942 lines
40 KiB
Fortran
942 lines
40 KiB
Fortran
|
||
!************************************
|
||
!* Module: CONSTITUTIVE *
|
||
!************************************
|
||
!* contains: *
|
||
!* - constitutive equations *
|
||
!* - parameters definition *
|
||
!* - orientations *
|
||
!************************************
|
||
|
||
MODULE constitutive
|
||
|
||
!*** Include other modules ***
|
||
use prec, only: pReal,pInt
|
||
implicit none
|
||
|
||
! MISSING consistency check after reading 'mattex.mpie'
|
||
character(len=300), parameter :: mattexFile = 'mattex.mpie'
|
||
|
||
!*************************************
|
||
!* Definition of material properties *
|
||
!*************************************
|
||
!* Physical parameter, attack_frequency != Debye frequency
|
||
real(pReal), parameter :: attack_frequency = 1.0e10_pReal
|
||
!* Physical parameter, Boltzman constant in mJ/Kelvin
|
||
real(pReal), parameter :: Kb = 1.38e-20_pReal
|
||
|
||
!*************************************
|
||
!* Definition of material properties *
|
||
!*************************************
|
||
!* Number of materials
|
||
integer(pInt) material_maxN
|
||
!* Crystal structure and number of selected slip systems per material
|
||
integer(pInt), dimension(:) , allocatable :: material_CrystalStructure
|
||
integer(pInt), dimension(:) , allocatable :: material_Nslip
|
||
!* Maximum number of selected slip systems over materials
|
||
integer(pInt) material_maxNslip
|
||
!* Elastic constants and matrices
|
||
real(pReal), dimension(:) , allocatable :: material_C11
|
||
real(pReal), dimension(:) , allocatable :: material_C12
|
||
real(pReal), dimension(:) , allocatable :: material_C13
|
||
real(pReal), dimension(:) , allocatable :: material_C33
|
||
real(pReal), dimension(:) , allocatable :: material_C44
|
||
real(pReal), dimension(:) , allocatable :: material_Gmod
|
||
real(pReal), dimension(:,:,:), allocatable :: material_Cslip_66
|
||
!* Visco-plastic material parameters
|
||
real(pReal), dimension(:) , allocatable :: material_rho0
|
||
real(pReal), dimension(:) , allocatable :: material_bg
|
||
real(pReal), dimension(:) , allocatable :: material_Qedge
|
||
real(pReal), dimension(:) , allocatable :: material_tau0
|
||
real(pReal), dimension(:) , allocatable :: material_c1
|
||
real(pReal), dimension(:) , allocatable :: material_c2
|
||
real(pReal), dimension(:) , allocatable :: material_c3
|
||
real(pReal), dimension(:) , allocatable :: material_c4
|
||
real(pReal), dimension(:) , allocatable :: material_c5
|
||
real(pReal), dimension(:,:) , allocatable :: material_SlipIntCoeff
|
||
|
||
!************************************
|
||
!* Definition of texture properties *
|
||
!************************************
|
||
!* Number of textures, maximum number of Gauss and Fiber components
|
||
integer(pInt) texture_maxN
|
||
integer(pInt) texture_maxNGauss
|
||
integer(pInt) texture_maxNFiber
|
||
!* Textures definition
|
||
character(len=80), dimension(:), allocatable :: texture_ODFfile
|
||
character(len=80), dimension(:), allocatable :: texture_symmetry
|
||
integer(pInt), dimension(:) , allocatable :: texture_Ngrains
|
||
integer(pInt), dimension(:) , allocatable :: texture_NGauss
|
||
integer(pInt),dimension(:) , allocatable :: texture_NFiber
|
||
integer(pInt),dimension(:) , allocatable :: texture_NRandom
|
||
integer(pInt),dimension(:) , allocatable :: texture_totalNgrains
|
||
real(pReal), dimension(:,:,:) , allocatable :: texture_Gauss
|
||
real(pReal), dimension(:,:,:) , allocatable :: texture_Fiber
|
||
real(pReal), dimension(:,:,:,:), allocatable :: constitutive_EulerAngles
|
||
|
||
!************************************
|
||
!* Grains *
|
||
!************************************
|
||
integer(pInt) constitutive_maxNgrains
|
||
integer(pInt), dimension(:,:) , allocatable :: constitutive_Ngrains
|
||
integer(pInt), dimension(:,:,:) , allocatable :: constitutive_matID
|
||
real(pReal), dimension(:,:,:) , allocatable :: constitutive_matVolFrac
|
||
integer(pInt), dimension(:,:,:) , allocatable :: constitutive_texID
|
||
real(pReal), dimension(:,:,:) , allocatable :: constitutive_texVolFrac
|
||
|
||
!************************************
|
||
!* State variables *
|
||
!************************************
|
||
integer(pInt) constitutive_maxNstatevars
|
||
integer(pInt), dimension(:,:,:), allocatable :: constitutive_Nstatevars
|
||
real(pReal), dimension(:,:,:,:), allocatable :: constitutive_state_old
|
||
real(pReal), dimension(:,:,:,:), allocatable :: constitutive_state_new
|
||
real(pReal), dimension(:) , allocatable :: constitutive_passing_stress
|
||
real(pReal), dimension(:) , allocatable :: constitutive_jump_width
|
||
real(pReal), dimension(:) , allocatable :: constitutive_activation_volume
|
||
real(pReal), dimension(:) , allocatable :: constitutive_rho_m
|
||
real(pReal), dimension(:) , allocatable :: constitutive_rho_f
|
||
real(pReal), dimension(:) , allocatable :: constitutive_rho_p
|
||
real(pReal), dimension(:) , allocatable :: constitutive_g0_slip
|
||
|
||
!************************************
|
||
!* Interaction matrices *
|
||
!************************************
|
||
real(pReal), dimension(:,:,:), allocatable :: constitutive_Pforest
|
||
real(pReal), dimension(:,:,:), allocatable :: constitutive_Pparallel
|
||
|
||
!************************************
|
||
