DAMASK_EICMD/python/damask/_lattice.py

645 lines
28 KiB
Python

import numpy as np
from . import Rotation
class Symmetry:
"""
Symmetry-related operations for crystal systems.
References
----------
https://en.wikipedia.org/wiki/Crystal_system
"""
crystal_systems = [None,'orthorhombic','tetragonal','hexagonal','cubic']
def __init__(self, system = None):
"""
Symmetry Definition.
Parameters
----------
system : {None,'orthorhombic','tetragonal','hexagonal','cubic'}, optional
Name of the crystal system. Defaults to 'None'.
"""
if system is not None and system.lower() not in self.crystal_systems:
raise KeyError(f'Crystal system "{system}" is unknown')
self.system = system.lower() if isinstance(system,str) else system
self.lattice = self.system # ToDo: for compatibility
def __copy__(self):
"""Copy."""
return self.__class__(self.system)
copy = __copy__
def __repr__(self):
"""Readable string."""
return '{}'.format(self.system)
def __eq__(self, other):
"""
Equal to other.
Parameters
----------
other : Symmetry
Symmetry to check for equality.
"""
return self.system == other.system
def __neq__(self, other):
"""
Not Equal to other.
Parameters
----------
other : Symmetry
Symmetry to check for inequality.
"""
return not self.__eq__(other)
def __cmp__(self,other):
"""
Linear ordering.
Parameters
----------
other : Symmetry
Symmetry to check for for order.
"""
myOrder = self.crystal_systems.index(self.system)
otherOrder = self.crystal_systems.index(other.system)
return (myOrder > otherOrder) - (myOrder < otherOrder)
@property
def symmetry_operations(self):
"""Symmetry operations as Quaternions."""
if self.system == 'cubic':
symQuats = [
[ 1.0, 0.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0, 0.0 ],
[ 0.0, 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 0.0, 1.0 ],
[ 0.0, 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2) ],
[ 0.0, 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2) ],
[ 0.0, 0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2) ],
[ 0.0, 0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2) ],
[ 0.0, 0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
[ 0.0, -0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0 ],
[ 0.5, 0.5, 0.5, 0.5 ],
[-0.5, 0.5, 0.5, 0.5 ],
[-0.5, 0.5, 0.5, -0.5 ],
[-0.5, 0.5, -0.5, 0.5 ],
[-0.5, -0.5, 0.5, 0.5 ],
[-0.5, -0.5, 0.5, -0.5 ],
[-0.5, -0.5, -0.5, 0.5 ],
[-0.5, 0.5, -0.5, -0.5 ],
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
[-0.5*np.sqrt(2), 0.0, 0.5*np.sqrt(2), 0.0 ],
[-0.5*np.sqrt(2), 0.0, -0.5*np.sqrt(2), 0.0 ],
[-0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0, 0.0 ],
[-0.5*np.sqrt(2),-0.5*np.sqrt(2), 0.0, 0.0 ],
]
elif self.system == 'hexagonal':
symQuats = [
[ 1.0, 0.0, 0.0, 0.0 ],
[-0.5*np.sqrt(3), 0.0, 0.0, -0.5 ],
[ 0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
[ 0.0, 0.0, 0.0, 1.0 ],
[-0.5, 0.0, 0.0, 0.5*np.sqrt(3) ],
[-0.5*np.sqrt(3), 0.0, 0.0, 0.5 ],
[ 0.0, 1.0, 0.0, 0.0 ],
[ 0.0, -0.5*np.sqrt(3), 0.5, 0.0 ],
[ 0.0, 0.5, -0.5*np.sqrt(3), 0.0 ],
[ 0.0, 0.0, 1.0, 0.0 ],
[ 0.0, -0.5, -0.5*np.sqrt(3), 0.0 ],
[ 0.0, 0.5*np.sqrt(3), 0.5, 0.0 ],
]
elif self.system == 'tetragonal':
symQuats = [
[ 1.0, 0.0, 0.0, 0.0 ],
[ 0.0, 1.0, 0.0, 0.0 ],
[ 0.0, 0.0, 1.0, 0.0 ],
[ 0.0, 0.0, 0.0, 1.0 ],
[ 0.0, 0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
[ 0.0, -0.5*np.sqrt(2), 0.5*np.sqrt(2), 0.0 ],
[ 0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
[-0.5*np.sqrt(2), 0.0, 0.0, 0.5*np.sqrt(2) ],
]
elif self.system == 'orthorhombic':
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
[ 0.0,1.0,0.0,0.0 ],
[ 0.0,0.0,1.0,0.0 ],
[ 0.0,0.0,0.0,1.0 ],
]
else:
symQuats = [
[ 1.0,0.0,0.0,0.0 ],
]
return np.array(symQuats)
def in_FZ(self,rho):
"""
Check whether given Rodrigues-Frank vector falls into fundamental zone.
