DAMASK_EICMD/trunk/CPFEM.f90

767 lines
27 KiB
Fortran
Raw Blame History

! ---------------------------
MODULE CPFEM
! ---------------------------
! *** CPFEM engine ***
!
use prec, only: pReal,pInt
implicit none
!
! ****************************************************************
! *** General variables for the material behaviour calculation ***
! ****************************************************************
real(pReal), dimension (:,:,:), allocatable :: CPFEM_stress_all
real(pReal), allocatable :: CPFEM_jacobi_all (:,:,:,:)
real(pReal), allocatable :: CPFEM_ffn_all (:,:,:,:)
real(pReal), allocatable :: CPFEM_ffn1_all (:,:,:,:)
real(pReal), allocatable :: CPFEM_results (:,:,:,:)
real(pReal), allocatable :: CPFEM_ini_ori (:,:,:,:)
real(pReal), allocatable :: CPFEM_sigma_old (:,:,:,:)
real(pReal), allocatable :: CPFEM_sigma_new (:,:,:,:)
real(pReal), allocatable :: CPFEM_Fp_old (:,:,:,:,:)
real(pReal), allocatable :: CPFEM_Fp_new (:,:,:,:,:)
real(pReal), allocatable :: constitutive_state_old (:,:,:,:)
real(pReal), allocatable :: constitutive_state_new (:,:,:,:)
real(pReal), allocatable :: CPFEM_jaco_old (:,:,:,:)
integer(pInt) :: CPFEM_inc_old = 0_pInt
integer(pInt) :: CPFEM_subinc_old = 1_pInt
integer(pInt) :: CPFEM_Nresults = 4_pInt
logical :: CPFEM_first_call = .true.
CONTAINS
!***********************************************************************
!*** This routine checks for initialization, variables update and ***
!*** calls the actual material model ***
!***********************************************************************
subroutine cpfem_general(ffn, ffn1, CPFEM_inc, CPFEM_subinc, CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
!
use prec, only: pReal,pInt
use CPFEM, only: CPFEM_ffn_all, CPFEM_ffn1_all, CPFEM_inc_old
use IO, only: IO_error
implicit none
!
real(pReal) ffn(3,3), ffn1(3,3), CPFEM_dt
integer(pInt) CPFEM_inc, CPFEM_subinc, CPFEM_cn, cp_en, CPFEM_in
!
! initialization step
if (CPFEM_first_call) then
! three dimensional stress state ?
call IO_init()
call mesh_init()
call constitutive_init()
call math_init()
call CPFEM_init()
CPFEM_first_call=.false.
endif
! not a new increment
if (CPFEM_inc==CPFEM_inc_old) then
! case of a new subincrement:update starting with subinc 2
if (CPFEM_subinc > CPFEM_subinc_old) then
CPFEM_sigma_old = CPFEM_sigma_new
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
CPFEM_subinc_old = CPFEM_subinc
endif
! case of a new increment
else
CPFEM_sigma_old = CPFEM_sigma_new
CPFEM_Fp_old = CPFEM_Fp_new
constitutive_state_old = constitutive_state_new
CPFEM_inc_old = CPFEM_inc
CPFEM_subinc_old = 1_pInt
CPFEM_timefactor_max = 0.0_pReal
endif
!
! get cp element number for fe element number
CPFEM_ffn_all(:,:,CPFEM_in, cp_en) = ffn
CPFEM_ffn1_all(:,:,CPFEM_in, cp_en) = ffn1
call CPFEM_general_material(CPFEM_cn, CPFEM_dt, cp_en, CPFEM_in)
return
end
!***********************************************************************
!*** This routine allocates the arrays defined in module CPFEM ***
!*** and initializes them ***
!***********************************************************************
subroutine CPFEM_init()
!
use prec, only: pReal,pInt
use IO, only: IO_error
use math
use mesh
use constitutive
!
implicit none
!
integer(pInt) i
!