!* Results *
|
||
!************************************
|
||
integer(pInt) constitutive_maxNresults
|
||
integer(pInt), dimension(:,:,:), allocatable :: constitutive_Nresults
|
||
real(pReal), dimension(:,:,:,:), allocatable :: constitutive_results
|
||
|
||
|
||
|
||
CONTAINS
|
||
!****************************************
|
||
!* - constitutive_Init
|
||
!* - constitutive_CountSections
|
||
!* - constitutive_Parse_UnknownPart
|
||
!* - constitutive_Parse_MaterialPart
|
||
!* - constitutive_Parse_TexturePart
|
||
!* - constitutive_Parse_MatTexDat
|
||
!* - constitutive_Assignment
|
||
!* - constitutive_HomogenizedC
|
||
!* - constitutive_Microstructure
|
||
!* - constitutive_LpAndItsTangent
|
||
!* - consistutive_DotState
|
||
!****************************************
|
||
|
||
|
||
subroutine constitutive_Init()
|
||
!**************************************
|
||
!* Module initialization *
|
||
!**************************************
|
||
call constitutive_Parse_MatTexDat(mattexFile)
|
||
call constitutive_Assignment()
|
||
end subroutine
|
||
|
||
|
||
subroutine constitutive_CountSections(file,count,part)
|
||
!*********************************************************************
|
||
!* This subroutine reads a "part" from the input file until the next *
|
||
!* part is reached and counts the number of "sections" in the part *
|
||
!* INPUT: *
|
||
!* - file : file ID *
|
||
!* OUTPUT: *
|
||
!* - part : name of the next "part" *
|
||
!* - count : number of sections inside the current "part" *
|
||
!*********************************************************************
|
||
use prec, only: pInt
|
||
use IO, only: IO_stringPos,IO_stringValue,IO_lc
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=80) part,line,tag
|
||
integer(pInt) file,count
|
||
integer(pInt), dimension(3) :: positions
|
||
|
||
count=0
|
||
part=''
|
||
|
||
do
|
||
read(file,'(a80)',END=100) line
|
||
positions=IO_stringPos(line,1)
|
||
tag=IO_lc(IO_stringValue(line,positions,1))
|
||
if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines
|
||
cycle
|
||
elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then
|
||
part=tag(2:len_trim(tag)-1)
|
||
exit
|
||
elseif (tag(1:1)=='[') then
|
||
count=count+1
|
||
endif
|
||
enddo
|
||
100 return
|
||
|
||
end subroutine
|
||
|
||
|
||
character(len=80) function constitutive_assignNGaussAndFiber(file)
|
||
!*********************************************************************
|
||
!*********************************************************************
|
||
use prec, only: pInt
|
||
use IO, only: IO_stringPos,IO_stringValue,IO_lc
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=80) line,tag
|
||
integer(pInt) file,section
|
||
integer(pInt), dimension(3) :: positions
|
||
|
||
constitutive_assignNGaussAndFiber=''
|
||
section = 0_pInt
|
||
|
||
do
|
||
read(file,'(a80)',END=100) line
|
||
positions=IO_stringPos(line,1)
|
||
tag=IO_lc(IO_stringValue(line,positions,1))
|
||
if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines
|
||
cycle
|
||
elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then
|
||
constitutive_assignNGaussAndFiber=tag(2:len_trim(tag)-1)
|
||
exit
|
||
elseif (tag(1:1)=='[') then
|
||
section=section+1
|
||
texture_NGauss(section) = 0_pInt
|
||
texture_NFiber(section) = 0_pInt
|
||
elseif (tag=='(gauss)') then
|
||
texture_NGauss(section)=texture_NGauss(section)+1
|
||
elseif (tag=='(fiber)') then
|
||
texture_NFiber(section)=texture_NFiber(section)+1
|
||
endif
|
||
enddo
|
||
100 return
|
||
|
||
end function
|
||
|
||
|
||
character(len=80) function constitutive_Parse_UnknownPart(file)
|
||
!*********************************************************************
|
||
!* read an unknown "part" from the input file until *
|
||
!* the next part is reached *
|
||
!* INPUT: *
|
||
!* - file : file ID *
|
||
!*********************************************************************
|
||
use prec, only: pInt
|
||
use IO, only: IO_stringPos,IO_stringValue,IO_lc
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=80) line,tag
|
||
integer(pInt), parameter :: maxNchunks = 1
|
||
integer(pInt) file
|
||
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
||
|
||
constitutive_parse_unknownPart=''
|
||
|
||
do
|
||
read(file,'(a80)',END=100) line
|
||
positions=IO_stringPos(line,maxNchunks)
|
||
tag=IO_lc(IO_stringValue(line,positions,1))
|
||
if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines
|
||
cycle
|
||
elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then
|
||
constitutive_Parse_UnknownPart=tag(2:len_trim(tag)-1)
|
||
exit
|
||
endif
|
||
enddo
|
||
100 return
|
||
|
||
end function
|
||
|
||
|
||
character(len=80) function constitutive_Parse_MaterialPart(file)
|
||
!*********************************************************************
|
||
!* This function reads a material "part" from the input file until *
|
||
!* the next part is reached *
|
||
!* INPUT: *
|
||
!* - file : file ID *
|
||
!*********************************************************************
|
||
use prec, only: pInt,pReal
|
||
use IO
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=80) line,tag
|
||
integer(pInt), parameter :: maxNchunks = 7
|
||
integer(pInt) i,file,section
|
||
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
||
|
||
section = 0
|
||
constitutive_parse_materialPart = ''
|
||
|
||
do while(.true.)