Fundamental zone in Rodrigues space is point symmetric around origin.
"""
if(rho.shape[-1] != 3):
raise ValueError('Input is not a Rodrigues-Frank vector field.')
rho_abs = np.abs(rho)
with np.errstate(invalid='ignore'):
# using '*'/prod for 'and'
if self.system == 'cubic':
return np.where(np.prod(np.sqrt(2)-1. >= rho_abs,axis=-1) * \
(1. >= np.sum(rho_abs,axis=-1)),True,False)
elif self.system == 'hexagonal':
return np.where(np.prod(1. >= rho_abs,axis=-1) * \
(2. >= np.sqrt(3)*rho_abs[...,0] + rho_abs[...,1]) * \
(2. >= np.sqrt(3)*rho_abs[...,1] + rho_abs[...,0]) * \
(2. >= np.sqrt(3) + rho_abs[...,2]),True,False)
elif self.system == 'tetragonal':
return np.where(np.prod(1. >= rho_abs[...,:2],axis=-1) * \
(np.sqrt(2) >= rho_abs[...,0] + rho_abs[...,1]) * \
(np.sqrt(2) >= rho_abs[...,2] + 1.),True,False)
elif self.system == 'orthorhombic':
return np.where(np.prod(1. >= rho_abs,axis=-1),True,False)
else:
return np.where(np.all(np.isfinite(rho_abs),axis=-1),True,False)
def in_disorientation_SST(self,rho):
"""
Check whether given Rodrigues-Frank vector (of misorientation) falls into standard stereographic triangle.
References
----------
A. Heinz and P. Neumann, Acta Crystallographica Section A 47:780-789, 1991
https://doi.org/10.1107/S0108767391006864
"""
if(rho.shape[-1] != 3):
raise ValueError('Input is not a Rodrigues-Frank vector field.')
with np.errstate(invalid='ignore'):
# using '*' for 'and'
if self.system == 'cubic':
return np.where((rho[...,0] >= rho[...,1]) * \
(rho[...,1] >= rho[...,2]) * \
(rho[...,2] >= 0),True,False)
elif self.system == 'hexagonal':
return np.where((rho[...,0] >= rho[...,1]*np.sqrt(3)) * \
(rho[...,1] >= 0) * \
(rho[...,2] >= 0),True,False)
elif self.system == 'tetragonal':
return np.where((rho[...,0] >= rho[...,1]) * \
(rho[...,1] >= 0) * \
(rho[...,2] >= 0),True,False)
elif self.system == 'orthorhombic':
return np.where((rho[...,0] >= 0) * \
(rho[...,1] >= 0) * \
(rho[...,2] >= 0),True,False)
else:
return np.ones_like(rho[...,0],dtype=bool)
def in_SST(self,vector,proper=False,color=False):
"""
Check whether given vector falls into standard stereographic triangle of own symmetry.
proper considers only vectors with z >= 0, hence uses two neighboring SSTs.
Return inverse pole figure color if requested.
Bases are computed from
>>> basis = {'cubic' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
... [1.,0.,1.]/np.sqrt(2.), # direction of green
... [1.,1.,1.]/np.sqrt(3.)]).T), # direction of blue
... 'hexagonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
... [1.,0.,0.], # direction of green
... [np.sqrt(3.),1.,0.]/np.sqrt(4.)]).T), # direction of blue
... 'tetragonal' : np.linalg.inv(np.array([[0.,0.,1.], # direction of red
... [1.,0.,0.], # direction of green
... [1.,1.,0.]/np.sqrt(2.)]).T), # direction of blue
... 'orthorhombic': np.linalg.inv(np.array([[0.,0.,1.], # direction of red
... [1.,0.,0.], # direction of green
... [0.,1.,0.]]).T), # direction of blue
... }
"""
if(vector.shape[-1] != 3):
raise ValueError('Input is not a 3D vector field.')