! *** mpie.marc parameters ***
allocate(CPFEM_ffn_all(3,3,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_ffn1_all(3,3,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_stress_all(6,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_jacobi_all(6,6,mesh_maxNips,mesh_NcpElems))
CPFEM_ffn_all = 0.0_pReal
CPFEM_ffn1_all = 0.0_pReal
forall(i=1:3)
CPFEM_ffn_all(i,i,:,:,:) = 1.0_pReal
CPFEM_ffn1_all(i,i,:,:,:) = 1.0_pReal
endforall
CPFEM_stress_all = 0.0_pReal
CPFEM_jacobi_all = 0.0_pReal
!
! *** User defined results !!! MISSING incorporate consti_Nresults ***
allocate(CPFEM_results(CPFEM_Nresults+constitutive_Nresults,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_results = 0.0_pReal
!
! *** Initial orientations ***
! allocate(CPFEM_ini_ori(3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
! CPFEM_ini_ori = 0.0_pReal
!
! *** Second Piola-Kirchoff stress tensor at (t=t0) and (t=t1) ***
allocate(CPFEM_sigma_old(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_sigma_new(6,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_sigma_old = 0.0_pReal
CPFEM_sigma_new = 0.0_pReal
!
! *** Plastic deformation gradient at (t=t0) and (t=t1) ***
allocate(CPFEM_Fp_old(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
allocate(CPFEM_Fp_new(3,3,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
CPFEM_Fp_old = 0.0_pReal
CPFEM_Fp_new = 0.0_pReal
forall(i=1:3)
CPFEM_Fp_old(i,i,:,:,:) = 1.0_pReal
CPFEM_Fp_new(i,i,:,:,:) = 1.0_pReal
endforall
!
! QUESTION: would it be wise to outsource these to _constitutive_ ?? YES!
! *** Slip resistances at (t=t0) and (t=t1) ***
allocate(constitutive_state_old(constitutive_Nstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
allocate(constitutive_state_new(constitutive_Nstatevars,constitutive_maxNgrains,mesh_maxNips,mesh_NcpElems))
state_tauc_slip_old = 0.0_pReal
state_tauc_slip_new = 0.0_pReal
! *** Old jacobian (consistent tangent) ***
allocate(CPFEM_jaco_old(6,6,mesh_maxNips,mesh_NcpElems))
CPFEM_jaco_old = 0.0_pReal
!
! *** Output to MARC output file ***
write(6,*)
write(6,*) 'Arrays allocated:'
write(6,*) 'CPFEM_ffn_all: ', shape(CPFEM_ffn_all)
write(6,*) 'CPFEM_ffn1_all: ', shape(CPFEM_ffn1_all)
write(6,*) 'CPFEM_stress_all: ', shape(CPFEM_stress_all)
write(6,*) 'CPFEM_jacobi_all: ', shape(CPFEM_jacobi_all)
write(6,*) 'CPFEM_results: ', shape(CPFEM_results)
write(6,*) 'CPFEM_thickness: ', shape(CPFEM_thickness)
! write(6,*) 'CPFEM_ini_ori: ', shape(CPFEM_ini_ori)
write(6,*) 'CPFEM_sigma_old: ', shape(CPFEM_sigma_old)
write(6,*) 'CPFEM_sigma_new: ', shape(CPFEM_sigma_new)
write(6,*) 'CPFEM_Fp_old: ', shape(CPFEM_Fp_old)
write(6,*) 'CPFEM_Fp_new: ', shape(CPFEM_Fp_new)
write(6,*) 'constitutive_state_old: ', shape(constitutive_state_old)
write(6,*) 'constitutive_state_new: ', shape(constitutive_state_new)
write(6,*) 'CPFEM_jaco_old: ', shape(CPFEM_jaco_old)
write(6,*)
call flush(6)
return
end subroutine
!
!
subroutine CPFEM_general_material(&
CPFEM_cn,& ! Cycle number
CPFEM_dt,& ! Time increment (dt)
cp_en,& ! Element number
CPFEM_in) ! Integration point number
!***********************************************************************
!*** This routine calculates the material behaviour ***
!***********************************************************************
use prec, only: pReal,pInt
use IO, only: IO_error
use math
use mesh
use constitutive
!
implicit none
!