|
||
read(file,'(a80)',END=100) line
|
||
positions=IO_stringPos(line,maxNchunks) ! parse leading chunks
|
||
tag=IO_lc(IO_stringValue(line,positions,1))
|
||
if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines
|
||
cycle
|
||
elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then
|
||
constitutive_parse_materialPart=tag(2:len_trim(tag)-1)
|
||
exit
|
||
elseif (tag(1:1)=='[') then
|
||
section=section+1
|
||
else
|
||
if (section>0) then
|
||
select case(tag)
|
||
case ('crystal_structure')
|
||
material_CrystalStructure(section)=IO_intValue(line,positions,2)
|
||
case ('nslip')
|
||
material_Nslip(section)=IO_intValue(line,positions,2)
|
||
case ('c11')
|
||
material_C11(section)=IO_floatValue(line,positions,2)
|
||
case ('c12')
|
||
material_C12(section)=IO_floatValue(line,positions,2)
|
||
case ('c13')
|
||
material_C13(section)=IO_floatValue(line,positions,2)
|
||
case ('c33')
|
||
material_C33(section)=IO_floatValue(line,positions,2)
|
||
case ('c44')
|
||
material_C44(section)=IO_floatValue(line,positions,2)
|
||
case ('rho0') !* conversion in 1/mm<6D>
|
||
material_rho0(section)=IO_floatValue(line,positions,2)/1.0e6_pReal
|
||
case ('interaction_coefficients')
|
||
do i=1,6
|
||
material_SlipIntCoeff(i,section)=IO_floatValue(line,positions,i+1)
|
||
enddo
|
||
case ('bg') !* conversion in mm
|
||
material_bg(section)=IO_floatValue(line,positions,2)*1.0e3_pReal
|
||
case ('Qedge') !* conversion in mJ/Kelvin
|
||
material_Qedge(section)=IO_floatValue(line,positions,2)*1.0e3_pReal
|
||
case ('tau0')
|
||
material_tau0(section)=IO_floatValue(line,positions,2)
|
||
case ('c1')
|
||
material_c1(section)=IO_floatValue(line,positions,2)
|
||
case ('c2')
|
||
material_c2(section)=IO_floatValue(line,positions,2)
|
||
case ('c3')
|
||
material_c3(section)=IO_floatValue(line,positions,2)
|
||
case ('c4')
|
||
material_c4(section)=IO_floatValue(line,positions,2)
|
||
case ('c5')
|
||
material_c5(section)=IO_floatValue(line,positions,2)
|
||
end select
|
||
endif
|
||
endif
|
||
enddo
|
||
100 return
|
||
|
||
end function
|
||
|
||
|
||
character(len=80) function constitutive_Parse_TexturePart(file)
|
||
!*********************************************************************
|
||
!* This function reads a texture "part" from the input file until *
|
||
!* the next part is reached *
|
||
!* INPUT: *
|
||
!* - file : file ID *
|
||
!*********************************************************************
|
||
use prec, only: pInt
|
||
use IO
|
||
use math, only: inRad
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=80) line,tag
|
||
integer(pInt), parameter :: maxNchunks = 13 ! may be more than 10 chunks ..?
|
||
integer(pInt) file,section,gaussCount,fiberCount,i
|
||
integer(pInt), dimension(1+2*maxNchunks) :: positions
|
||
|
||
section = 0
|
||
gaussCount = 0
|
||
fiberCount = 0
|
||
constitutive_parse_texturePart = ''
|
||
|
||
do while(.true.)
|
||
read(file,'(a80)',END=100) line
|
||
positions=IO_stringPos(line,maxNchunks) ! parse leading chunks
|
||
tag=IO_lc(IO_stringValue(line,positions,1))
|
||
if (tag(1:1)=='#' .OR. positions(1)==0) then ! skip comment and empty lines
|
||
cycle
|
||
elseif (tag(1:1)=='<'.AND.tag(len_trim(tag):len_trim(tag))=='>') then
|
||
constitutive_parse_texturePart=tag(2:len_trim(tag)-1)
|
||
exit
|
||
elseif (tag(1:1)=='[') then
|
||
section=section+1
|
||
gaussCount=0
|
||
fiberCount=0
|
||
else
|
||
if (section>0) then
|
||
select case(tag)
|
||
case ('hybridIA')
|
||
texture_ODFfile(section)=IO_stringValue(line,positions,2)
|
||
case ('(gauss)')
|
||
gaussCount=gaussCount+1
|
||
do i=2,10,2
|
||
tag=IO_lc(IO_stringValue(line,positions,i))
|
||
select case (tag)
|
||
case('phi1')
|
||
texture_Gauss(1,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('phi')
|
||
texture_Gauss(2,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('phi2')
|
||
texture_Gauss(3,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('scatter')
|
||
texture_Gauss(4,gaussCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('fraction')
|
||
texture_Gauss(5,gaussCount,section)=IO_floatValue(line,positions,i+1)
|
||
end select
|
||
enddo
|
||
case ('(fiber)')
|
||
fiberCount=fiberCount+1
|
||
do i=2,12,2
|
||
tag=IO_lc(IO_stringValue(line,positions,i))
|
||
select case (tag)
|
||
case('alpha1')
|
||
texture_fiber(1,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('alpha2')
|
||
texture_fiber(2,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('beta1')
|
||
texture_fiber(3,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('beta2')
|
||
texture_fiber(4,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('scatter')
|
||
texture_fiber(5,fiberCount,section)=IO_floatValue(line,positions,i+1)*inRad
|
||
case('fraction')
|
||
texture_fiber(6,fiberCount,section)=IO_floatValue(line,positions,i+1)
|
||
end select
|
||
enddo
|
||
case ('ngrains')
|
||
texture_Ngrains(section)=IO_intValue(line,positions,2)
|
||
case ('symmetry')
|
||
texture_symmetry(section)=IO_stringValue(line,positions,2)
|
||
end select
|
||
endif
|
||
endif
|
||
enddo
|
||
100 return
|
||
|
||
end function
|
||
|
||
|
||
subroutine constitutive_Parse_MatTexDat(filename)
|
||
!*********************************************************************
|
||
