans_C3333(p,q,r,s,phase) * &
|
||
lattice_Qtrans(l,p,index_otherFamily+j,phase) * &
|
||
lattice_Qtrans(m,q,index_otherFamily+j,phase) * &
|
||
lattice_Qtrans(n,r,index_otherFamily+j,phase) * &
|
||
lattice_Qtrans(o,s,index_otherFamily+j,phase)
|
||
enddo; enddo; enddo; enddo
|
||
enddo; enddo; enddo; enddo
|
||
plastic_dislotwin_Ctrans66(1:6,1:6,index_myFamily+j,instance) = &
|
||
math_Mandel3333to66(plastic_dislotwin_Ctrans3333(1:3,1:3,1:3,1:3,index_myFamily+j,instance))
|
||
|
||
!* Interaction matrices
|
||
do o = 1_pInt,lattice_maxNslipFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Nslip(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Nslip(o,instance) ! loop over (active) systems in other family (slip)
|
||
plastic_dislotwin_interactionMatrix_TransSlip(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_TransSlip(lattice_interactionTransSlip( &
|
||
sum(lattice_NtransSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NslipSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
do o = 1_pInt,lattice_maxNtransFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Ntrans(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Ntrans(o,instance) ! loop over (active) systems in other family (trans)
|
||
plastic_dislotwin_interactionMatrix_TransTrans(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
plastic_dislotwin_interaction_TransTrans(lattice_interactionTransTrans( &
|
||
sum(lattice_NtransSystem(1:f-1_pInt,phase))+j, &
|
||
sum(lattice_NtransSystem(1:o-1_pInt,phase))+k, &
|
||
phase), instance )
|
||
enddo; enddo
|
||
|
||
!* Projection matrices for shear from slip systems to fault-band (twin) systems for strain-induced martensite nucleation
|
||
select case(trans_lattice_structure(phase))
|
||
case (LATTICE_bcc_ID)
|
||
do o = 1_pInt,lattice_maxNtransFamily
|
||
index_otherFamily = sum(plastic_dislotwin_Nslip(1:o-1_pInt,instance))
|
||
do k = 1_pInt,plastic_dislotwin_Nslip(o,instance) ! loop over (active) systems in other family (trans)
|
||
plastic_dislotwin_projectionMatrix_Trans(index_myFamily+j,index_otherFamily+k,instance) = &
|
||
lattice_projectionTrans( sum(lattice_NtransSystem(1:f-1,phase))+j, &
|
||
sum(lattice_NslipSystem(1:o-1,phase))+k, phase)
|
||
enddo; enddo
|
||
end select
|
||
|
||
enddo transSystemsLoop
|
||
enddo transFamiliesLoop
|
||
|
||
startIndex=1_pInt
|
||
endIndex=ns
|
||
state(instance)%rhoEdge=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%rhoEdge=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%rhoEdge=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%rhoEdgeDip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%rhoEdgeDip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%rhoEdgeDip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%accshear_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%accshear_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%accshear_slip=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%twinFraction=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%twinFraction=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%twinFraction=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%accshear_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%accshear_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%accshear_twin=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%stressTransFraction=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%stressTransFraction=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%stressTransFraction=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%strainTransFraction=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%strainTransFraction=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
dotState(instance)%strainTransFraction=>plasticState(phase)%dotState(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%invLambdaSlip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%invLambdaSlip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%invLambdaSlipTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%invLambdaSlipTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%invLambdaTwin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%invLambdaTwin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%invLambdaSlipTrans=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%invLambdaSlipTrans=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%invLambdaTrans=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%invLambdaTrans=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%mfp_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%mfp_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%mfp_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%mfp_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%mfp_trans=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%mfp_trans=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+ns
|
||
state(instance)%threshold_stress_slip=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%threshold_stress_slip=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%threshold_stress_twin=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%threshold_stress_twin=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%threshold_stress_trans=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%threshold_stress_trans=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nt
|
||
state(instance)%twinVolume=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%twinVolume=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
startIndex=endIndex+1
|
||
endIndex=endIndex+nr
|
||
state(instance)%martensiteVolume=>plasticState(phase)%state(startIndex:endIndex,:)
|
||
state0(instance)%martensiteVolume=>plasticState(phase)%state0(startIndex:endIndex,:)
|
||
|
||
call plastic_dislotwin_stateInit(phase,instance)
|
||
call plastic_dislotwin_aTolState(phase,instance)
|
||
endif myPhase2
|
||
|
||
enddo initializeInstances
|
||
end subroutine plastic_dislotwin_init
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief sets the relevant state values for a given instance of this plasticity
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_stateInit(ph,instance)
|
||
use math, only: &
|
||
pi
|
||
use lattice, only: &
|
||
lattice_maxNslipFamily, &
|
||
lattice_mu
|
||
use material, only: &
|
||
plasticState
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: &
|
||
instance, & !< number specifying the instance of the plasticity
|
||
ph
|
||
|
||
real(pReal), dimension(plasticState(ph)%sizeState) :: tempState
|
||
|
||
integer(pInt) :: i,j,f,ns,nt,nr, index_myFamily
|
||
real(pReal), dimension(plastic_dislotwin_totalNslip(instance)) :: &
|
||
rhoEdge0, &
|
||
rhoEdgeDip0, &
|
||
invLambdaSlip0, &
|
||
MeanFreePathSlip0, &
|
||
tauSlipThreshold0
|
||
real(pReal), dimension(plastic_dislotwin_totalNtwin(instance)) :: &
|
||
MeanFreePathTwin0,TwinVolume0
|
||