if self.system == 'cubic':
basis = {'improper':np.array([ [-1. , 0. , 1. ],
[ np.sqrt(2.) , -np.sqrt(2.) , 0. ],
[ 0. , np.sqrt(3.) , 0. ] ]),
'proper':np.array([ [ 0. , -1. , 1. ],
[-np.sqrt(2.) , np.sqrt(2.) , 0. ],
[ np.sqrt(3.) , 0. , 0. ] ]),
}
elif self.system == 'hexagonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -np.sqrt(3.) , 0. ],
[ 0. , 2. , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , np.sqrt(3.) , 0. ],
[ np.sqrt(3.) , -1. , 0. ] ]),
}
elif self.system == 'tetragonal':
basis = {'improper':np.array([ [ 0. , 0. , 1. ],
[ 1. , -1. , 0. ],
[ 0. , np.sqrt(2.) , 0. ] ]),
'proper':np.array([ [ 0. , 0. , 1. ],
[-1. , 1. , 0. ],
[ np.sqrt(2.) , 0. , 0. ] ]),
}
elif self.system == 'orthorhombic':
basis = {'improper':np.array([ [ 0., 0., 1.],
[ 1., 0., 0.],
[ 0., 1., 0.] ]),
'proper':np.array([ [ 0., 0., 1.],
[-1., 0., 0.],
[ 0., 1., 0.] ]),
}
else: # direct exit for unspecified symmetry
if color:
return (np.ones_like(vector[...,0],bool),np.zeros_like(vector))
else:
return np.ones_like(vector[...,0],bool)
b_i = np.broadcast_to(basis['improper'],vector.shape+(3,))
if proper:
b_p = np.broadcast_to(basis['proper'], vector.shape+(3,))
improper = np.all(np.around(np.einsum('...ji,...i',b_i,vector),12)>=0.0,axis=-1,keepdims=True)
theComponents = np.where(np.broadcast_to(improper,vector.shape),
np.around(np.einsum('...ji,...i',b_i,vector),12),
np.around(np.einsum('...ji,...i',b_p,vector),12))
else:
vector_ = np.block([vector[...,0:2],np.abs(vector[...,2:3])]) # z component projects identical
theComponents = np.around(np.einsum('...ji,...i',b_i,vector_),12)
in_SST = np.all(theComponents >= 0.0,axis=-1)
if color: # have to return color array
with np.errstate(invalid='ignore',divide='ignore'):
rgb = (theComponents/np.linalg.norm(theComponents,axis=-1,keepdims=True))**0.5 # smoothen color ramps
rgb = np.minimum(1.,rgb) # limit to maximum intensity
rgb /= np.max(rgb,axis=-1,keepdims=True) # normalize to (HS)V = 1
rgb[np.broadcast_to(~in_SST.reshape(vector[...,0].shape+(1,)),vector.shape)] = 0.0
return (in_SST,rgb)
else:
return in_SST
# ******************************************************************************************
class Lattice: # ToDo: Make a subclass of Symmetry!
"""
Lattice system.
Currently, this contains only a mapping from Bravais lattice to symmetry
and orientation relationships. It could include twin and slip systems.
References
----------
https://en.wikipedia.org/wiki/Bravais_lattice
"""
lattices = {
'triclinic':{'system':None},
'bct': {'system':'tetragonal'},
'hex': {'system':'hexagonal'},
'fcc': {'system':'cubic','c/a':1.0},
'bcc': {'system':'cubic','c/a':1.0},
}
def __init__(self, lattice):
"""
New lattice of given type.
Parameters
----------
lattice : str
Bravais lattice.
"""
self.lattice = lattice
self.symmetry = Symmetry(self.lattices[lattice]['system'])
# transition to subclass
self.system = self.symmetry.system
self.in_SST = self.symmetry.in_SST
self.in_FZ = self.symmetry.in_FZ
def __repr__(self):
"""Report basic lattice information."""