!* This function reads the material and texture input file *
|
||
!* INPUT: *
|
||
!* - filename : name of input file *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use IO, only: IO_error, IO_open_file
|
||
use math, only: math_Mandel3333to66, math_Voigt66to3333
|
||
use crystal, only: crystal_MaxMaxNslipOfStructure
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
character(len=*) filename
|
||
character(len=80) part,formerPart
|
||
integer(pInt) sectionCount,i,j,k, fileunit
|
||
|
||
! set fileunit
|
||
fileunit=200
|
||
!-----------------------------
|
||
!* First reading: number of materials and textures
|
||
!-----------------------------
|
||
!* determine material_maxN and texture_maxN from last respective parts
|
||
if(IO_open_file(fileunit,filename)==.false.) goto 100
|
||
part = '_dummy_'
|
||
do while (part/='')
|
||
formerPart = part
|
||
call constitutive_CountSections(fileunit,sectionCount,part)
|
||
select case (formerPart)
|
||
case ('materials')
|
||
material_maxN = sectionCount
|
||
case ('textures')
|
||
texture_maxN = sectionCount
|
||
end select
|
||
enddo
|
||
!* Array allocation
|
||
allocate(material_CrystalStructure(material_maxN)) ; material_CrystalStructure=0_pInt
|
||
allocate(material_Nslip(material_maxN)) ; material_Nslip=0_pInt
|
||
allocate(material_C11(material_maxN)) ; material_C11=0.0_pReal
|
||
allocate(material_C12(material_maxN)) ; material_C12=0.0_pReal
|
||
allocate(material_C13(material_maxN)) ; material_C13=0.0_pReal
|
||
allocate(material_C33(material_maxN)) ; material_C33=0.0_pReal
|
||
allocate(material_C44(material_maxN)) ; material_C44=0.0_pReal
|
||
allocate(material_Gmod(material_maxN)) ; material_Gmod=0.0_pReal
|
||
allocate(material_Cslip_66(6,6,material_maxN)) ; material_Cslip_66=0.0_pReal
|
||
allocate(material_rho0(material_maxN)) ; material_rho0=0.0_pReal
|
||
allocate(material_SlipIntCoeff(crystal_MaxMaxNslipOfStructure,material_maxN)) ; material_SlipIntCoeff=0.0_pReal
|
||
allocate(material_bg(material_maxN)) ; material_bg=0.0_pReal
|
||
allocate(material_Qedge(material_maxN)) ; material_Qedge=0.0_pReal
|
||
allocate(material_tau0(material_maxN)) ; material_tau0=0.0_pReal
|
||
allocate(material_c1(material_maxN)) ; material_c1=0.0_pReal
|
||
allocate(material_c2(material_maxN)) ; material_c2=0.0_pReal
|
||
allocate(material_c3(material_maxN)) ; material_c3=0.0_pReal
|
||
allocate(material_c4(material_maxN)) ; material_c4=0.0_pReal
|
||
allocate(material_c5(material_maxN)) ; material_c5=0.0_pReal
|
||
allocate(texture_ODFfile(texture_maxN)) ; texture_ODFfile=''
|
||
allocate(texture_Ngrains(texture_maxN)) ; texture_Ngrains=0_pInt
|
||
allocate(texture_symmetry(texture_maxN)) ; texture_symmetry=''
|
||
allocate(texture_NGauss(texture_maxN)) ; texture_NGauss=0_pInt
|
||
allocate(texture_NFiber(texture_maxN)) ; texture_NFiber=0_pInt
|
||
allocate(texture_NRandom(texture_maxN)) ; texture_NRandom=0_pInt
|
||
|
||
!-----------------------------
|
||
!* Second reading: number of Gauss and Fiber
|
||
!-----------------------------
|
||
rewind(fileunit)
|
||
part = '_dummy_'
|
||
do while (part/='')
|
||
select case (part)
|
||
case ('textures')
|
||
part = constitutive_assignNGaussAndFiber(fileunit)
|
||
case default
|
||
part = constitutive_Parse_UnknownPart(fileunit)
|
||
end select
|
||
enddo
|
||
!* Array allocation
|
||
texture_maxNGauss=maxval(texture_NGauss)
|
||
texture_maxNFiber=maxval(texture_NFiber)
|
||
allocate(texture_Gauss(5,texture_maxNGauss,texture_maxN)) ; texture_Gauss=0.0_pReal
|
||
allocate(texture_Fiber(6,texture_maxNFiber,texture_maxN)) ; texture_Fiber=0.0_pReal
|
||
|
||
!-----------------------------
|
||
!* Third reading: materials and textures are stored
|
||
!-----------------------------
|
||
rewind(fileunit)
|
||
part='_dummy_'
|
||
do while (part/='')
|
||
select case (part)
|
||
case ('materials')
|
||
part=constitutive_Parse_MaterialPart(fileunit)
|
||
case ('textures')
|
||
part=constitutive_Parse_TexturePart(fileunit)
|
||
case default
|
||
part=constitutive_Parse_UnknownPart(fileunit)
|
||
end select
|
||
enddo
|
||
close(fileunit)
|
||
|
||
|
||
!* Construction of the elasticity matrices
|
||
do i=1,material_maxN
|
||
material_Gmod(i)=material_C44(i)
|
||
select case (material_CrystalStructure(i))
|
||
case(1:2) ! cubic(s)
|
||
do k=1,3
|
||
do j=1,3
|
||
material_Cslip_66(k,j,i)=material_C12(i)
|
||
enddo
|
||
material_Cslip_66(k,k,i)=material_C11(i)
|
||
material_Cslip_66(k+3,k+3,i)=material_C44(i)
|
||
enddo
|
||
case(3) ! hcp
|
||
material_Cslip_66(1,1,i)=material_C11(i)
|
||
material_Cslip_66(2,2,i)=material_C11(i)
|
||
material_Cslip_66(3,3,i)=material_C33(i)
|
||
material_Cslip_66(1,2,i)=material_C12(i)
|
||
material_Cslip_66(2,1,i)=material_C12(i)
|
||
material_Cslip_66(1,3,i)=material_C13(i)
|
||
material_Cslip_66(3,1,i)=material_C13(i)
|
||
material_Cslip_66(2,3,i)=material_C13(i)
|
||
material_Cslip_66(3,2,i)=material_C13(i)
|
||
material_Cslip_66(4,4,i)=material_C44(i)
|
||
material_Cslip_66(5,5,i)=material_C44(i)
|
||
material_Cslip_66(6,6,i)=0.5_pReal*(material_C11(i)-material_C12(i))
|
||
end select
|
||
material_Cslip_66(:,:,i) = math_Mandel3333to66(math_Voigt66to3333(material_Cslip_66(:,:,i)))
|
||
enddo
|
||
|
||
|
||
! MISSING some consistency checks may be..?