real(pReal), dimension(plastic_dislotwin_totalNtrans(instance)) :: &
|
||
MeanFreePathTrans0,MartensiteVolume0
|
||
tempState = 0.0_pReal
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! initialize basic slip state variables
|
||
do f = 1_pInt,lattice_maxNslipFamily
|
||
index_myFamily = sum(plastic_dislotwin_Nslip(1:f-1_pInt,instance)) ! index in truncated slip system list
|
||
rhoEdge0(index_myFamily+1_pInt: &
|
||
index_myFamily+plastic_dislotwin_Nslip(f,instance)) = &
|
||
plastic_dislotwin_rhoEdge0(f,instance)
|
||
rhoEdgeDip0(index_myFamily+1_pInt: &
|
||
index_myFamily+plastic_dislotwin_Nslip(f,instance)) = &
|
||
plastic_dislotwin_rhoEdgeDip0(f,instance)
|
||
enddo
|
||
|
||
tempState(1_pInt:ns) = rhoEdge0
|
||
tempState(ns+1_pInt:2_pInt*ns) = rhoEdgeDip0
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! initialize dependent slip microstructural variables
|
||
forall (i = 1_pInt:ns) &
|
||
invLambdaSlip0(i) = sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_dislotwin_forestProjectionEdge(1:ns,i,instance)))/ &
|
||
plastic_dislotwin_CLambdaSlipPerSlipSystem(i,instance)
|
||
tempState(3_pInt*ns+2_pInt*nt+2_pInt*nr+1:4_pInt*ns+2_pInt*nt+2_pInt*nr) = invLambdaSlip0
|
||
|
||
forall (i = 1_pInt:ns) &
|
||
MeanFreePathSlip0(i) = &
|
||
plastic_dislotwin_GrainSize(instance)/(1.0_pReal+invLambdaSlip0(i)*plastic_dislotwin_GrainSize(instance))
|
||
tempState(6_pInt*ns+3_pInt*nt+3_pInt*nr+1:7_pInt*ns+3_pInt*nt+3_pInt*nr) = MeanFreePathSlip0
|
||
|
||
forall (i = 1_pInt:ns) &
|
||
tauSlipThreshold0(i) = &
|
||
lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(i,instance) * &
|
||
sqrt(dot_product((rhoEdge0+rhoEdgeDip0),plastic_dislotwin_interactionMatrix_SlipSlip(i,1:ns,instance)))
|
||
|
||
tempState(7_pInt*ns+4_pInt*nt+4_pInt*nr+1:8_pInt*ns+4_pInt*nt+4_pInt*nr) = tauSlipThreshold0
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! initialize dependent twin microstructural variables
|
||
forall (j = 1_pInt:nt) &
|
||
MeanFreePathTwin0(j) = plastic_dislotwin_GrainSize(instance)
|
||
tempState(7_pInt*ns+3_pInt*nt+3_pInt*nr+1_pInt:7_pInt*ns+4_pInt*nt+3_pInt*nr) = MeanFreePathTwin0
|
||
|
||
forall (j = 1_pInt:nt) &
|
||
TwinVolume0(j) = &
|
||
(pi/4.0_pReal)*plastic_dislotwin_twinsizePerTwinSystem(j,instance)*MeanFreePathTwin0(j)**(2.0_pReal)
|
||
tempState(8_pInt*ns+5_pInt*nt+5_pInt*nr+1_pInt:8_pInt*ns+6_pInt*nt+5_pInt*nr) = TwinVolume0
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! initialize dependent trans microstructural variables
|
||
forall (j = 1_pInt:nr) &
|
||
MeanFreePathTrans0(j) = plastic_dislotwin_GrainSize(instance)
|
||
tempState(7_pInt*ns+4_pInt*nt+3_pInt*nr+1_pInt:7_pInt*ns+4_pInt*nt+4_pInt*nr) = MeanFreePathTrans0
|
||
|
||
forall (j = 1_pInt:nr) &
|
||
MartensiteVolume0(j) = &
|
||
(pi/4.0_pReal)*plastic_dislotwin_lamellarsizePerTransSystem(j,instance)*MeanFreePathTrans0(j)**(2.0_pReal)
|
||
tempState(8_pInt*ns+6_pInt*nt+5_pInt*nr+1_pInt:8_pInt*ns+6_pInt*nt+6_pInt*nr) = MartensiteVolume0
|
||
|
||
plasticState(ph)%state0 = spread(tempState,2,size(plasticState(ph)%state(1,:)))
|
||
|
||
end subroutine plastic_dislotwin_stateInit
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief sets the relevant state values for a given instance of this plasticity
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_aTolState(ph,instance)
|
||
use material, only: &
|
||
plasticState
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: &
|
||
ph, &
|
||
instance ! number specifying the current instance of the plasticity
|
||
|
||
integer(pInt) :: ns, nt, nr
|
||
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
! Tolerance state for dislocation densities
|
||
plasticState(ph)%aTolState(1_pInt: &
|
||
2_pInt*ns) = plastic_dislotwin_aTolRho(instance)
|
||
|
||
! Tolerance state for accumulated shear due to slip
|
||
plasticState(ph)%aTolState(2_pInt*ns+1_pInt: &
|
||
3_pInt*ns)=1.0e6_pReal
|
||
|
||
! Tolerance state for twin volume fraction
|
||
plasticState(ph)%aTolState(3_pInt*ns+1_pInt: &
|
||
3_pInt*ns+nt) = plastic_dislotwin_aTolTwinFrac(instance)
|
||
|
||
! Tolerance state for accumulated shear due to twin
|
||
plasticState(ph)%aTolState(3_pInt*ns+nt+1_pInt: &
|
||
3_pInt*ns+2_pInt*nt) = 1.0e6_pReal
|
||
|
||
! Tolerance state for stress-assisted martensite volume fraction
|
||
plasticState(ph)%aTolState(3_pInt*ns+2_pInt*nt+1_pInt: &
|
||
3_pInt*ns+2_pInt*nt+nr) = plastic_dislotwin_aTolTransFrac(instance)
|
||
|
||
! Tolerance state for strain-induced martensite volume fraction
|
||
plasticState(ph)%aTolState(3_pInt*ns+2_pInt*nt+nr+1_pInt: &
|
||
3_pInt*ns+2_pInt*nt+2_pInt*nr) = plastic_dislotwin_aTolTransFrac(instance)
|
||
|
||
end subroutine plastic_dislotwin_aTolState
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief returns the homogenized elasticity matrix
|
||
!--------------------------------------------------------------------------------------------------
|
||
function plastic_dislotwin_homogenizedC(ipc,ip,el)
|
||
use material, only: &
|
||
phase_plasticityInstance, &
|
||
phaseAt, phasememberAt
|
||
use lattice, only: &
|
||
lattice_C66
|
||
|
||
implicit none
|
||
real(pReal), dimension(6,6) :: &
|
||
plastic_dislotwin_homogenizedC
|
||
integer(pInt), intent(in) :: &
|
||
ipc, & !< component-ID of integration point
|
||
ip, & !< integration point
|
||
el !< element
|
||
|
||
integer(pInt) :: instance,ns,nt,nr,i, &
|
||
ph, &
|
||
of
|
||
real(pReal) :: sumf, sumftr
|
||
|
||
!* Shortened notation
|
||
of = phasememberAt(ipc,ip,el)
|
||
ph = phaseAt(ipc,ip,el)
|
||
instance = phase_plasticityInstance(ph)
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!* Total twin volume fraction
|
||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||
|
||
!* Total transformed volume fraction
|
||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||
|
||
!* Homogenized elasticity matrix
|
||
plastic_dislotwin_homogenizedC = (1.0_pReal-sumf-sumftr)*lattice_C66(1:6,1:6,ph)
|
||
do i=1_pInt,nt
|
||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||
+ state(instance)%twinFraction(i,of)*plastic_dislotwin_Ctwin66(1:6,1:6,i,instance)
|
||
enddo
|
||
do i=1_pInt,nr
|
||
plastic_dislotwin_homogenizedC = plastic_dislotwin_homogenizedC &
|
||
+ (state(instance)%stressTransFraction(i,of) + state(instance)%strainTransFraction(i,of))*&
|
||
plastic_dislotwin_Ctrans66(1:6,1:6,i,instance)
|
||
enddo
|
||
|
||
end function plastic_dislotwin_homogenizedC
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates derived quantities from state
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_microstructure(temperature,ipc,ip,el)
|
||
use math, only: &
|
||
pi
|
||
use material, only: &
|
||
material_phase, &
|
||
phase_plasticityInstance, &
|
||
!plasticState, & !!!!delete
|
||
phaseAt, phasememberAt
|
||
use lattice, only: &
|
||
lattice_mu, &
|
||
lattice_nu
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: &
|
||