! *** Definition of variables ***
integer(pInt) CPFEM_cn, cp_en ,CPFEM_in
real(pReal) CPFEM_dt, CPFEM_s(6), CPFEM_d(6, 6), CPFEM_ffn(3,3),CPFEM_ffn1(3,3)
! QUESTION which nslip to use?
real(pReal) Fp_old(3,3), tauc_slip_old(constitutive_maxNslip), tauc_slip_new(constitutive_maxNslip), g_old(constitutive_maxNslip)
real(pReal) g_new(constitutive_maxNslip), Tstar_v(6), Fp_new(3,3), cs(6), phi1mis(2), PHImis(2), phi2mis(2), cd(6,6)
real(pReal) ori_mat(3,3),hh6(6,6)
integer(pInt) jpara,nori
real(pReal) phi1, PHI, phi2, scatter, vf, alpha1, alpha2, beta1, &
beta2, phi1_s, PHI_s, phi2_s, p10, P0, p20, p11, P1, p21, &
dgmax,dgmaxc , orimis
integer(pInt) i, iori, iconv, ising, icut
! *** Numerical parameters ***
! *** How often the jacobian is recalculated ***
integer (pInt), parameter :: ijaco = 5_pInt
! *** Reference shear rate for the calculation of CPFEM_timefactor ***
real (pReal), parameter :: dgs = 0.01_pReal
!
! *** Flag for recalculation of jacobian ***
jpara = 1_pInt
! get number of grains from cp element number and integration point number
nori = constitutive_Ngrains(CPFEM_in,cp_en) !<21><><EFBFBD>
!
CPFEM_en = mesh_element(1,cp_en) ! remap back to FE id
!
CPFEM_s=0
CPFEM_d=0
!
! *** Loop over all the components ***
do iori=1,nori
!
! *** Initialization of the matrices for t=t0 ***
! Fp_old = CPFEM_Fp_old(:,:,iori,CPFEM_in,cp_en)
! tauc_slip_old = constitutive_state_old(:,iori,CPFEM_in,cp_en)
! tauc_slip_new = tauc_slip_old
! g_old = CPFEM_g_old(:,iori,CPFEM_in,cp_en)
! Tstar_v = CPFEM_sigma_old(:,iori,CPFEM_in,cp_en)
! data from constitutive?
vf = constitutive_volfrac(iori,CPFEM_in,cp_en) !<21><><EFBFBD>
! *** Calculation of the solution at t=t1 ***
! QUESTION use the mod() as flag parameter in the call ??
if (mod(CPFEM_cn,ijaco)==0) then !<21><><EFBFBD>
call CPFEM_stress(cs, cd, CPFEM_dt,cp_en,CPFEM_in, iori, ising, icut, iconv, dgmaxc, 1_pInt)
!
!
! call CPFEM_stress(CPFEM_dt,CPFEM_ffn,CPFEM_ffn1,Fp_old,Fp_new,
! & g_old,g_new,tauc_slip_old,
! & tauc_slip_new,
! & Tstar_v,cs,cd,p11,P1,p21,dgmaxc,1,iconv,ising,
! & icut,CPFEM_en,CPFEM_in,CPFEM_inc)
! *** Evaluation of ising ***
! *** ising=2 => singular matrix in jacobi calculation ***
! *** => use old jacobi ***
if (ising==2) jpara=0
! *** Calculation of the consistent tangent ***
CPFEM_d=CPFEM_d+vf*cd
else
call CPFEM_stress(cs, cd, CPFEM_dt,cp_en,CPFEM_in, iori, ising, icut, iconv, dgmaxc, 0_pInt)
! call CPFEM_stress(CPFEM_tinc,CPFEM_ffn,CPFEM_ffn1,Fp_old,Fp_new,
! & g_old,g_new,tauc_slip_old,
! & tauc_slip_new,
! & Tstar_v,cs,hh6,p11,P1,p21,dgmaxc,0,iconv,
! & ising,icut,CPFEM_en,CPFEM_in,CPFEM_inc)
jpara=0
endif
! *** Cases of unsuccessful calculations ***
! *** Evaluation of ising ***
! *** ising!=0 => singular matrix ***
if (ising==1) then
write(6,*) 'Singular matrix!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(700)
CPFEM_timefactor=1.e5_pReal
return
endif
! *** Evaluation of icut ***
! *** icut!=0 => too many cutbacks ***
if (icut==1) then
write(6,*) 'Too many cutbacks'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
CPFEM_timefactor=1.e5_pReal
return
endif
! *** Evaluation of iconv ***
! *** iconv!=0 => no convergence ***
if (iconv==1) then
write(6,*) 'Inner loop did not converge!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
CPFEM_timefactor=1.e5_pReal
return
else if (iconv==2) then
write(6,*) 'Outer loop did not converge!'