|
||
! if ODFfile present then set NGauss NFiber =0
|
||
return
|
||
100 call IO_error(200) ! corrupt materials_textures file
|
||
end subroutine
|
||
|
||
|
||
subroutine constitutive_Assignment()
|
||
!*********************************************************************
|
||
!* This subroutine assign material parameters according to ipc,ip,el *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use math, only: math_sampleGaussOri,math_sampleFiberOri,math_sampleRandomOri,math_symmetricEulers,math_EulerToR
|
||
use mesh, only: mesh_NcpElems,FE_Nips,FE_mapElemtype,mesh_maxNips,mesh_element
|
||
use IO, only: IO_hybridIA
|
||
use crystal, only: crystal_MaxNslipOfStructure,crystal_SlipIntType,crystal_sn,crystal_st
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) e,i,j,k,l,m,o,g,s
|
||
integer(pInt) matID,texID
|
||
real(pReal) K_inter,x,y
|
||
integer(pInt), dimension(:,:,:), allocatable :: hybridIA_population
|
||
integer(pInt), dimension(texture_maxN) :: Ncomponents,Nsym,multiplicity,sumVolfrac,ODFmap,sampleCount
|
||
real(pReal), dimension(3,4*(1+texture_maxNGauss+texture_maxNfiber)) :: Euler
|
||
real(pReal), dimension(4*(1+texture_maxNGauss+texture_maxNfiber)) :: texVolfrac
|
||
|
||
! process textures
|
||
o = 0_pInt ! ODF counter
|
||
ODFmap = 0_pInt ! blank mapping
|
||
sampleCount = 0_pInt ! count orientations assigned per texture
|
||
|
||
do texID=1,texture_maxN
|
||
select case (texture_symmetry(texID)) ! set symmetry factor
|
||
case ('orthotropic')
|
||
Nsym(texID) = 4_pInt
|
||
case ('monoclinic')
|
||
Nsym(texID) = 2_pInt
|
||
case default
|
||
Nsym(texID) = 1_pInt
|
||
end select
|
||
if (texture_ODFfile(texID)=='') then ! texture components
|
||
sumVolfrac(texID) = sum(texture_gauss(5,:,texID))+sum(texture_fiber(6,:,texID))
|
||
if (sumVolfrac(texID)<1.0_pReal) texture_NRandom(texID) = 1_pInt ! check whether random component missing
|
||
Ncomponents(texID) = texture_NGauss(texID)+texture_NFiber(texID)+texture_NRandom(texID)
|
||
else ! hybrid IA
|
||
o = o+1
|
||
ODFmap(texID) = o ! remember mapping
|
||
Ncomponents(texID) = 1_pInt ! single "component"
|
||
endif
|
||
! adjust multiplicity and number of grains per IP of components
|
||
multiplicity(texID) = max(1_pInt,texture_Ngrains(texID)/Ncomponents(texID)/Nsym(texID))
|
||
if (mod(texture_Ngrains(texID),Ncomponents(texID)*Nsym(texID)) /= 0_pInt) then
|
||
texture_Ngrains(texID) = multiplicity(texID)*Ncomponents(texID)*Nsym(texID)
|
||
write (6,*) 'changed Ngrains to',texture_Ngrains(texID),' for texture',texID
|
||
endif
|
||
enddo
|
||
|
||
!* publish globals
|
||
constitutive_maxNgrains = maxval(texture_Ngrains)
|
||
material_maxNslip = maxval(material_Nslip) ! max # of slip systems among materials present
|
||
constitutive_maxNstatevars = maxval(material_Nslip) + 0_pInt
|
||
constitutive_maxNresults = 1_pInt
|
||
|
||
!* calc texture_totalNgrains
|
||
allocate(texture_totalNgrains(texture_maxN)) ; texture_totalNgrains=0_pInt
|
||
do i=1,mesh_NcpElems
|
||
texID = mesh_element(4,i)
|
||
texture_totalNgrains(texID) = texture_totalNgrains(texID) + FE_Nips(FE_mapElemtype(mesh_element(2,i)))*texture_Ngrains(texID)
|
||
enddo
|
||
|
||
! generate hybridIA samplings for ODFfile textures to later draw from these populations
|
||
allocate(hybridIA_population(3,maxval(texture_totalNgrains/Nsym,ODFmap /= 0),o))
|
||
do texID = 1,texture_maxN
|
||
if (ODFmap(texID) > 0) &
|
||
hybridIA_population(:,:,ODFmap(texID)) = IO_hybridIA(texture_totalNgrains(texID)/Nsym(texID),texture_ODFfile(texID))
|
||
enddo
|
||
|
||
!* Array allocation
|
||
allocate(constitutive_Ngrains(mesh_maxNips,mesh_NcpElems)) ; constitutive_Ngrains=0_pInt
|
||
allocate(constitutive_matID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_matID=0_pInt
|
||
allocate(constitutive_texID(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_texID=0_pInt
|
||
allocate(constitutive_MatVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_MatVolFrac=0.0_pReal
|
||
allocate(constitutive_TexVolFrac(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_TexVolFrac=0.0_pReal
|
||
allocate(constitutive_EulerAngles(3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_EulerAngles=0.0_pReal
|
||
allocate(constitutive_Nresults(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nresults=0_pInt
|
||