ipc, & !< component-ID of integration point
|
||
ip, & !< integration point
|
||
el !< element
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature at IP
|
||
|
||
integer(pInt) :: &
|
||
instance, &
|
||
ns,nt,nr,s,t,r, &
|
||
ph, &
|
||
of
|
||
real(pReal) :: &
|
||
sumf,sfe,x0,sumftr
|
||
real(pReal), dimension(plastic_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: fOverStacksize
|
||
real(pReal), dimension(plastic_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
ftransOverLamellarSize
|
||
|
||
!* Shortened notation
|
||
of = phasememberAt(ipc,ip,el)
|
||
ph = phaseAt(ipc,ip,el)
|
||
instance = phase_plasticityInstance(ph)
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!* Total twin volume fraction
|
||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||
|
||
!* Total transformed volume fraction
|
||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||
|
||
!* Stacking fault energy
|
||
sfe = plastic_dislotwin_SFE_0K(instance) + &
|
||
plastic_dislotwin_dSFE_dT(instance) * Temperature
|
||
|
||
!* rescaled twin volume fraction for topology
|
||
forall (t = 1_pInt:nt) &
|
||
fOverStacksize(t) = &
|
||
state(instance)%twinFraction(t,of)/plastic_dislotwin_twinsizePerTwinSystem(t,instance)
|
||
|
||
!* rescaled trans volume fraction for topology
|
||
forall (r = 1_pInt:nr) &
|
||
ftransOverLamellarSize(r) = &
|
||
(state(instance)%stressTransFraction(r,of)+state(instance)%strainTransFraction(r,of))/&
|
||
plastic_dislotwin_lamellarsizePerTransSystem(r,instance)
|
||
|
||
!* 1/mean free distance between 2 forest dislocations seen by a moving dislocation
|
||
forall (s = 1_pInt:ns) &
|
||
state(instance)%invLambdaSlip(s,of) = &
|
||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||
plastic_dislotwin_forestProjectionEdge(1:ns,s,instance)))/ &
|
||
plastic_dislotwin_CLambdaSlipPerSlipSystem(s,instance)
|
||
|
||
!* 1/mean free distance between 2 twin stacks from different systems seen by a moving dislocation
|
||
!$OMP CRITICAL (evilmatmul)
|
||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = 0.0_pReal
|
||
if (nt > 0_pInt .and. ns > 0_pInt) &
|
||
state(instance)%invLambdaSlipTwin(1_pInt:ns,of) = &
|
||
matmul(plastic_dislotwin_interactionMatrix_SlipTwin(1:ns,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||
!$OMP END CRITICAL (evilmatmul)
|
||
|
||
!* 1/mean free distance between 2 twin stacks from different systems seen by a growing twin
|
||
!$OMP CRITICAL (evilmatmul)
|
||
if (nt > 0_pInt) &
|
||
state(instance)%invLambdaTwin(1_pInt:nt,of) = &
|
||
matmul(plastic_dislotwin_interactionMatrix_TwinTwin(1:nt,1:nt,instance),fOverStacksize(1:nt))/(1.0_pReal-sumf)
|
||
!$OMP END CRITICAL (evilmatmul)
|
||
|
||
!* 1/mean free distance between 2 martensite lamellar from different systems seen by a moving dislocation
|
||
state(instance)%invLambdaSlipTrans(1_pInt:ns,of) = 0.0_pReal
|
||
if (nr > 0_pInt .and. ns > 0_pInt) &
|
||
state(instance)%invLambdaSlipTrans(1_pInt:ns,of) = &
|
||
matmul(plastic_dislotwin_interactionMatrix_SlipTrans(1:ns,1:nr,instance),ftransOverLamellarSize(1:nr))/(1.0_pReal-sumftr)
|
||
|
||
!* 1/mean free distance between 2 martensite stacks from different systems seen by a growing martensite (1/lambda_trans)
|
||
if (nr > 0_pInt) &
|
||
state(instance)%invLambdaTrans(1_pInt:nr,of) = &
|
||
matmul(plastic_dislotwin_interactionMatrix_TransTrans(1:nr,1:nr,instance),ftransOverLamellarSize(1:nr))/(1.0_pReal-sumftr)
|
||
|
||
!* mean free path between 2 obstacles seen by a moving dislocation
|
||
do s = 1_pInt,ns
|
||
if ((nt > 0_pInt) .or. (nr > 0_pInt)) then
|
||
state(instance)%mfp_slip(s,of) = &
|
||
plastic_dislotwin_GrainSize(instance)/(1.0_pReal+plastic_dislotwin_GrainSize(instance)*&
|
||
(state(instance)%invLambdaSlip(s,of) + &
|
||
state(instance)%invLambdaSlipTwin(s,of) + &
|
||
state(instance)%invLambdaSlipTrans(s,of)))
|
||
else
|
||
state(instance)%mfp_slip(s,of) = &
|
||
plastic_dislotwin_GrainSize(instance)/&
|
||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*(state(instance)%invLambdaSlip(s,of))) !!!!!! correct?
|
||
endif
|
||
enddo
|
||
|
||
!* mean free path between 2 obstacles seen by a growing twin
|
||
forall (t = 1_pInt:nt) &
|
||
state(instance)%mfp_twin(t,of) = &
|
||
plastic_dislotwin_Cmfptwin(instance)*plastic_dislotwin_GrainSize(instance)/&
|
||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*state(ph)%invLambdaTwin(t,of))
|
||
|
||
!* mean free path between 2 obstacles seen by a growing martensite
|
||
forall (r = 1_pInt:nr) &
|
||
state(instance)%mfp_trans(r,of) = &
|
||
plastic_dislotwin_Cmfptrans(instance)*plastic_dislotwin_GrainSize(instance)/&
|
||
(1.0_pReal+plastic_dislotwin_GrainSize(instance)*state(instance)%invLambdaTrans(r,of))
|
||
|
||
!* threshold stress for dislocation motion
|
||
forall (s = 1_pInt:ns) &
|
||
state(instance)%threshold_stress_slip(s,of) = &
|
||
lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(s,instance)*&
|
||
sqrt(dot_product((state(instance)%rhoEdge(1_pInt:ns,of)+state(instance)%rhoEdgeDip(1_pInt:ns,of)),&
|
||
plastic_dislotwin_interactionMatrix_SlipSlip(s,1:ns,instance)))
|
||
|
||
!* threshold stress for growing twin
|
||
forall (t = 1_pInt:nt) &
|
||
state(instance)%threshold_stress_twin(t,of) = &
|
||
plastic_dislotwin_Cthresholdtwin(instance)* &
|
||
(sfe/(3.0_pReal*plastic_dislotwin_burgersPerTwinSystem(t,instance)) &
|
||
+ 3.0_pReal*plastic_dislotwin_burgersPerTwinSystem(t,instance)*lattice_mu(ph)/&
|
||
(plastic_dislotwin_L0_twin(instance)*plastic_dislotwin_burgersPerSlipSystem(t,instance)) &
|
||
)
|
||
|
||
!* threshold stress for growing martensite
|
||
forall (r = 1_pInt:nr) &
|
||
state(instance)%threshold_stress_trans(r,of) = &
|
||
plastic_dislotwin_Cthresholdtrans(instance)* &
|
||
(sfe/(3.0_pReal*plastic_dislotwin_burgersPerTransSystem(r,instance)) &
|
||
+ 3.0_pReal*plastic_dislotwin_burgersPerTransSystem(r,instance)*lattice_mu(ph)/&
|
||
(plastic_dislotwin_L0_trans(instance)*plastic_dislotwin_burgersPerSlipSystem(r,instance))&
|
||
+ plastic_dislotwin_transStackHeight(instance)*plastic_dislotwin_deltaG(instance)/ &
|
||
(3.0_pReal*plastic_dislotwin_burgersPerTransSystem(r,instance)) &
|
||
)
|
||
|
||
!* final twin volume after growth
|
||
forall (t = 1_pInt:nt) &
|
||
state(instance)%twinVolume(t,of) = &
|
||
(pi/4.0_pReal)*plastic_dislotwin_twinsizePerTwinSystem(t,instance)*&
|
||
state(instance)%mfp_twin(t,of)**(2.0_pReal)
|
||
|
||
!* final martensite volume after growth
|
||
forall (r = 1_pInt:nr) &
|
||
state(instance)%martensiteVolume(r,of) = &
|
||
(pi/4.0_pReal)*plastic_dislotwin_lamellarsizePerTransSystem(r,instance)*&
|
||
state(instance)%mfp_trans(r,of)**(2.0_pReal)
|
||
|
||
!* equilibrium separation of partial dislocations (twin)
|
||
do t = 1_pInt,nt
|
||
x0 = lattice_mu(ph)*plastic_dislotwin_burgersPerTwinSystem(t,instance)**(2.0_pReal)/&
|
||
(sfe*8.0_pReal*pi)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||
