176 lines
6.5 KiB
Python
176 lines
6.5 KiB
Python
"""Functionality for generation of seed points for Voronoi or Laguerre tessellation."""
|
||
|
||
from typing import Optional as _Optional, Tuple as _Tuple
|
||
|
||
from scipy import spatial as _spatial
|
||
import numpy as _np
|
||
|
||
from ._typehints import FloatSequence as _FloatSequence, IntSequence as _IntSequence, \
|
||
NumpyRngSeed as _NumpyRngSeed
|
||
from . import util as _util
|
||
from . import grid_filters as _grid_filters
|
||
|
||
|
||
def from_random(size: _FloatSequence,
|
||
N_seeds: int,
|
||
cells: _Optional[_IntSequence] = None,
|
||
rng_seed: _Optional[_NumpyRngSeed] = None) -> _np.ndarray:
|
||
"""
|
||
Place seeds randomly in space.
|
||
|
||
Parameters
|
||
----------
|
||
size : sequence of float, len (3)
|
||
Edge lengths of the seeding domain.
|
||
N_seeds : int
|
||
Number of seeds.
|
||
cells : sequence of int, len (3), optional.
|
||
If given, ensures that each seed results in a grain when a standard Voronoi
|
||
tessellation is performed using the given grid resolution (i.e. size/cells).
|
||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||
A seed to initialize the BitGenerator. Defaults to None.
|
||
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
||
|
||
Returns
|
||
-------
|
||
coords : numpy.ndarray, shape (N_seeds,3)
|
||
Seed coordinates in 3D space.
|
||
|
||
"""
|
||
size_ = _np.array(size,float)
|
||
rng = _np.random.default_rng(rng_seed)
|
||
if cells is None:
|
||
coords = rng.random((N_seeds,3)) * size_
|
||
else:
|
||
grid_coords = _grid_filters.coordinates0_point(cells,size).reshape(-1,3,order='F')
|
||
coords = grid_coords[rng.choice(_np.prod(cells),N_seeds, replace=False)] \
|
||
+ _np.broadcast_to(size_/_np.array(cells,_np.int64),(N_seeds,3))*(rng.random((N_seeds,3))*.5-.25) # wobble w/o leaving grid
|
||
|
||
return coords
|
||
|
||
|
||
def from_Poisson_disc(size: _FloatSequence,
|
||
N_seeds: int,
|
||
N_candidates: int,
|
||
distance: float,
|
||
periodic: bool = True,
|
||
rng_seed: _Optional[_NumpyRngSeed] = None) -> _np.ndarray:
|
||
"""
|
||
Place seeds following a Poisson disc distribution.
|
||
|
||
Parameters
|
||
----------
|
||
size : sequence of float, len (3)
|
||
Edge lengths of the seeding domain.
|
||
N_seeds : int
|
||
Number of seeds.
|
||
N_candidates : int
|
||
Number of candidates to consider for finding best candidate.
|
||
distance : float
|
||
Minimum acceptable distance to other seeds.
|
||
periodic : bool, optional
|
||
Calculate minimum distance for periodically repeated grid.
|
||
Defaults to True.
|
||
rng_seed : {None, int, array_like[ints], SeedSequence, BitGenerator, Generator}, optional
|
||
A seed to initialize the BitGenerator. Defaults to None.
|
||
If None, then fresh, unpredictable entropy will be pulled from the OS.
|
||
|
||
Returns
|
||
-------
|
||
coords : numpy.ndarray, shape (N_seeds,3)
|
||
Seed coordinates in 3D space.