allocate(constitutive_results(constitutive_maxNresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
|
||
constitutive_results=0.0_pReal
|
||
allocate(constitutive_Nstatevars(constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems)) ; constitutive_Nstatevars=0_pInt
|
||
allocate(constitutive_state_old(constitutive_maxNstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
|
||
constitutive_state_old=0.0_pReal
|
||
allocate(constitutive_state_new(constitutive_maxNstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
|
||
constitutive_state_new=0.0_pReal
|
||
allocate(constitutive_Pforest(material_maxNslip,constitutive_material_maxNslip,material_maxN))
|
||
constitutive_Pforest=0.0_pReal
|
||
allocate(constitutive_Pparallel(material_maxNslip,material_maxNslip,material_maxN))
|
||
constitutive_Pparallel=0.0_pReal
|
||
allocate(constitutive_rho_p(material_maxNslip)) ; constitutive_rho_p=0.0_pReal
|
||
allocate(constitutive_rho_f(material_maxNslip)) ; constitutive_rho_f=0.0_pReal
|
||
allocate(constitutive_rho_m(material_maxNslip)) ; constitutive_rho_m=0.0_pReal
|
||
allocate(constitutive_passing_stress(material_maxNslip)) ; constitutive_passing_stress=0.0_pReal
|
||
allocate(constitutive_jump_width(material_maxNslip)) ; constitutive_jump_width=0.0_pReal
|
||
allocate(constitutive_activation_volume(material_maxNslip)) ; constitutive_activation_volume=0.0_pReal
|
||
allocate(constitutive_g0_slip(material_maxNslip)) ; constitutive_g0_slip=0.0_pReal
|
||
|
||
!* Assignment of all grains in all IPs of all cp-elements
|
||
do e=1,mesh_NcpElems
|
||
matID=mesh_element(3,e)
|
||
texID=mesh_element(4,e)
|
||
do i=1,FE_Nips(FE_mapElemtype(mesh_element(2,e)))
|
||
g = 0_pInt ! grain counter
|
||
do m = 1,multiplicity(texID)
|
||
o = 0_pInt ! component counter
|
||
if (texture_ODFfile(texID)=='') then
|
||
do k = 1,texture_nGauss(texID) ! *** gauss ***
|
||
o = o+1
|
||
Euler(:,o) = math_sampleGaussOri(texture_Gauss(1:3,k,texID),texture_Gauss(4,k,texID))
|
||
texVolFrac(o) = texture_Gauss(5,k,texID)
|
||
enddo
|
||
do k = 1,texture_nFiber(texID) ! *** fiber ***
|
||
o = o+1
|
||
Euler(:,o) = math_sampleFiberOri(texture_Fiber(1:2,k,texID),texture_Fiber(3:4,k,texID),texture_Fiber(5,k,texID))
|
||
texVolFrac(o) = texture_Fiber(6,k,texID)
|
||
enddo
|
||
do k = 1,texture_nRandom(texID) ! *** random ***
|
||
o = o+1
|
||
Euler(:,o) = math_sampleRandomOri()
|
||
texVolfrac(o) = 1.0_pReal-sumVolfrac(texID)
|
||
enddo
|
||
else ! *** hybrid IA ***
|
||
o = 1 ! only singular orientation, i.e. single "component"
|
||
Euler(:,o) = hybridIA_population(:,1+sampleCount(texID),ODFmap(texID))
|
||
texVolfrac(o) = 1.0_pReal
|
||
endif
|
||
if (Nsym(texID) > 1) then ! symmetry generates additional orientations
|
||
forall (k=1:o)
|
||
Euler(:,1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = &
|
||
math_symmetricEulers(texture_symmetry(texID),Euler(:,k))
|
||
texVolfrac(1+o+(Nsym(texID)-1)*(k-1):3+o+(Nsym(texID)-1)*(k-1)) = texVolfrac(k)
|
||
end forall
|
||
endif
|
||
do s = 1,Nsym(texID)*o ! loop over orientations to be assigned to ip (ex multiplicity)
|
||
g = g+1 ! next "grain"
|
||
constitutive_matID(g,i,e) = matID ! copy matID of element
|
||
constitutive_texID(g,i,e) = texID ! copy texID of element
|
||
constitutive_MatVolFrac(g,i,e) = 1.0_pReal ! singular material (so far)
|
||
constitutive_TexVolFrac(g,i,e) = texVolfrac(s)/multiplicity(texID)/Nsym(texID)
|
||
constitutive_Nstatevars(g,i,e) = material_Nslip(matID) ! number of state variables (i.e. tau_c of each slip system)
|
||
constitutive_Nresults(g,i,e) = 0 ! number of constitutive results
|
||
constitutive_EulerAngles(:,g,i,e) = Euler(:,s) ! store initial orientation
|
||
forall (l=1:constitutive_Nstatevars(g,i,e)) ! initialize state variables
|
||
constitutive_state_old(l,g,i,e) = material_rho0(matID)
|
||
constitutive_state_new(l,g,i,e) = material_rho0(matID)
|
||
end forall
|
||
enddo ! components
|
||
sampleCount(texID) = sampleCount(texID)+1 ! next member of hybrid IA population
|
||
enddo ! multiplicity
|
||
enddo ! ip
|
||
enddo ! cp_element
|
||
|
||
|
||
!* Construction of the hardening matrices
|
||
do i=1,material_maxN
|
||
!* Iteration over the systems
|
||
do j=1,material_Nslip(i)
|
||
do k=1,material_Nslip(i)
|
||
!* Projection of the dislocation *
|
||