return 'Bravais lattice {} ({} symmetry)'.format(self.lattice,self.symmetry)
# Kurdjomov--Sachs orientation relationship for fcc <-> bcc transformation
# from S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
# also see K. Kitahara et al., Acta Materialia 54:1279-1288, 2006
KS = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]],
[[ 1, 1, -1],[ 0, 1, 1]]],dtype='float'),
'directions': np.array([
[[ -1, 0, 1],[ -1, -1, 1]],
[[ -1, 0, 1],[ -1, 1, -1]],
[[ 0, 1, -1],[ -1, -1, 1]],
[[ 0, 1, -1],[ -1, 1, -1]],
[[ 1, -1, 0],[ -1, -1, 1]],
[[ 1, -1, 0],[ -1, 1, -1]],
[[ 1, 0, -1],[ -1, -1, 1]],
[[ 1, 0, -1],[ -1, 1, -1]],
[[ -1, -1, 0],[ -1, -1, 1]],
[[ -1, -1, 0],[ -1, 1, -1]],
[[ 0, 1, 1],[ -1, -1, 1]],
[[ 0, 1, 1],[ -1, 1, -1]],
[[ 0, -1, 1],[ -1, -1, 1]],
[[ 0, -1, 1],[ -1, 1, -1]],
[[ -1, 0, -1],[ -1, -1, 1]],
[[ -1, 0, -1],[ -1, 1, -1]],
[[ 1, 1, 0],[ -1, -1, 1]],
[[ 1, 1, 0],[ -1, 1, -1]],
[[ -1, 1, 0],[ -1, -1, 1]],
[[ -1, 1, 0],[ -1, 1, -1]],
[[ 0, -1, -1],[ -1, -1, 1]],
[[ 0, -1, -1],[ -1, 1, -1]],
[[ 1, 0, 1],[ -1, -1, 1]],
[[ 1, 0, 1],[ -1, 1, -1]]],dtype='float')}
# Greninger--Troiano orientation relationship for fcc <-> bcc transformation
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
GT = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 1, 1, 1],[ 1, 0, 1]],
[[ 1, 1, 1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ -1, -1, 1],[ -1, 0, 1]],
[[ -1, -1, 1],[ -1, -1, 0]],
[[ -1, -1, 1],[ 0, -1, 1]],
[[ -1, 1, 1],[ -1, 0, 1]],
[[ -1, 1, 1],[ -1, 1, 0]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 1, 0, 1]],
[[ 1, -1, 1],[ 1, -1, 0]],
[[ 1, -1, 1],[ 0, -1, 1]],
[[ 1, 1, 1],[ 1, 1, 0]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 1, 0, 1]],
[[ -1, -1, 1],[ -1, -1, 0]],
[[ -1, -1, 1],[ 0, -1, 1]],
[[ -1, -1, 1],[ -1, 0, 1]],
[[ -1, 1, 1],[ -1, 1, 0]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ -1, 0, 1]],
[[ 1, -1, 1],[ 1, -1, 0]],
[[ 1, -1, 1],[ 0, -1, 1]],
[[ 1, -1, 1],[ 1, 0, 1]]],dtype='float'),
'directions': np.array([
[[ -5,-12, 17],[-17, -7, 17]],
[[ 17, -5,-12],[ 17,-17, -7]],
[[-12, 17, -5],[ -7, 17,-17]],
[[ 5, 12, 17],[ 17, 7, 17]],
[[-17, 5,-12],[-17, 17, -7]],
[[ 12,-17, -5],[ 7,-17,-17]],
[[ -5, 12,-17],[-17, 7,-17]],
[[ 17, 5, 12],[ 17, 17, 7]],
[[-12,-17, 5],[ -7,-17, 17]],
[[ 5,-12,-17],[ 17, -7,-17]],
[[-17, -5, 12],[-17,-17, 7]],
[[ 12, 17, 5],[ 7, 17, 17]],
[[ -5, 17,-12],[-17, 17, -7]],
[[-12, -5, 17],[ -7,-17, 17]],
[[ 17,-12, -5],[ 17, -7,-17]],
[[ 5,-17,-12],[ 17,-17, -7]],
[[ 12, 5, 17],[ 7, 17, 17]],
[[-17, 12, -5],[-17, 7,-17]],
[[ -5,-17, 12],[-17,-17, 7]],
[[-12, 5,-17],[ -7, 17,-17]],
[[ 17, 12, 5],[ 17, 7, 17]],
[[ 5, 17, 12],[ 17, 17, 7]],
[[ 12, -5,-17],[ 7,-17,-17]],
[[-17,-12, 5],[-17,-7, 17]]],dtype='float')}