write(6,*) 'Integration point: ',CPFEM_in
write(6,*) 'Element: ',CPFEM_en
call IO_error(600)
CPFEM_timefactor=1.e5_pReal
return
endif
! *** Update the differents matrices for t=t1 ***
! CPFEM_Fp_new(:,:,iori,CPFEM_in,cp_en) = Fp_new
! state_tauc_slip_new(:,iori,CPFEM_in,cp_en) = tauc_slip_new
! CPFEM_g_new(:,iori,CPFEM_in,cp_en) = g_new
! CPFEM_sigma_new(:,iori,CPFEM_in,cp_en) = Tstar_v
!
! *** Calculation of the misorientation ***
!phi1mis(1)=p10
! PHImis(1)=P0
! phi2mis(1)=p20
! phi1mis(2)=p11
! PHImis(2)=P1
! phi2mis(2)=p21
! call CPFEM_misori(phi1mis,PHImis,phi2mis,orimis)
!
! *** Update the results plotted in MENTAT ***
! CPFEM_results(1,iori,cp_en,CPFEM_in) = p11
! CPFEM_results(2,iori,cp_en,CPFEM_in) = P1
! CPFEM_results(3,iori,cp_en,CPFEM_in) = p21
! CPFEM_results(4,iori,cp_en,CPFEM_in) = sum(g_new)
!
! *** Evaluation of the maximum shear ***
dgmax=max(dgmax,dgmaxc)
! *** Evaluation of the average Cauchy stress ***
CPFEM_s=CPFEM_s+vf*cs
enddo
! *** End of the loop over the components ***
! *************************************
! *** End of the CP-FEM Calculation ***
! *************************************
! *** Restoration of the old jacobian if necessary ***
if (jpara==0) then
CPFEM_d=CPFEM_jaco_old(:,:,CPFEM_in,cp_en)
else
! *** Store the new jacobian ***
CPFEM_jaco_old(:,:,CPFEM_in,cp_en)=CPFEM_d
endif
! *** Calculate timefactor ***
CPFEM_timefactor=dgmax/dgs
!
return
end subroutine
!call CPFEM_stress(cs, cd, CPFEM_dt,cp_en,CPFEM_in, ising, icut, iconv, dgmaxc, 1)
subroutine CPFEM_stress(&
cs,& ! stress vector
cd,& ! Jacoby matrix
CPFEM_dt,& ! Time increment (dt)
cp_en,& ! Element number
CPFEM_in,& ! Integration point number
iori,& ! number of orintation
ising,& ! flag for singular matrix
icut,& ! flag for too many cut backs
iconv,& ! flag for non convergence
dgmaxc,& ! maximum shear
isjaco) ! flag whether to calculate Jacoby matrix
!********************************************************************
! This routine calculates the stress for a single component
! and manages the independent time incrmentation
!********************************************************************
use prec, only: pReal,pInt
use CPFEM, only: CPFEM_ffn_all, CPFEM_ffn1_all
implicit none
!