x=dot_product(crystal_sn(:,j,i),crystal_st(:,k,i))
|
||
y=1.0_pReal-x**(2.0_pReal)
|
||
!* Interaction matrix *
|
||
constitutive_Pforest(j,k,i)=abs(x)*material_SlipIntCoeff(crystal_SlipIntType(j,k,i),i)
|
||
if (y>0.0_pReal) then
|
||
constitutive_Pparallel(j,k,i)=sqrt(y)*material_SlipIntCoeff(crystal_SlipIntType(j,k,i),i)
|
||
else
|
||
constitutive_Pparallel(j,k,i)=0.0_pReal
|
||
endif
|
||
enddo
|
||
enddo
|
||
enddo
|
||
|
||
end subroutine
|
||
|
||
|
||
function constitutive_HomogenizedC(ipc,ip,el)
|
||
!*********************************************************************
|
||
!* This function returns the homogenized elacticity matrix *
|
||
!* INPUT: *
|
||
!* - ipc : component-ID of current integration point *
|
||
!* - ip : current integration point *
|
||
!* - el : current element *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) ipc,ip,el
|
||
real(pReal), dimension(6,6) :: constitutive_homogenizedC
|
||
|
||
!* Homogenization scheme
|
||
constitutive_homogenizedC=constitutive_MatVolFrac(ipc,ip,el)*material_Cslip_66(:,:,constitutive_matID(ipc,ip,el))
|
||
|
||
return
|
||
end function
|
||
|
||
|
||
subroutine constitutive_Microstructure(state,Tp,ipc,ip,el)
|
||
!*********************************************************************
|
||
!* This function calculates from state needed variables *
|
||
!* INPUT: *
|
||
!* - state : state variables *
|
||
!* - Tp : temperature *
|
||
!* - ipc : component-ID of current integration point *
|
||
!* - ip : current integration point *
|
||
!* - el : current element *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) ipc,ip,el
|
||
integer(pInt) matID,i
|
||
real(pReal) Tp
|
||
real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state
|
||
|
||
!* Get the material-ID from the triplet(ipc,ip,el)
|
||
matID = constitutive_matID(ipc,ip,el)
|
||
|
||
!* Quantities derivated from state
|
||
constitutive_rho_f=matmul(constitutive_Pforest (1:material_Nslip(matID),1:material_Nslip(matID),matID),state)
|
||
constitutive_rho_p=matmul(constitutive_Pparallel(1:material_Nslip(matID),1:material_Nslip(matID),matID),state)
|
||
do i=1,material_Nslip(matID)
|
||
constitutive_passing_stress(i)=material_tau0(matID)+material_c1(matID)*material_Gmod(matID)*material_bg(matID)*&
|
||
sqrt(constitutive_rho_p(i))
|
||
constitutive_jump_width(i)=material_c2(matID)/sqrt(constitutive_rho_f(i))
|
||
constitutive_activation_volume(i)=material_c3(matID)*constitutive_jump_width(i)*material_bg(matID)**2.0_pReal
|
||
constitutive_rho_m(i)=(2.0_pReal*Kb*Tp*sqrt(constitutive_rho_p(i)))/&
|
||
(material_c1(matID)*material_c3(matID)*material_Gmod(matID)*constitutive_jump_width(i)*material_bg(matID)**3.0_pReal)
|
||
constitutive_g0_slip(i)=constitutive_rho_m(i)*material_bg(matID)*attack_frequency*constitutive_jump_width(i)*&
|
||
exp(-(material_Qedge(matID)+constitutive_passing_stress(i)*constitutive_activation_volume(i))/&
|
||
(Kb*Tp))
|
||
enddo
|
||
|
||
end subroutine
|
||
|
||
|
||
subroutine constitutive_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,state,Tp,ipc,ip,el)
|
||
!*********************************************************************
|
||
!* This subroutine contains the constitutive equation for *
|
||
!* calculating the velocity gradient *
|
||
!* INPUT: *
|
||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||
!* - state : current microstructure *
|
||
!* - Tp : temperature *
|
||
!* - ipc : component-ID of current integration point *
|
||
!* - ip : current integration point *
|
||
!* - el : current element *
|
||
!* OUTPUT: *
|
||
!* - Lp : plastic velocity gradient *
|
||
!* - dLp_dTstar : derivative of Lp (4th-order tensor) *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use crystal, only: crystal_Sslip,crystal_Sslip_v
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) ipc,ip,el
|
||
integer(pInt) matID,i,k,l,m,n
|
||
real(pReal) Tp
|
||
real(pReal), dimension(6) :: Tstar_v
|
||
real(pReal), dimension(3,3) :: Lp
|
||
real(pReal), dimension(3,3,3,3) :: dLp_dTstar
|
||
real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state,gdot_slip,dgdot_dtauslip,tau_slip
|
||
|
||
!* Get the material-ID from the triplet(ipc,ip,el)
|
||
matID = constitutive_matID(ipc,ip,el)
|
||
|
||
!* Calculation of Lp
|
||
Lp = 0.0_pReal
|
||
do i=1,material_Nslip(matID)
|
||
