139 lines
6.4 KiB
Python
Executable File
139 lines
6.4 KiB
Python
Executable File
#!/usr/bin/env python3
|
|
|
|
import argparse
|
|
import os
|
|
|
|
import h5py
|
|
import numpy as np
|
|
|
|
import damask
|
|
|
|
class AttributeManagerNullterm(h5py.AttributeManager):
|
|
"""
|
|
Attribute management for DREAM.3D hdf5 files.
|
|
|
|
String attribute values are stored as fixed-length string with NULLTERM
|
|
|
|
References
|
|
----------
|
|
https://stackoverflow.com/questions/38267076
|
|
https://stackoverflow.com/questions/52750232
|
|
|
|
"""
|
|
|
|
def create(self, name, data, shape=None, dtype=None):
|
|
if isinstance(data,str):
|
|
tid = h5py.h5t.C_S1.copy()
|
|
tid.set_size(len(data + ' '))
|
|
super().create(name=name,data=data+' ',dtype = h5py.Datatype(tid))
|
|
else:
|
|
super().create(name=name,data=data,shape=shape,dtype=dtype)
|
|
|
|
|
|
h5py._hl.attrs.AttributeManager = AttributeManagerNullterm # 'Monkey patch'
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# Crystal structure specifications
|
|
# --------------------------------------------------------------------
|
|
Crystal_structures = {'fcc': 1,
|
|
'bcc': 1,
|
|
'hcp': 0,
|
|
'bct': 7,
|
|
'ort': 6} #TODO: is bct Tetragonal low/Tetragonal high?
|
|
Phase_types = {'Primary': 0} #further additions to these can be done by looking at 'Create Ensemble Info' filter
|
|
|
|
|
|
# --------------------------------------------------------------------
|
|
# MAIN
|
|
# --------------------------------------------------------------------
|
|
parser = argparse.ArgumentParser(description='Creating a file for DREAM3D from DAMASK data')
|
|
parser.add_argument('filenames', nargs='+',
|
|
help='DADF5 files')
|
|
parser.add_argument('-d','--dir', dest='dir',default='postProc',metavar='string',
|
|
help='name of subdirectory relative to the location of the DADF5 file to hold output')
|
|
parser.add_argument('--inc',nargs='+',
|
|
help='Increment for which DREAM3D to be used, eg. 25',type=int)
|
|
|
|
options = parser.parse_args()
|
|
|
|
for filename in options.filenames:
|
|
f = damask.Result(filename)
|
|
N_digits = int(np.floor(np.log10(int(f.increments[-1][3:]))))+1
|
|
|
|
f.pick('increments',options.inc)
|
|
for inc in damask.util.show_progress(f.iterate('increments'),len(f.selection['increments'])):
|
|
dirname = os.path.abspath(os.path.join(os.path.dirname(filename),options.dir))
|
|
try:
|
|
os.mkdir(dirname)
|
|
except FileExistsError:
|
|
pass
|
|
|
|
o = h5py.File(dirname + '/' + os.path.splitext(filename)[0] \
|
|
+ 'inc_{}.dream3D'.format(inc[3:].zfill(N_digits)),'w')
|
|
o.attrs['DADF5toDREAM3D'] = '1.0'
|
|
o.attrs['FileVersion'] = '7.0'
|
|
|
|
for g in ['DataContainerBundles','Pipeline']: # empty groups (needed)
|
|
o.create_group(g)
|
|
|
|
data_container_label = 'DataContainers/ImageDataContainer'
|
|
cell_data_label = data_container_label + '/CellData'
|
|
|
|
# Phase information of DREAM.3D is constituent ID in DAMASK
|
|
o[cell_data_label + '/Phases'] = f.get_constituent_ID().reshape(tuple(f.grid)+(1,))
|
|