! *** Definition of variables ***
integer(pInt) isjaco,iconv,ising,icut,CPFEM_en,CPFEM_in,CPFEM_inc
real(pReal) CPFEM_tinc,CPFEM_ffn(3,3),CPFEM_ffn1(3,3),Fp_old(3,3)
real(pReal) Fp_new(3,3),g_old(nslip),g_new(nslip)
real(pReal) tauc_slip_old(nslip),tauc_slip_new(nslip)
real(pReal) Tstar_v(6)
real(pReal) cs(6),dcs_de(6,6),phi1,PHI,phi2,dgmaxc
integer(pInt) jcut
real(pReal) Tstar_v_h(6),tauc_slip_new_h(nslip)
real(pReal) dt_i,delta_Fg(3,3),Fg_i(3,3)
real(pReal) tauc_slip_new_i(nslip),time,mm(6,6)
! *** Numerical parameters ***
integer(pInt), parameter :: ncut=7_pInt
icut=0
!
! *** Initialization of the matrices for t=t0 ***
Fp_old = CPFEM_Fp_old(:,:,iori,CPFEM_in,cp_en)
Fp_new = 0_pReal
state_old = constitutive_state_old(:,iori,CPFEM_in,cp_en)
state_new = state_old
! g_old = CPFEM_g_old(:,iori,CPFEM_in,cp_en)
! g_new = 0_pReal
Tstar_v = CPFEM_sigma_old(:,iori,CPFEM_in,cp_en)
CPFEM_ffn = CPFEM_ffn_all(:,:,CPFEM_in,cp_en)
CPFEM_ffn1 = CPFEM_ffn1_all(:,:,CPFEM_in,cp_en)
!
! *** First attempt to calculate Tstar and tauc with initial timestep ***
Tstar_v_h=Tstar_v
state_new_h=state_new
call CPFEM_stress_int(cs, cd, CPFEM_dt, cp_en,CPFEM_in, ising, icut, iconv, dgmaxc, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, CPFEM_ffn1,Fp_old,Fp_new,g_old,g_new,state_old, state_new, Tstar_v)
if ((iconv==0).AND.(ising==0)) then
! *** Update the differents matrices for t=t1 ***
CPFEM_Fp_new(:,:,iori,CPFEM_in,cp_en) = Fp_new
constituitive_state_new(:,iori,CPFEM_in,cp_en) = state_new
CPFEM_g_new(:,iori,CPFEM_in,cp_en) = g_new
CPFEM_sigma_new(:,iori,CPFEM_in,cp_en) = Tstar_v
! *** Update the results plotted in MENTAT ***
CPFEM_results(1,iori,CPFEM_in,cp_en) = phi1
CPFEM_results(2,iori,CPFEM_in,cp_en) = PHI
CPFEM_results(3,iori,CPFEM_in,cp_en) = phi2
CPFEM_results(4,iori,CPFEM_in,cp_en) = sum(g_new)
return
endif
!
! *** Calculation of stress and resistences with a cut timestep ***
! *** when first try did not converge ***
jcut=1_pInt
dt_i=0.5_pReal*CPFEM_dt
delta_Fg=0.5_pReal*(CPFEM_ffn1-CPFEM_ffn)
Fg_i=CPFEM_ffn+delta_Fg
Tstar_v=Tstar_v_h
state_new_i=state_new_h
! *** Start time ***
time=dt_i
do while (time<=CPFEM_dt)
call CPFEM_stress_int(cs, cd, time, cp_en,CPFEM_in, ising, icut, iconv, dgmaxc, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, Fg_i,Fp_old,Fp_new,g_old,g_new,state_old, state_new_i, Tstar_v)
! call CPFEM_stress_int(time,CPFEM_ffn,Fg_i,Fp_old,Fp_new,g_old,
! & g_new,tauc_slip_old,
! & tauc_slip_new_i,
! & Tstar_v,cs,mm,phi1,PHI,
! & phi2,dgmaxc,0_pInt,iconv,ising,CPFEM_en,
! & CPFEM_in,CPFEM_inc)
if ((iconv==0).AND.(ising==0)) then
time=time+dt_i
Fg_i=Fg_i+delta_Fg
Tstar_v_h=Tstar_v
state_new_h=state_new_i
else
jcut=jcut+1_pInt
if (jcut.GT.ncut) then
icut=1_pInt
return
endif
dt_i=0.5_pReal*dt_i
time=time-dt_i
delta_Fg=0.5_pReal*delta_Fg
Fg_i=Fg_i-delta_Fg
Tstar_v=Tstar_v_h
tauc_slip_new_i=tauc_slip_new_h
endif
enddo
!