# Greninger--Troiano' orientation relationship for fcc <-> bcc transformation
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
GTprime = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 7, 17, 17],[ 12, 5, 17]],
[[ 17, 7, 17],[ 17, 12, 5]],
[[ 17, 17, 7],[ 5, 17, 12]],
[[ -7,-17, 17],[-12, -5, 17]],
[[-17, -7, 17],[-17,-12, 5]],
[[-17,-17, 7],[ -5,-17, 12]],
[[ 7,-17,-17],[ 12, -5,-17]],
[[ 17, -7,-17],[ 17,-12, -5]],
[[ 17,-17, -7],[ 5,-17,-12]],
[[ -7, 17,-17],[-12, 5,-17]],
[[-17, 7,-17],[-17, 12, -5]],
[[-17, 17, -7],[ -5, 17,-12]],
[[ 7, 17, 17],[ 12, 17, 5]],
[[ 17, 7, 17],[ 5, 12, 17]],
[[ 17, 17, 7],[ 17, 5, 12]],
[[ -7,-17, 17],[-12,-17, 5]],
[[-17, -7, 17],[ -5,-12, 17]],
[[-17,-17, 7],[-17, -5, 12]],
[[ 7,-17,-17],[ 12,-17, -5]],
[[ 17, -7,-17],[ 5, -12,-17]],
[[ 17,-17, -7],[ 17, -5,-12]],
[[ -7, 17,-17],[-12, 17, -5]],
[[-17, 7,-17],[ -5, 12,-17]],
[[-17, 17, -7],[-17, 5,-12]]],dtype='float'),
'directions': np.array([
[[ 0, 1, -1],[ 1, 1, -1]],
[[ -1, 0, 1],[ -1, 1, 1]],
[[ 1, -1, 0],[ 1, -1, 1]],
[[ 0, -1, -1],[ -1, -1, -1]],
[[ 1, 0, 1],[ 1, -1, 1]],
[[ 1, -1, 0],[ 1, -1, -1]],
[[ 0, 1, -1],[ -1, 1, -1]],
[[ 1, 0, 1],[ 1, 1, 1]],
[[ -1, -1, 0],[ -1, -1, 1]],
[[ 0, -1, -1],[ 1, -1, -1]],
[[ -1, 0, 1],[ -1, -1, 1]],
[[ -1, -1, 0],[ -1, -1, -1]],
[[ 0, -1, 1],[ 1, -1, 1]],
[[ 1, 0, -1],[ 1, 1, -1]],
[[ -1, 1, 0],[ -1, 1, 1]],
[[ 0, 1, 1],[ -1, 1, 1]],
[[ -1, 0, -1],[ -1, -1, -1]],
[[ -1, 1, 0],[ -1, 1, -1]],
[[ 0, -1, 1],[ -1, -1, 1]],
[[ -1, 0, -1],[ -1, 1, -1]],
[[ 1, 1, 0],[ 1, 1, 1]],
[[ 0, 1, 1],[ 1, 1, 1]],
[[ 1, 0, -1],[ 1, -1, -1]],
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
# Nishiyama--Wassermann orientation relationship for fcc <-> bcc transformation
# from H. Kitahara et al., Materials Characterization 54:378-386, 2005
NW = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ 1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ -1, 1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ 1, -1, 1],[ 0, 1, 1]],
[[ -1, -1, 1],[ 0, 1, 1]],
[[ -1, -1, 1],[ 0, 1, 1]],
[[ -1, -1, 1],[ 0, 1, 1]]],dtype='float'),
'directions': np.array([
[[ 2, -1, -1],[ 0, -1, 1]],
[[ -1, 2, -1],[ 0, -1, 1]],
[[ -1, -1, 2],[ 0, -1, 1]],
[[ -2, -1, -1],[ 0, -1, 1]],
[[ 1, 2, -1],[ 0, -1, 1]],
[[ 1, -1, 2],[ 0, -1, 1]],
[[ 2, 1, -1],[ 0, -1, 1]],
[[ -1, -2, -1],[ 0, -1, 1]],
[[ -1, 1, 2],[ 0, -1, 1]],
[[ 2, -1, 1],[ 0, -1, 1]], #It is wrong in the paper, but matrix is correct
[[ -1, 2, 1],[ 0, -1, 1]],
[[ -1, -1, -2],[ 0, -1, 1]]],dtype='float')}
# Pitsch orientation relationship for fcc <-> bcc transformation
# from Y. He et al., Acta Materialia 53:1179-1190, 2005
Pitsch = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 0, 1, 0],[ -1, 0, 1]],
[[ 0, 0, 1],[ 1, -1, 0]],
[[ 1, 0, 0],[ 0, 1, -1]],
[[ 1, 0, 0],[ 0, -1, -1]],
[[ 0, 1, 0],[ -1, 0, -1]],
[[ 0, 0, 1],[ -1, -1, 0]],