DAMASK_quaternion = f.read_dataset(f.get_dataset_location('orientation'))
|
|
# Convert: DAMASK uses P = -1, DREAM.3D uses P = +1. Also change position of imagninary part
|
|
DREAM_3D_quaternion = np.hstack((-DAMASK_quaternion['x'],-DAMASK_quaternion['y'],-DAMASK_quaternion['z'],
|
|
DAMASK_quaternion['w'])).astype(np.float32)
|
|
o[cell_data_label + '/Quats'] = DREAM_3D_quaternion.reshape(tuple(f.grid)+(4,))
|
|
|
|
# Attributes to CellData group
|
|
o[cell_data_label].attrs['AttributeMatrixType'] = np.array([3],np.uint32)
|
|
o[cell_data_label].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
|
|
|
# Common Attributes for groups in CellData
|
|
for group in ['/Phases','/Quats']:
|
|
o[cell_data_label + group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
|
o[cell_data_label + group].attrs['Tuple Axis Dimensions'] = 'x={},y={},z={}'.format(*f.grid)
|
|
|
|
o[cell_data_label + '/Phases'].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
|
o[cell_data_label + '/Phases'].attrs['ObjectType'] = 'DataArray<int32_t>'
|
|
o[cell_data_label + '/Phases'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
|
|
|
o[cell_data_label + '/Quats'].attrs['ComponentDimensions'] = np.array([4],np.uint64)
|
|
o[cell_data_label + '/Quats'].attrs['ObjectType'] = 'DataArray<float>'
|
|
o[cell_data_label + '/Quats'].attrs['TupleDimensions'] = f.grid.astype(np.uint64)
|
|
|
|
# Create EnsembleAttributeMatrix
|
|
ensemble_label = data_container_label + '/EnsembleAttributeMatrix'
|
|
|
|
# Data CrystalStructures
|
|
o[ensemble_label + '/CrystalStructures'] = np.uint32(np.array([999,\
|
|
Crystal_structures[f.get_crystal_structure()]])).reshape(2,1)
|
|
o[ensemble_label + '/PhaseTypes'] = np.uint32(np.array([999,Phase_types['Primary']])).reshape(2,1) # ToDo
|
|
|
|
# Attributes Ensemble Matrix
|
|
o[ensemble_label].attrs['AttributeMatrixType'] = np.array([11],np.uint32)
|
|
o[ensemble_label].attrs['TupleDimensions'] = np.array([2], np.uint64)
|
|
|
|
# Attributes for data in Ensemble matrix
|
|
for group in ['CrystalStructures','PhaseTypes']: # 'PhaseName' not required MD: But would be nice to take the phase name mapping
|
|
o[ensemble_label+'/'+group].attrs['ComponentDimensions'] = np.array([1],np.uint64)
|
|
o[ensemble_label+'/'+group].attrs['Tuple Axis Dimensions'] = 'x=2'
|
|
o[ensemble_label+'/'+group].attrs['DataArrayVersion'] = np.array([2],np.int32)
|
|
o[ensemble_label+'/'+group].attrs['ObjectType'] = 'DataArray<uint32_t>'
|
|
o[ensemble_label+'/'+group].attrs['TupleDimensions'] = np.array([2],np.uint64)
|
|
|
|
geom_label = data_container_label + '/_SIMPL_GEOMETRY'
|
|
|
|
o[geom_label + '/DIMENSIONS'] = np.int64(f.grid)
|
|
o[geom_label + '/ORIGIN'] = np.float32(np.zeros(3))
|
|
o[geom_label + '/SPACING'] = np.float32(f.size)
|
|
|
|
o[geom_label].attrs['GeometryName'] = 'ImageGeometry'
|
|
o[geom_label].attrs['GeometryTypeName'] = 'ImageGeometry'
|
|
o[geom_label].attrs['GeometryType'] = np.array([0],np.uint32)
|
|
o[geom_label].attrs['SpatialDimensionality'] = np.array([3],np.uint32)
|
|
o[geom_label].attrs['UnitDimensionality'] = np.array([3],np.uint32)
|