plastic_dislotwin_tau_r_twin(t,instance)= &
|
||
lattice_mu(ph)*plastic_dislotwin_burgersPerTwinSystem(t,instance)/(2.0_pReal*pi)*&
|
||
(1/(x0+plastic_dislotwin_xc_twin(instance))+cos(pi/3.0_pReal)/x0)
|
||
enddo
|
||
|
||
!* equilibrium separation of partial dislocations (trans)
|
||
do r = 1_pInt,nr
|
||
x0 = lattice_mu(ph)*plastic_dislotwin_burgersPerTransSystem(r,instance)**(2.0_pReal)/&
|
||
(sfe*8.0_pReal*pi)*(2.0_pReal+lattice_nu(ph))/(1.0_pReal-lattice_nu(ph))
|
||
plastic_dislotwin_tau_r_trans(r,instance)= &
|
||
lattice_mu(ph)*plastic_dislotwin_burgersPerTransSystem(r,instance)/(2.0_pReal*pi)*&
|
||
(1/(x0+plastic_dislotwin_xc_trans(instance))+cos(pi/3.0_pReal)/x0)
|
||
enddo
|
||
|
||
end subroutine plastic_dislotwin_microstructure
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates plastic velocity gradient and its tangent
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_LpAndItsTangent(Lp,dLp_dTstar99,Tstar_v,Temperature,ipc,ip,el)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dNeq0
|
||
use math, only: &
|
||
math_Plain3333to99, &
|
||
math_Mandel6to33, &
|
||
math_Mandel33to6, &
|
||
math_eigenValuesVectorsSym, &
|
||
math_tensorproduct33, &
|
||
math_symmetric33, &
|
||
math_mul33x3
|
||
use material, only: &
|
||
material_phase, &
|
||
phase_plasticityInstance, &
|
||
phaseAt, phasememberAt
|
||
use lattice, only: &
|
||
lattice_Sslip, &
|
||
lattice_Sslip_v, &
|
||
lattice_Stwin, &
|
||
lattice_Stwin_v, &
|
||
lattice_Strans, &
|
||
lattice_Strans_v, &
|
||
lattice_maxNslipFamily,&
|
||
lattice_maxNtwinFamily, &
|
||
lattice_maxNtransFamily, &
|
||
lattice_NslipSystem, &
|
||
lattice_NtwinSystem, &
|
||
lattice_NtransSystem, &
|
||
lattice_shearTwin, &
|
||
lattice_structure, &
|
||
lattice_fcc_twinNucleationSlipPair, &
|
||
LATTICE_fcc_ID
|
||
|
||
implicit none
|
||
integer(pInt), intent(in) :: ipc,ip,el
|
||
real(pReal), intent(in) :: Temperature
|
||
real(pReal), dimension(6), intent(in) :: Tstar_v
|
||
real(pReal), dimension(3,3), intent(out) :: Lp
|
||
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar99
|
||
|
||
integer(pInt) :: instance,ph,of,ns,nt,nr,f,i,j,k,l,m,n,index_myFamily,s1,s2
|
||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,StressRatio_r,BoltzmannRatio,DotGamma0,Ndot0_twin,stressRatio, &
|
||
Ndot0_trans,StressRatio_s
|
||
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333
|
||
real(pReal), dimension(plastic_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
gdot_slip,dgdot_dtauslip,tau_slip
|
||
real(pReal), dimension(plastic_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
gdot_twin,dgdot_dtautwin,tau_twin
|
||
real(pReal), dimension(plastic_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
gdot_trans,dgdot_dtautrans,tau_trans
|
||
real(pReal), dimension(6) :: gdot_sb,dgdot_dtausb,tau_sb
|
||
real(pReal), dimension(3,3) :: eigVectors, sb_Smatrix
|
||
real(pReal), dimension(3) :: eigValues, sb_s, sb_m
|
||
logical :: error
|
||
real(pReal), dimension(3,6), parameter :: &
|
||
sb_sComposition = &
|
||
reshape(real([&
|
||
1, 0, 1, &
|
||
1, 0,-1, &
|
||
1, 1, 0, &
|
||
1,-1, 0, &
|
||
0, 1, 1, &
|
||
0, 1,-1 &
|
||
],pReal),[ 3,6]), &
|
||
sb_mComposition = &
|
||
reshape(real([&
|
||
1, 0,-1, &
|
||
1, 0,+1, &
|
||
1,-1, 0, &
|
||
1, 1, 0, &
|
||
0, 1,-1, &
|
||
0, 1, 1 &
|
||
],pReal),[ 3,6])
|
||
!* Shortened notation
|
||
of = phasememberAt(ipc,ip,el)
|
||
ph = phaseAt(ipc,ip,el)
|
||
instance = phase_plasticityInstance(ph)
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
Lp = 0.0_pReal
|
||
dLp_dTstar3333 = 0.0_pReal
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! Dislocation glide part
|
||
gdot_slip = 0.0_pReal
|
||
dgdot_dtauslip = 0.0_pReal
|
||
j = 0_pInt
|
||
slipFamiliesLoop: do f = 1_pInt,lattice_maxNslipFamily
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
slipSystemsLoop: do i = 1_pInt,plastic_dislotwin_Nslip(f,instance)
|
||
j = j+1_pInt
|
||
|
||
!* Calculation of Lp
|
||
!* Resolved shear stress on slip system
|
||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
|
||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||
!* Stress ratios
|
||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))
|
||
StressRatio_p = stressRatio** plastic_dislotwin_pPerSlipFamily(f,instance)
|
||
StressRatio_pminus1 = stressRatio**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = &
|
||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||
|
||
!* Shear rates due to slip
|
||
gdot_slip(j) = DotGamma0 &
|
||
* exp(-BoltzmannRatio*(1-StressRatio_p) ** plastic_dislotwin_qPerSlipFamily(f,instance)) &
|
||
* sign(1.0_pReal,tau_slip(j))
|
||
|
||
!* Derivatives of shear rates
|
||
dgdot_dtauslip(j) = &
|
||
abs(gdot_slip(j))*BoltzmannRatio*plastic_dislotwin_pPerSlipFamily(f,instance)&
|
||
*plastic_dislotwin_qPerSlipFamily(f,instance)/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance))*&
|
||
StressRatio_pminus1*(1-StressRatio_p)**(plastic_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||
endif
|
||
|
||
!* Plastic velocity gradient for dislocation glide
|
||
Lp = Lp + gdot_slip(j)*lattice_Sslip(:,:,1,index_myFamily+i,ph)
|
||
|
||
!* Calculation of the tangent of Lp
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dTstar3333(k,l,m,n) = &
|
||
dLp_dTstar3333(k,l,m,n) + dgdot_dtauslip(j)*&
|
||
lattice_Sslip(k,l,1,index_myFamily+i,ph)*&
|
||
lattice_Sslip(m,n,1,index_myFamily+i,ph)
|
||
enddo slipSystemsLoop
|
||
enddo slipFamiliesLoop
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! correct Lp and dLp_dTstar3333 for twinned and transformed fraction
|
||
!* Total twin volume fraction
|
||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||
|
||
!* Total transformed volume fraction
|
||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||
Lp = Lp * (1.0_pReal - sumf - sumftr)
|
||
dLp_dTstar3333 = dLp_dTstar3333 * (1.0_pReal - sumf - sumftr)
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! Shear banding (shearband) part
|
||
if(dNeq0(plastic_dislotwin_sbVelocity(instance)) .and. dNeq0(plastic_dislotwin_sbResistance(instance))) then
|
||
gdot_sb = 0.0_pReal
|
||
dgdot_dtausb = 0.0_pReal
|
||
call math_eigenValuesVectorsSym(math_Mandel6to33(Tstar_v),eigValues,eigVectors,error)
|
||
do j = 1_pInt,6_pInt
|
||
sb_s = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_sComposition(1:3,j))
|
||
sb_m = 0.5_pReal*sqrt(2.0_pReal)*math_mul33x3(eigVectors,sb_mComposition(1:3,j))
|
||
sb_Smatrix = math_tensorproduct33(sb_s,sb_m)
|
||
plastic_dislotwin_sbSv(1:6,j,ipc,ip,el) = math_Mandel33to6(math_symmetric33(sb_Smatrix))
|
||
|
||
!* Calculation of Lp
|
||
!* Resolved shear stress on shear banding system
|
||
tau_sb(j) = dot_product(Tstar_v,plastic_dislotwin_sbSv(1:6,j,ipc,ip,el))
|
||
|
||
!* Stress ratios
|
||
if (abs(tau_sb(j)) < tol_math_check) then
|
||
StressRatio_p = 0.0_pReal
|
||