! *** Final calculation of stress and resistences with full timestep ***
state_new=state_new_i
call CPFEM_stress_int(cs, cd, CPFEM_dt, cp_en,CPFEM_in, ising, icut, iconv, dgmaxc, isjaco, phi1, PHI, phi2,&
CPFEM_ffn, CPFEM_ffn1,Fp_old,Fp_new,g_old,g_new,state_old, state_new, Tstar_v)
! call CPFEM_stress_int(CPFEM_tinc,CPFEM_ffn,CPFEM_ffn1,Fp_old,Fp_new,
! & g_old,g_new,tauc_slip_old,
! & tauc_slip_new,
! & Tstar_v,cs,dcs_de,phi1,PHI,phi2,dgmaxc,
! & isjaco,iconv,ising,CPFEM_en,CPFEM_in,CPFEM_inc)
! *** Update the differents matrices for t=t1 ***
CPFEM_Fp_new(:,:,iori,CPFEM_in,cp_en) = Fp_new
constituitive_state_new(:,iori,CPFEM_in,cp_en) = state_new
CPFEM_g_new(:,iori,CPFEM_in,cp_en) = g_new
CPFEM_sigma_new(:,iori,CPFEM_in,cp_en) = Tstar_v
! *** Update the results plotted in MENTAT ***
CPFEM_results(1,iori,CPFEM_in,cp_en) = phi1
CPFEM_results(2,iori,CPFEM_in,cp_en) = PHI
CPFEM_results(3,iori,CPFEM_in,cp_en) = phi2
CPFEM_results(4,iori,CPFEM_in,cp_en) = sum(g_new)
return
end subroutine
! call CPFEM_stress_int(cs, cd, CPFEM_dt, cp_en,CPFEM_in, ising, icut, iconv, dgmaxc, isjaco,&
! CPFEM_ffn, CPFEM_ffn1,Fp_old,Fp_new,g_old,g_new,state_old, state_new, Tstar_v)
subroutine CPFEM_stress_int(&
cs,& ! Cauchy stress vector
dcs_de,& ! Consistent tangent
dt,& ! Time increment
cp_en,& ! cp element number
CPFEM_in,& ! integration point number
ising,& ! flag for singular matrix
icut,& ! flag for too many cut backs
iconv,& ! flag for non convergence
dgmaxc,& ! maximum shear
isjaco,& ! flag whether to calculate Jacoby matrix
phi1,& ! Euler angle
PHI,& ! Euler angle
phi2,& ! Euler angle
Fg_old,& ! Old global deformation gradient
Fg_new,& ! New global deformation gradient
Fp_old,& ! Old plastic deformation gradient
Fp_new,& ! New plastic deformation gradient
g_old,& ! Old cumulative plastic strain of a slip system
g_new,& ! New cumulative plastic strain of a slip system
state_old,& ! Old resistence of a slip system
state_new,& ! New resistence of a slip system
Tstar_v) ! Second Piola-Kirschoff stress tensor
!********************************************************************
! This routine calculates the stress for a single component
! it is based on the paper by Kalidindi et al.:
! J. Mech. Phys, Solids Vol. 40, No. 3, pp. 537-569, 1992
! it is modified to use anisotropic elasticity matrix
!********************************************************************
use prec
implicit none
! *** Definition of variables ***
integer(pInt) isjaco,iconv,ising,CPFEM_en,CPFEM_in,CPFEM_inc
real(pReal) dt,Fg_old(3,3),Fg_new(3,3),Fp_old(3,3),Fp_new(3,3),
& g_old(nslip),g_new(nslip),
& tauc_slip_old(nslip),tauc_slip_new(nslip),
& Tstar_v(6),
& cs(6),dcs_de(6,6),phi1,PHI,phi2,dgmaxc
integer(pInt) ic
real(pReal) gdot_slip(nslip),Fe(3,3),R(3,3),
& U(3,3),de(3,3),tauc2(nslip),Fp2(3,3),
& sgm2(6),cs1(6),dF(3,3),Fg2(3,3),dev(6)
! *** Numerical parameters ***
real(pReal), parameter :: pert_ct=1.0e-5_pReal
! maximum shear rate
dgmaxc = 0
! *** Error treatment ***
iconv = 0
ising = 0
! *********************************************
! *** Calculation of the new Cauchy stress ***
! *********************************************
! *** Call Newton-Raphson method ***
call NEWTON_RAPHSON(dt,Fg_old,Fg_new,Fp_old,Fp_new,Fe,gdot,state_old,state_new,Tstar_v,cs,iconv,ising)
!