[[ 0, 1, 0],[ -1, 0, -1]],
[[ 0, 0, 1],[ -1, -1, 0]],
[[ 1, 0, 0],[ 0, -1, -1]],
[[ 1, 0, 0],[ 0, -1, 1]],
[[ 0, 1, 0],[ 1, 0, -1]],
[[ 0, 0, 1],[ -1, 1, 0]]],dtype='float'),
'directions': np.array([
[[ 1, 0, 1],[ 1, -1, 1]],
[[ 1, 1, 0],[ 1, 1, -1]],
[[ 0, 1, 1],[ -1, 1, 1]],
[[ 0, 1, -1],[ -1, 1, -1]],
[[ -1, 0, 1],[ -1, -1, 1]],
[[ 1, -1, 0],[ 1, -1, -1]],
[[ 1, 0, -1],[ 1, -1, -1]],
[[ -1, 1, 0],[ -1, 1, -1]],
[[ 0, -1, 1],[ -1, -1, 1]],
[[ 0, 1, 1],[ -1, 1, 1]],
[[ 1, 0, 1],[ 1, -1, 1]],
[[ 1, 1, 0],[ 1, 1, -1]]],dtype='float')}
# Bain orientation relationship for fcc <-> bcc transformation
# from Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
Bain = {'mapping':{'fcc':0,'bcc':1},
'planes': np.array([
[[ 1, 0, 0],[ 1, 0, 0]],
[[ 0, 1, 0],[ 0, 1, 0]],
[[ 0, 0, 1],[ 0, 0, 1]]],dtype='float'),
'directions': np.array([
[[ 0, 1, 0],[ 0, 1, 1]],
[[ 0, 0, 1],[ 1, 0, 1]],
[[ 1, 0, 0],[ 1, 1, 0]]],dtype='float')}
def relationOperations(self,model):
"""
Crystallographic orientation relationships for phase transformations.
References
----------
S. Morito et al., Journal of Alloys and Compounds 577:s587-s592, 2013
https://doi.org/10.1016/j.jallcom.2012.02.004
K. Kitahara et al., Acta Materialia 54(5):1279-1288, 2006
https://doi.org/10.1016/j.actamat.2005.11.001
Y. He et al., Journal of Applied Crystallography 39:72-81, 2006
https://doi.org/10.1107/S0021889805038276
H. Kitahara et al., Materials Characterization 54(4-5):378-386, 2005
https://doi.org/10.1016/j.matchar.2004.12.015
Y. He et al., Acta Materialia 53(4):1179-1190, 2005
https://doi.org/10.1016/j.actamat.2004.11.021
"""
models={'KS':self.KS, 'GT':self.GT, 'GT_prime':self.GTprime,
'NW':self.NW, 'Pitsch': self.Pitsch, 'Bain':self.Bain}
try:
relationship = models[model]
except KeyError :
raise KeyError('Orientation relationship "{}" is unknown'.format(model))
if self.lattice not in relationship['mapping']:
raise ValueError('Relationship "{}" not supported for lattice "{}"'.format(model,self.lattice))
r = {'lattice':Lattice((set(relationship['mapping'])-{self.lattice}).pop()), # target lattice
'rotations':[] }
myPlane_id = relationship['mapping'][self.lattice]
otherPlane_id = (myPlane_id+1)%2
myDir_id = myPlane_id +2
otherDir_id = otherPlane_id +2
for miller in np.hstack((relationship['planes'],relationship['directions'])):
myPlane = miller[myPlane_id]/ np.linalg.norm(miller[myPlane_id])
myDir = miller[myDir_id]/ np.linalg.norm(miller[myDir_id])
myMatrix = np.array([myDir,np.cross(myPlane,myDir),myPlane])
otherPlane = miller[otherPlane_id]/ np.linalg.norm(miller[otherPlane_id])
otherDir = miller[otherDir_id]/ np.linalg.norm(miller[otherDir_id])
otherMatrix = np.array([otherDir,np.cross(otherPlane,otherDir),otherPlane])
r['rotations'].append(Rotation.from_matrix(np.dot(otherMatrix.T,myMatrix)))
return r