StressRatio_pminus1 = 0.0_pReal
|
||
else
|
||
StressRatio_p = (abs(tau_sb(j))/plastic_dislotwin_sbResistance(instance))&
|
||
**plastic_dislotwin_pShearBand(instance)
|
||
StressRatio_pminus1 = (abs(tau_sb(j))/plastic_dislotwin_sbResistance(instance))&
|
||
**(plastic_dislotwin_pShearBand(instance)-1.0_pReal)
|
||
endif
|
||
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_sbQedge(instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = plastic_dislotwin_sbVelocity(instance)
|
||
|
||
!* Shear rates due to shearband
|
||
gdot_sb(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||
plastic_dislotwin_qShearBand(instance))*sign(1.0_pReal,tau_sb(j))
|
||
|
||
!* Derivatives of shear rates
|
||
dgdot_dtausb(j) = &
|
||
((abs(gdot_sb(j))*BoltzmannRatio*&
|
||
plastic_dislotwin_pShearBand(instance)*plastic_dislotwin_qShearBand(instance))/&
|
||
plastic_dislotwin_sbResistance(instance))*&
|
||
StressRatio_pminus1*(1_pInt-StressRatio_p)**(plastic_dislotwin_qShearBand(instance)-1.0_pReal)
|
||
|
||
!* Plastic velocity gradient for shear banding
|
||
Lp = Lp + gdot_sb(j)*sb_Smatrix
|
||
|
||
!* Calculation of the tangent of Lp
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dTstar3333(k,l,m,n) = &
|
||
dLp_dTstar3333(k,l,m,n) + dgdot_dtausb(j)*&
|
||
sb_Smatrix(k,l)*&
|
||
sb_Smatrix(m,n)
|
||
enddo
|
||
end if
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
! Mechanical twinning part
|
||
gdot_twin = 0.0_pReal
|
||
dgdot_dtautwin = 0.0_pReal
|
||
j = 0_pInt
|
||
twinFamiliesLoop: do f = 1_pInt,lattice_maxNtwinFamily
|
||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
twinSystemsLoop: do i = 1_pInt,plastic_dislotwin_Ntwin(f,instance)
|
||
j = j+1_pInt
|
||
|
||
!* Calculation of Lp
|
||
!* Resolved shear stress on twin system
|
||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||
|
||
!* Stress ratios
|
||
if (tau_twin(j) > tol_math_check) then
|
||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau_twin(j))**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||
!* Shear rates and their derivatives due to twin
|
||
select case(lattice_structure(ph))
|
||
case (LATTICE_fcc_ID)
|
||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||
if (tau_twin(j) < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(ph)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||
(plastic_dislotwin_L0_twin(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||
(plastic_dislotwin_tau_r_twin(j,instance)-tau_twin(j))))
|
||
else
|
||
Ndot0_twin=0.0_pReal
|
||
end if
|
||
case default
|
||
Ndot0_twin=plastic_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||
end select
|
||
gdot_twin(j) = &
|
||
(1.0_pReal-sumf-sumftr)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||
dgdot_dtautwin(j) = ((gdot_twin(j)*plastic_dislotwin_rPerTwinFamily(f,instance))/tau_twin(j))*StressRatio_r
|
||
endif
|
||
|
||
!* Plastic velocity gradient for mechanical twinning
|
||
Lp = Lp + gdot_twin(j)*lattice_Stwin(:,:,index_myFamily+i,ph)
|
||
|
||
!* Calculation of the tangent of Lp
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dTstar3333(k,l,m,n) = &
|
||
dLp_dTstar3333(k,l,m,n) + dgdot_dtautwin(j)*&
|
||
lattice_Stwin(k,l,index_myFamily+i,ph)*&
|
||
lattice_Stwin(m,n,index_myFamily+i,ph)
|
||
enddo twinSystemsLoop
|
||
enddo twinFamiliesLoop
|
||
|
||
!* Phase transformation part
|
||
gdot_trans = 0.0_pReal
|
||
dgdot_dtautrans = 0.0_pReal
|
||
j = 0_pInt
|
||
transFamiliesLoop: do f = 1_pInt,lattice_maxNtransFamily
|
||
index_myFamily = sum(lattice_NtransSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
transSystemsLoop: do i = 1_pInt,plastic_dislotwin_Ntrans(f,instance)
|
||
j = j+1_pInt
|
||
|
||
!* Resolved shear stress on transformation system
|
||
tau_trans(j) = dot_product(Tstar_v,lattice_Strans_v(:,index_myFamily+i,ph))
|
||
|
||
!* Stress ratios
|
||
if (tau_trans(j) > tol_math_check) then
|
||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/tau_trans(j))**plastic_dislotwin_sPerTransFamily(f,instance)
|
||
!* Shear rates and their derivatives due to transformation
|
||
select case(lattice_structure(ph))
|
||
case (LATTICE_fcc_ID)
|
||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||
if (tau_trans(j) < plastic_dislotwin_tau_r_trans(j,instance)) then
|
||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+& !!!!! correct?
|
||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||
(plastic_dislotwin_L0_trans(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||
(plastic_dislotwin_tau_r_trans(j,instance)-tau_trans(j))))
|
||
else
|
||
Ndot0_trans=0.0_pReal
|
||
end if
|
||
case default
|
||
Ndot0_trans=plastic_dislotwin_Ndot0PerTransSystem(j,instance)
|
||
end select
|
||
gdot_trans(j) = &
|
||
(1.0_pReal-sumf-sumftr)*&
|
||
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||
dgdot_dtautrans(j) = ((gdot_trans(j)*plastic_dislotwin_sPerTransFamily(f,instance))/tau_trans(j))*StressRatio_s
|
||
endif
|
||
|
||
!* Plastic velocity gradient for phase transformation
|
||
Lp = Lp + gdot_trans(j)*lattice_Strans(:,:,index_myFamily+i,ph)
|
||
|
||
!* Calculation of the tangent of Lp
|
||
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
|
||
dLp_dTstar3333(k,l,m,n) = &
|
||
dLp_dTstar3333(k,l,m,n) + dgdot_dtautrans(j)*&
|
||
lattice_Strans(k,l,index_myFamily+i,ph)*&
|
||
lattice_Strans(m,n,index_myFamily+i,ph)
|
||
|
||
enddo transSystemsLoop
|
||
enddo transFamiliesLoop
|
||
|
||
dLp_dTstar99 = math_Plain3333to99(dLp_dTstar3333)
|
||
|
||
end subroutine plastic_dislotwin_LpAndItsTangent
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief calculates the rate of change of microstructure
|
||
!--------------------------------------------------------------------------------------------------
|
||
subroutine plastic_dislotwin_dotState(Tstar_v,Temperature,ipc,ip,el)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dEq0
|
||
use math, only: &
|
||
pi
|
||
use material, only: &
|
||
material_phase, &
|
||
phase_plasticityInstance, &
|
||
plasticState, &
|
||
phaseAt, phasememberAt
|
||
use lattice, only: &
|
||
lattice_Sslip_v, &
|
||
lattice_Stwin_v, &
|
||
lattice_Strans_v, &
|
||
lattice_maxNslipFamily, &
|
||
lattice_maxNtwinFamily, &
|
||
lattice_maxNtransFamily, &
|
||
lattice_NslipSystem, &
|
||
lattice_NtwinSystem, &
|
||
lattice_NtransSystem, &
|
||
lattice_sheartwin, &
|
||
lattice_mu, &
|
||
lattice_structure, &
|
||
lattice_fcc_twinNucleationSlipPair, &
|
||
lattice_fccTobcc_transNucleationTwinPair, &
|
||
lattice_fccTobcc_shearCritTrans, &
|
||
LATTICE_fcc_ID
|
||
|
||
implicit none
|
||
real(pReal), dimension(6), intent(in):: &
|
||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature at integration point
|
||
integer(pInt), intent(in) :: &
|
||
ipc, & !< component-ID of integration point
|
||
ip, & !< integration point
|
||
el !< element
|
||
|
||
integer(pInt) :: instance,ns,nt,nr,f,i,j,index_myFamily,s1,s2, &
|
||
ph, &
|
||
of
|