|
||
|
||
"""
|
||
rng = _np.random.default_rng(rng_seed)
|
||
coords = _np.empty((N_seeds,3))
|
||
coords[0] = rng.random(3) * _np.array(size,float)
|
||
|
||
s = 1
|
||
i = 0
|
||
progress = _util.ProgressBar(N_seeds+1,'',50)
|
||
while s < N_seeds:
|
||
i += 1
|
||
candidates = rng.random((N_candidates,3))*_np.broadcast_to(size,(N_candidates,3))
|
||
tree = _spatial.cKDTree(coords[:s],boxsize=size) if periodic else \
|
||
_spatial.cKDTree(coords[:s])
|
||
distances = tree.query(candidates)[0]
|
||
if distances.max() > distance: # require minimum separation
|
||
i = 0
|
||
coords[s] = candidates[distances.argmax()] # maximum separation to existing point cloud
|
||
s += 1
|
||
progress.update(s)
|
||
|
||
if i >= 100:
|
||
raise ValueError('seeding not possible')
|
||
|
||
return coords
|
||
|
||
|
||
def from_grid(grid,
|
||
selection: _Optional[_IntSequence] = None,
|
||
invert_selection: bool = False,
|
||
average: bool = False,
|
||
periodic: bool = True) -> _Tuple[_np.ndarray, _np.ndarray]:
|
||
"""
|
||
Create seeds from grid description.
|
||
|
||
Parameters
|
||
----------
|
||
grid : damask.Grid
|
||
Grid from which the material IDs are used as seeds.
|
||
selection : (sequence of) int, optional
|
||
Material IDs to consider.
|
||
invert_selection : bool, optional
|
||
Consider all material IDs except those in selection. Defaults to False.
|
||
average : bool, optional
|
||
Seed corresponds to center of gravity of material ID cloud.
|
||
Defaults to False.
|
||
periodic : bool, optional
|
||
Center of gravity accounts for periodic boundaries.
|
||
Defaults to True.
|
||
|
||
Returns
|
||
-------
|
||
coords, materials : numpy.ndarray, shape (:,3); numpy.ndarray, shape (:)
|
||
Seed coordinates in 3D space, material IDs.
|
||
|
||
Examples
|
||
--------
|
||
Recreate seeds from Voronoi tessellation.
|
||
|
||
>>> import numpy as np
|
||
>>> import scipy.spatial
|
||
>>> import damask
|
||
>>> seeds = damask.seeds.from_random(np.ones(3),29,[128]*3)
|
||
>>> (g := damask.Grid.from_Voronoi_tessellation([128]*3,np.ones(3),seeds))
|
||
cells: 128 × 128 × 128
|
||
size: 1.0 × 1.0 × 1.0 m³
|
||
origin: 0.0 0.0 0.0 m
|
||
# materials: 29
|
||
>>> COG,matID = damask.seeds.from_grid(g,average=True)
|
||
>>> distance,ID = scipy.spatial.KDTree(COG,boxsize=g.size).query(seeds)
|
||
>>> np.max(distance) / np.linalg.norm(g.size/g.cells)
|
||
7.8057356746350415
|
||
>>> (ID == matID).all()
|
||
True
|
||
|
||
"""
|
||
material = grid.material.reshape((-1,1),order='F')
|
||
mask = _np.full(grid.cells.prod(),True,dtype=bool) if selection is None else \
|
||
_np.isin(material,selection,invert=invert_selection).flatten()
|
||
coords = _grid_filters.coordinates0_point(grid.cells,grid.size).reshape(-1,3,order='F')
|
||
|
||
if not average:
|
||
return (coords[mask],material[mask])
|
||
else:
|
||
materials = _np.unique(material[mask])
|
||
coords_ = _np.zeros((materials.size,3),dtype=float)
|
||
for i,mat in enumerate(materials):
|
||
pc = (2*_np.pi*coords[material[:,0]==mat,:]-grid.origin)/grid.size
|
||
coords_[i] = grid.origin + grid.size / 2 / _np.pi * (_np.pi +
|
||
_np.arctan2(-_np.average(_np.sin(pc),axis=0),
|
||
-_np.average(_np.cos(pc),axis=0))) \
|
||
if periodic else \
|
||
_np.average(coords[material[:,0]==mat,:],axis=0)
|
||
return (coords_,materials)
|