tau_slip(i)=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID)))
|
||
gdot_slip(i)=constitutive_g0_slip(i)*sinh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp))*&
|
||
sign(1.0_pReal,tau_slip(i))
|
||
Lp=Lp+gdot_slip(i)*crystal_Sslip(:,:,i,material_CrystalStructure(matID))
|
||
enddo
|
||
|
||
!* Calculation of the tangent of Lp
|
||
dLp_dTstar=0.0_pReal
|
||
do i=1,material_Nslip(matID)
|
||
dgdot_dtauslip(i)=((constitutive_g0_slip(i)*constitutive_activation_volume(i))/(Kb*Tp))*&
|
||
cosh((abs(tau_slip(i))*constitutive_activation_volume(i))/(Kb*Tp))
|
||
forall (k=1:3,l=1:3,m=1:3,n=1:3)
|
||
dLp_dTstar(k,l,m,n) = dLp_dTstar(k,l,m,n)+ &
|
||
dgdot_dtauslip(i)*crystal_Sslip(k,l,i,material_CrystalStructure(matID))* &
|
||
(crystal_Sslip(m,n,i,material_CrystalStructure(matID))+ &
|
||
crystal_Sslip(n,m,i,material_CrystalStructure(matID)))/2.0_pReal ! force m,n symmetry
|
||
endforall
|
||
enddo
|
||
|
||
return
|
||
end subroutine
|
||
|
||
|
||
function constitutive_dotState(Tstar_v,state,Tp,ipc,ip,el)
|
||
!*********************************************************************
|
||
!* This subroutine contains the constitutive equation for *
|
||
!* calculating the velocity gradient *
|
||
!* INPUT: *
|
||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||
!* - state : current microstructure *
|
||
!* - Tp : temperature *
|
||
!* - ipc : component-ID of current integration point *
|
||
!* - ip : current integration point *
|
||
!* - el : current element *
|
||
!* OUTPUT: *
|
||
!* - constitutive_DotState : evolution of state variable *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use crystal, only: crystal_Sslip_v
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) ipc,ip,el
|
||
integer(pInt) matID,i
|
||
real(pReal) Tp,tau_slip,gdot_slip
|
||
real(pReal), dimension(6) :: Tstar_v
|
||
real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: constitutive_dotState,state,lock,recovery
|
||
|
||
!* Get the material-ID from the triplet(ipc,ip,el)
|
||
matID = constitutive_matID(ipc,ip,el)
|
||
|
||
!* Hardening of each system
|
||
do i=1,constitutive_Nstatevars(ipc,ip,el)
|
||
tau_slip = dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID)))
|
||
gdot_slip = constitutive_g0_slip(i)*sinh((abs(tau_slip)*constitutive_activation_volume(i))/(Kb*Tp))*&
|
||
sign(1.0_pReal,tau_slip)
|
||
if (abs(tau_slip)>1.0e-20_pReal) then
|
||
lock(i)=(material_c4(matID)*sqrt(constitutive_rho_f(i))*abs(gdot_slip))/material_bg(matID)
|
||
recovery(i)=material_c5(matID)*state(i)*abs(gdot_slip)
|
||
constitutive_dotState(i)=lock(i)-recovery(i)
|
||
else
|
||
constitutive_dotState(i)=0.0_pReal
|
||
endif
|
||
enddo
|
||
|
||
return
|
||
end function
|
||
|
||
|
||
function constitutive_post_results(Tstar_v,state,dt,Tp,ipc,ip,el)
|
||
!*********************************************************************
|
||
!* return array of constitutive results *
|
||
!* INPUT: *
|
||
!* - Tstar_v : 2nd Piola Kirchhoff stress tensor (Mandel) *
|
||
!* - state : current microstructure *
|
||
!* - dt : current time increment *
|
||
!* - Tp : temperature *
|
||
!* - ipc : component-ID of current integration point *
|
||
!* - ip : current integration point *
|
||
!* - el : current element *
|
||
!*********************************************************************
|
||
use prec, only: pReal,pInt
|
||
use crystal, only: crystal_Sslip_v
|
||
implicit none
|
||
|
||
!* Definition of variables
|
||
integer(pInt) ipc,ip,el
|
||
integer(pInt) matID,i
|
||
real(pReal) dt,Tp,tau_slip
|
||
real(pReal), dimension(6) :: Tstar_v
|
||
real(pReal), dimension(constitutive_Nstatevars(ipc,ip,el)) :: state
|
||
real(pReal), dimension(constitutive_Nresults(ipc,ip,el)) :: constitutive_post_results
|
||
|
||
!* Get the material-ID from the triplet(ipc,ip,el)
|
||
matID = constitutive_matID(ipc,ip,el)
|
||
|
||
if(constitutive_Nresults(ipc,ip,el)==0) return
|
||
|
||
do i=1,material_Nslip(matID)
|
||
constitutive_post_results(i) = state(i)
|
||
tau_slip=dot_product(Tstar_v,crystal_Sslip_v(:,i,material_CrystalStructure(matID)))
|
||
constitutive_post_results(i+material_Nslip(matID)) = &
|
||
dt*constitutive_g0_slip(i)*sinh((abs(tau_slip)*constitutive_activation_volume(i))/(Kb*Tp))*&
|
||
sign(1.0_pReal,tau_slip)
|
||
enddo
|
||
return
|
||
|
||
end function
|
||
|
||
END MODULE |