||
real(pReal) :: sumf,sumftr,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,&
|
||
EdgeDipMinDistance,AtomicVolume,VacancyDiffusion,StressRatio_r,Ndot0_twin,stressRatio,&
|
||
Ndot0_trans,StressRatio_s,EdgeDipDistance, ClimbVelocity,DotRhoEdgeDipClimb,DotRhoEdgeDipAnnihilation, &
|
||
DotRhoDipFormation,DotRhoMultiplication,DotRhoEdgeEdgeAnnihilation
|
||
real(pReal), dimension(plastic_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
gdot_slip,tau_slip
|
||
|
||
real(pReal), dimension(plastic_dislotwin_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
tau_twin
|
||
real(pReal), dimension(plastic_dislotwin_totalNtrans(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
tau_trans
|
||
|
||
!* Shortened notation
|
||
of = phasememberAt(ipc,ip,el)
|
||
ph = phaseAt(ipc,ip,el)
|
||
instance = phase_plasticityInstance(ph)
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!* Total twin volume fraction
|
||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||
plasticState(ph)%dotState(:,of) = 0.0_pReal
|
||
|
||
!* Total transformed volume fraction
|
||
sumftr = sum(state(instance)%stressTransFraction(1_pInt:nr,of)) + &
|
||
sum(state(instance)%strainTransFraction(1_pInt:nr,of))
|
||
|
||
!* Dislocation density evolution
|
||
gdot_slip = 0.0_pReal
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j+1_pInt
|
||
|
||
!* Resolved shear stress on slip system
|
||
tau_slip(j) = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
|
||
if((abs(tau_slip(j))-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||
!* Stress ratios
|
||
stressRatio =((abs(tau_slip(j))- state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))
|
||
StressRatio_p = stressRatio** plastic_dislotwin_pPerSlipFamily(f,instance)
|
||
StressRatio_pminus1 = stressRatio**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = &
|
||
plasticState(ph)%state(j, of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)*&
|
||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||
|
||
!* Shear rates due to slip
|
||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)** &
|
||
plastic_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau_slip(j))
|
||
endif
|
||
!* Multiplication
|
||
DotRhoMultiplication = abs(gdot_slip(j))/&
|
||
(plastic_dislotwin_burgersPerSlipSystem(j,instance)*state(instance)%mfp_slip(j,of))
|
||
!* Dipole formation
|
||
EdgeDipMinDistance = &
|
||
plastic_dislotwin_CEdgeDipMinDistance(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance)
|
||
if (dEq0(tau_slip(j))) then
|
||
DotRhoDipFormation = 0.0_pReal
|
||
else
|
||
EdgeDipDistance = &
|
||
(3.0_pReal*lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||
(16.0_pReal*pi*abs(tau_slip(j)))
|
||
if (EdgeDipDistance>state(instance)%mfp_slip(j,of)) EdgeDipDistance=state(instance)%mfp_slip(j,of)
|
||
if (EdgeDipDistance<EdgeDipMinDistance) EdgeDipDistance=EdgeDipMinDistance
|
||
DotRhoDipFormation = &
|
||
((2.0_pReal*(EdgeDipDistance-EdgeDipMinDistance))/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))*plastic_dislotwin_dipoleFormationFactor(instance)
|
||
endif
|
||
|
||
!* Spontaneous annihilation of 2 single edge dislocations
|
||
DotRhoEdgeEdgeAnnihilation = &
|
||
((2.0_pReal*EdgeDipMinDistance)/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
state(instance)%rhoEdge(j,of)*abs(gdot_slip(j))
|
||
|
||
!* Spontaneous annihilation of a single edge dislocation with a dipole constituent
|
||
DotRhoEdgeDipAnnihilation = &
|
||
((2.0_pReal*EdgeDipMinDistance)/plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
state(instance)%rhoEdgeDip(j,of)*abs(gdot_slip(j))
|
||
|
||
!* Dislocation dipole climb
|
||
AtomicVolume = &
|
||
plastic_dislotwin_CAtomicVolume(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance)**(3.0_pReal)
|
||
VacancyDiffusion = &
|
||
plastic_dislotwin_D0(instance)*exp(-plastic_dislotwin_Qsd(instance)/(kB*Temperature))
|
||
if (dEq0(tau_slip(j))) then
|
||
DotRhoEdgeDipClimb = 0.0_pReal
|
||
else
|
||
if (dEq0(EdgeDipDistance-EdgeDipMinDistance)) then
|
||
DotRhoEdgeDipClimb = 0.0_pReal
|
||
else
|
||
ClimbVelocity = 3.0_pReal*lattice_mu(ph)*VacancyDiffusion*AtomicVolume/ &
|
||
(2.0_pReal*pi*kB*Temperature*(EdgeDipDistance+EdgeDipMinDistance))
|
||
DotRhoEdgeDipClimb = 4.0_pReal*ClimbVelocity*state(instance)%rhoEdgeDip(j,of)/ &
|
||
(EdgeDipDistance-EdgeDipMinDistance)
|
||
endif
|
||
endif
|
||
|
||
!* Edge dislocation density rate of change
|
||
dotState(instance)%rhoEdge(j,of) = &
|
||
DotRhoMultiplication-DotRhoDipFormation-DotRhoEdgeEdgeAnnihilation
|
||
|
||
!* Edge dislocation dipole density rate of change
|
||
dotState(instance)%rhoEdgeDip(j,of) = &
|
||
DotRhoDipFormation-DotRhoEdgeDipAnnihilation-DotRhoEdgeDipClimb
|
||
|
||
!* Dotstate for accumulated shear due to slip
|
||
dotState(instance)%accshear_slip(j,of) = abs(gdot_slip(j))
|
||
|
||
enddo
|
||
enddo
|
||
|
||
!* Twin volume fraction evolution
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Ntwin(f,instance) ! process each (active) twin system in family
|
||
j = j+1_pInt
|
||
|
||
!* Resolved shear stress on twin system
|
||
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||
!* Stress ratios
|
||
if (tau_twin(j) > tol_math_check) then
|
||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/&
|
||
tau_twin(j))**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||
!* Shear rates and their derivatives due to twin
|
||
select case(lattice_structure(ph))
|
||
case (LATTICE_fcc_ID)
|
||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||
if (tau_twin(j) < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||
(plastic_dislotwin_L0_twin(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||
(plastic_dislotwin_tau_r_twin(j,instance)-tau_twin(j))))
|
||
else
|
||
Ndot0_twin=0.0_pReal
|
||
end if
|
||
case default
|
||
Ndot0_twin=plastic_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||
end select
|
||
dotState(instance)%twinFraction(j,of) = &
|
||
(1.0_pReal-sumf-sumftr)*&
|
||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||
!* Dotstate for accumulated shear due to twin
|
||
dotState(instance)%accshear_twin(j,of) = dotState(instance)%twinFraction(j,of) * &
|
||
lattice_sheartwin(index_myfamily+i,ph)
|
||
endif
|
||
enddo
|
||
enddo
|
||
|
||
!* Transformation volume fraction evolution
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNtransFamily ! loop over all trans families
|
||
index_myFamily = sum(lattice_NtransSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Ntrans(f,instance) ! process each (active) trans system in family
|
||
j = j+1_pInt
|
||
|
||
!* Resolved shear stress on transformation system
|
||
tau_trans(j) = dot_product(Tstar_v,lattice_Strans_v(:,index_myFamily+i,ph))
|
||
|
||
!* Stress ratios
|
||
if (tau_trans(j) > tol_math_check) then
|
||
StressRatio_s = (state(instance)%threshold_stress_trans(j,of)/&
|
||
tau_trans(j))**plastic_dislotwin_sPerTransFamily(f,instance)
|
||
!* Shear rates and their derivatives due to transformation
|
||
select case(lattice_structure(ph))
|
||
case (LATTICE_fcc_ID)
|
||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||
if (tau_trans(j) < plastic_dislotwin_tau_r_trans(j,instance)) then
|
||
Ndot0_trans=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||
(plastic_dislotwin_L0_trans(instance)*plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||
(plastic_dislotwin_tau_r_trans(j,instance)-tau_trans(j))))
|
||
else
|
||
Ndot0_trans=0.0_pReal
|
||
end if
|
||
case default
|
||
Ndot0_trans=plastic_dislotwin_Ndot0PerTransSystem(j,instance)
|
||
end select
|
||
dotState(instance)%strainTransFraction(j,of) = &
|
||
(1.0_pReal-sumf-sumftr)*&
|
||
state(instance)%martensiteVolume(j,of)*Ndot0_trans*exp(-StressRatio_s)
|
||
!* Dotstate for accumulated shear due to transformation
|
||
!dotState(instance)%accshear_trans(j,of) = dotState(instance)%strainTransFraction(j,of) * &
|
||
! lattice_sheartrans(index_myfamily+i,ph)
|
||
endif
|
||
|
||
enddo
|
||
enddo
|
||
|
||
end subroutine plastic_dislotwin_dotState
|
||
|
||
|
||
|
||
!--------------------------------------------------------------------------------------------------
|
||
!> @brief return array of constitutive results
|
||
!--------------------------------------------------------------------------------------------------
|
||
function plastic_dislotwin_postResults(Tstar_v,Temperature,ipc,ip,el)
|
||
use prec, only: &
|
||
tol_math_check, &
|
||
dEq0
|
||
use math, only: &
|
||
pi, &
|
||
math_Mandel6to33, &
|
||
math_eigenValuesSym33, &
|
||
math_eigenValuesVectorsSym33
|
||
use material, only: &
|
||
material_phase, &
|
||
phase_plasticityInstance,&
|
||
phaseAt, phasememberAt
|
||
use lattice, only: &
|
||
lattice_Sslip_v, &
|
||
lattice_Stwin_v, &
|
||
lattice_maxNslipFamily, &
|
||
lattice_maxNtwinFamily, &
|
||
lattice_NslipSystem, &
|
||
lattice_NtwinSystem, &
|
||
lattice_shearTwin, &
|
||
lattice_mu, &
|
||
lattice_structure, &
|
||
lattice_fcc_twinNucleationSlipPair, &
|
||
LATTICE_fcc_ID
|
||
|
||
implicit none
|
||
real(pReal), dimension(6), intent(in) :: &
|
||
Tstar_v !< 2nd Piola Kirchhoff stress tensor in Mandel notation
|
||
real(pReal), intent(in) :: &
|
||
temperature !< temperature at integration point
|
||
integer(pInt), intent(in) :: &
|
||
ipc, & !< component-ID of integration point
|
||
ip, & !< integration point
|
||
el !< element
|
||
|
||
real(pReal), dimension(plastic_dislotwin_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
plastic_dislotwin_postResults
|
||
integer(pInt) :: &
|
||
instance,&
|
||
ns,nt,nr,&
|
||
f,o,i,c,j,index_myFamily,&
|
||
s1,s2, &
|
||
ph, &
|
||
of
|
||
real(pReal) :: sumf,tau,StressRatio_p,StressRatio_pminus1,BoltzmannRatio,DotGamma0,StressRatio_r,Ndot0_twin,dgdot_dtauslip, &
|
||
stressRatio
|
||
real(preal), dimension(plastic_dislotwin_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
|
||
gdot_slip
|
||
real(pReal), dimension(3,3) :: eigVectors
|
||
real(pReal), dimension (3) :: eigValues
|
||
|
||
!* Shortened notation
|
||
of = phasememberAt(ipc,ip,el)
|
||
ph = phaseAt(ipc,ip,el)
|
||
instance = phase_plasticityInstance(ph)
|
||
ns = plastic_dislotwin_totalNslip(instance)
|
||
nt = plastic_dislotwin_totalNtwin(instance)
|
||
nr = plastic_dislotwin_totalNtrans(instance)
|
||
|
||
!* Total twin volume fraction
|
||
sumf = sum(state(instance)%twinFraction(1_pInt:nt,of)) ! safe for nt == 0
|
||
|
||
!* Required output
|
||
c = 0_pInt
|
||
plastic_dislotwin_postResults = 0.0_pReal
|
||
do o = 1_pInt,plastic_dislotwin_Noutput(instance)
|
||
select case(plastic_dislotwin_outputID(o,instance))
|
||
|
||
case (edge_density_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdge(1_pInt:ns,of)
|
||
c = c + ns
|
||
case (dipole_density_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = state(instance)%rhoEdgeDip(1_pInt:ns,of)
|
||
c = c + ns
|
||
case (shear_rate_slip_ID)
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt ! could be taken from state by now!
|
||
|
||
!* Resolved shear stress on slip system
|
||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
!* Stress ratios
|
||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||
!* Stress ratios
|
||
stressRatio = ((abs(tau)-state(ph)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))
|
||
StressRatio_p = stressRatio** plastic_dislotwin_pPerSlipFamily(f,instance)
|
||
StressRatio_pminus1 = stressRatio**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = &
|
||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||
|
||
!* Shear rates due to slip
|
||
plastic_dislotwin_postResults(c+j) = &
|
||
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||
plastic_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||
else
|
||
plastic_dislotwin_postResults(c+j) = 0.0_pReal
|
||
endif
|
||
|
||
enddo ; enddo
|
||
c = c + ns
|
||
case (accumulated_shear_slip_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||
state(instance)%accshear_slip(1_pInt:ns,of)
|
||
c = c + ns
|
||
case (mfp_slip_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+ns) =&
|
||
state(instance)%mfp_slip(1_pInt:ns,of)
|
||
c = c + ns
|
||
case (resolved_stress_slip_ID)
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt
|
||
plastic_dislotwin_postResults(c+j) =&
|
||
dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
enddo; enddo
|
||
c = c + ns
|
||
case (threshold_stress_slip_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+ns) = &
|
||
state(instance)%threshold_stress_slip(1_pInt:ns,of)
|
||
c = c + ns
|
||
case (edge_dipole_distance_ID)
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt
|
||
plastic_dislotwin_postResults(c+j) = &
|
||
(3.0_pReal*lattice_mu(ph)*plastic_dislotwin_burgersPerSlipSystem(j,instance))/&
|
||
(16.0_pReal*pi*abs(dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))))
|
||
plastic_dislotwin_postResults(c+j)=min(plastic_dislotwin_postResults(c+j),&
|
||
state(instance)%mfp_slip(j,of))
|
||
! plastic_dislotwin_postResults(c+j)=max(plastic_dislotwin_postResults(c+j),&
|
||
! plasticState(ph)%state(4*ns+2*nt+2*nr+j, of))
|
||
enddo; enddo
|
||
c = c + ns
|
||
case (resolved_stress_shearband_ID)
|
||
do j = 1_pInt,6_pInt ! loop over all shearband families
|
||
plastic_dislotwin_postResults(c+j) = dot_product(Tstar_v, &
|
||
plastic_dislotwin_sbSv(1:6,j,ipc,ip,el))
|
||
enddo
|
||
c = c + 6_pInt
|
||
case (shear_rate_shearband_ID)
|
||
do j = 1_pInt,6_pInt ! loop over all shearbands
|
||
!* Resolved shear stress on shearband system
|
||
tau = dot_product(Tstar_v,plastic_dislotwin_sbSv(1:6,j,ipc,ip,el))
|
||
!* Stress ratios
|
||
if (abs(tau) < tol_math_check) then
|
||
StressRatio_p = 0.0_pReal
|
||
StressRatio_pminus1 = 0.0_pReal
|
||
else
|
||
StressRatio_p = (abs(tau)/plastic_dislotwin_sbResistance(instance))**&
|
||
plastic_dislotwin_pShearBand(instance)
|
||
StressRatio_pminus1 = (abs(tau)/plastic_dislotwin_sbResistance(instance))**&
|
||
(plastic_dislotwin_pShearBand(instance)-1.0_pReal)
|
||
endif
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_sbQedge(instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = plastic_dislotwin_sbVelocity(instance)
|
||
! Shear rate due to shear band
|
||
plastic_dislotwin_postResults(c+j) = &
|
||
DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**plastic_dislotwin_qShearBand(instance))*&
|
||
sign(1.0_pReal,tau)
|
||
enddo
|
||
c = c + 6_pInt
|
||
case (twin_fraction_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%twinFraction(1_pInt:nt,of)
|
||
c = c + nt
|
||
case (shear_rate_twin_ID)
|
||
if (nt > 0_pInt) then
|
||
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt
|
||
|
||
!* Resolved shear stress on slip system
|
||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
!* Stress ratios
|
||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||
!* Stress ratios
|
||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||
**plastic_dislotwin_pPerSlipFamily(f,instance)
|
||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||
**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = &
|
||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||
|
||
!* Shear rates due to slip
|
||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||
plastic_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||
else
|
||
gdot_slip(j) = 0.0_pReal
|
||
endif
|
||
enddo;enddo
|
||
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
|
||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1,plastic_dislotwin_Ntwin(f,instance) ! process each (active) twin system in family
|
||
j = j + 1_pInt
|
||
|
||
tau = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||
|
||
|
||
!* Shear rates due to twin
|
||
if ( tau > 0.0_pReal ) then
|
||
select case(lattice_structure(ph))
|
||
case (LATTICE_fcc_ID)
|
||
s1=lattice_fcc_twinNucleationSlipPair(1,index_myFamily+i)
|
||
s2=lattice_fcc_twinNucleationSlipPair(2,index_myFamily+i)
|
||
if (tau < plastic_dislotwin_tau_r_twin(j,instance)) then
|
||
Ndot0_twin=(abs(gdot_slip(s1))*(state(instance)%rhoEdge(s2,of)+state(instance)%rhoEdgeDip(s2,of))+&
|
||
abs(gdot_slip(s2))*(state(instance)%rhoEdge(s1,of)+state(instance)%rhoEdgeDip(s1,of)))/&
|
||
(plastic_dislotwin_L0_twin(instance)*&
|
||
plastic_dislotwin_burgersPerSlipSystem(j,instance))*&
|
||
(1.0_pReal-exp(-plastic_dislotwin_VcrossSlip(instance)/(kB*Temperature)*&
|
||
(plastic_dislotwin_tau_r_twin(j,instance)-tau)))
|
||
else
|
||
Ndot0_twin=0.0_pReal
|
||
end if
|
||
case default
|
||
Ndot0_twin=plastic_dislotwin_Ndot0PerTwinSystem(j,instance)
|
||
end select
|
||
StressRatio_r = (state(instance)%threshold_stress_twin(j,of)/tau) &
|
||
**plastic_dislotwin_rPerTwinFamily(f,instance)
|
||
plastic_dislotwin_postResults(c+j) = &
|
||
(plastic_dislotwin_MaxTwinFraction(instance)-sumf)*lattice_shearTwin(index_myFamily+i,ph)*&
|
||
state(instance)%twinVolume(j,of)*Ndot0_twin*exp(-StressRatio_r)
|
||
endif
|
||
|
||
enddo ; enddo
|
||
endif
|
||
c = c + nt
|
||
case (accumulated_shear_twin_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%accshear_twin(1_pInt:nt,of)
|
||
c = c + nt
|
||
case (mfp_twin_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%mfp_twin(1_pInt:nt,of)
|
||
c = c + nt
|
||
case (resolved_stress_twin_ID)
|
||
if (nt > 0_pInt) then
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Ntwin(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt
|
||
plastic_dislotwin_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(:,index_myFamily+i,ph))
|
||
enddo; enddo
|
||
endif
|
||
c = c + nt
|
||
case (threshold_stress_twin_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nt) = state(instance)%threshold_stress_twin(1_pInt:nt,of)
|
||
c = c + nt
|
||
case (stress_exponent_ID)
|
||
j = 0_pInt
|
||
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
|
||
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,ph)) ! at which index starts my family
|
||
do i = 1_pInt,plastic_dislotwin_Nslip(f,instance) ! process each (active) slip system in family
|
||
j = j + 1_pInt
|
||
|
||
!* Resolved shear stress on slip system
|
||
tau = dot_product(Tstar_v,lattice_Sslip_v(:,1,index_myFamily+i,ph))
|
||
if((abs(tau)-state(instance)%threshold_stress_slip(j,of)) > tol_math_check) then
|
||
!* Stress ratios
|
||
StressRatio_p = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||
**plastic_dislotwin_pPerSlipFamily(f,instance)
|
||
StressRatio_pminus1 = ((abs(tau)-state(instance)%threshold_stress_slip(j,of))/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance)))&
|
||
**(plastic_dislotwin_pPerSlipFamily(f,instance)-1.0_pReal)
|
||
!* Boltzmann ratio
|
||
BoltzmannRatio = plastic_dislotwin_QedgePerSlipSystem(j,instance)/(kB*Temperature)
|
||
!* Initial shear rates
|
||
DotGamma0 = &
|
||
state(instance)%rhoEdge(j,of)*plastic_dislotwin_burgersPerSlipSystem(j,instance)* &
|
||
plastic_dislotwin_v0PerSlipSystem(j,instance)
|
||
|
||
!* Shear rates due to slip
|
||
gdot_slip(j) = DotGamma0*exp(-BoltzmannRatio*(1_pInt-StressRatio_p)**&
|
||
plastic_dislotwin_qPerSlipFamily(f,instance))*sign(1.0_pReal,tau)
|
||
|
||
!* Derivatives of shear rates
|
||
dgdot_dtauslip = &
|
||
abs(gdot_slip(j))*BoltzmannRatio*plastic_dislotwin_pPerSlipFamily(f,instance)&
|
||
*plastic_dislotwin_qPerSlipFamily(f,instance)/&
|
||
(plastic_dislotwin_SolidSolutionStrength(instance)+&
|
||
plastic_dislotwin_tau_peierlsPerSlipFamily(f,instance))*&
|
||
StressRatio_pminus1*(1-StressRatio_p)**(plastic_dislotwin_qPerSlipFamily(f,instance)-1.0_pReal)
|
||
|
||
else
|
||
gdot_slip(j) = 0.0_pReal
|
||
dgdot_dtauslip = 0.0_pReal
|
||
endif
|
||
|
||
!* Stress exponent
|
||
plastic_dislotwin_postResults(c+j) = &
|
||
merge(0.0_pReal,(tau/gdot_slip(j))*dgdot_dtauslip,dEq0(gdot_slip(j)))
|
||
enddo ; enddo
|
||
c = c + ns
|
||
case (sb_eigenvalues_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+3_pInt) = math_eigenvaluesSym33(math_Mandel6to33(Tstar_v))
|
||
c = c + 3_pInt
|
||
case (sb_eigenvectors_ID)
|
||
call math_eigenValuesVectorsSym33(math_Mandel6to33(Tstar_v),eigValues,eigVectors)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+9_pInt) = reshape(eigVectors,[9])
|
||
c = c + 9_pInt
|
||
case (stress_trans_fraction_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||
state(instance)%stressTransFraction(1_pInt:nr,of)
|
||
c = c + nr
|
||
case (strain_trans_fraction_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||
state(instance)%strainTransFraction(1_pInt:nr,of)
|
||
c = c + nr
|
||
case (trans_fraction_ID)
|
||
plastic_dislotwin_postResults(c+1_pInt:c+nr) = &
|
||
state(instance)%stressTransFraction(1_pInt:nr,of) + &
|
||
state(instance)%strainTransFraction(1_pInt:nr,of)
|
||
c = c + nr
|
||
end select
|
||
enddo
|
||
end function plastic_dislotwin_postResults
|
||
|
||
end module plastic_dislotwin
|