! *** Calculation of the new orientation ***
call math_pDecomposition(Fe,U,R,ising)
if (ising==1) then
return
endif
call math_RtoEuler(transpose(R),phi1,PHI,phi2)
!
! *** Evaluation of the maximum slip shear ***
dgmaxc=maxval(abs(gdot_slip*dt))
g_new=g_old+abs(gdot_slip)*dt
!
! *** Choice of the calculation of the consistent tangent ***
if (isjaco==0) return
!
! *********************************************
! *** Calculation of the consistent tangent ***
! *********************************************
!
! *** Calculation of the consistent tangent with perturbation ***
! *** Perturbation on the component of Fg ***
do ic=1,6
!
! *** Method of small perturbation
dev=0
if(ic<=3) dev(ic) = pert_ct
if(ic>3) dev(ic) = pert_ct/2
call math_conv6to33(dev,de)
dF=matmul(de,Fg_old)
Fg2=Fg_new+dF
sgm2=Tstar_v
state2=state_new
! *** Calculation of the perturbated Cauchy stress ***
call NEWTON_RAPHSON(dt,Fg_old,Fg2,Fp_old,Fp2,Fe,gdot,state_old,tauc2,sgm2,cs1,iconv,ising)
!
! *** Consistent tangent ***
dcs_de(:,ic)=(cs1-cs)/pert_ct
enddo
!
return
end subroutine
!
!
subroutine NEWTON_RAPHSON(
&dt,
&Fg_old,
&Fg_new,
&Fp_old,
&Fp_new,
&Fe,
&gdot_slip,
&state_old,
&state_new,
&Tstar_v,
&cs,
&iconv,
&ising
&)
!***********************************************************************
!*** NEWTON-RAPHSON Calculation ***
!***********************************************************************
use prec
implicit none
! *** Definition of variables ***
integer(pInt) isjaco,iconv,ising,CPFEM_en,CPFEM_in,CPFEM_inc
real(pReal) dt,Fg_old(3,3),Fg_new(3,3),Fp_old(3,3),Fp_new(3,3),
& g_old(nslip),g_new(nslip),
& tauc_slip_old(nslip),tauc_slip_new(nslip),
& Tstar_v(6),cs(6),dcs_de(6,6),phi1,PHI,phi2,dgmaxc
integer(pInt) i,j,k,iouter,iinner,ijac,ic
real(pReal) invFp_old(3,3),det,A(3,3),Estar0_v(6),Tstar0_v(6),
& mm(3,3),mm1(3,3),vv(6),Dslip(6,nslip),
& tau_slip(nslip),gdot_slip(nslip),
& R1(6),norm1,Tstar_v_per(6),R1_per(6),
& Jacobi(6,6),invJacobi(6,6),dTstar_v(6),R2(nslip),
& dtauc_slip(nslip),norm2,dLp(3,3),
& Estar(3,3),Estar_v(6),invFp_new(3,3),
& invFp2(3,3),Lp(3,3),Fe(3,3),
& R(3,3),U(3,3),dgdot_dtaucslip(nslip)
real(pReal) de(3,3),dev(6),tauc2(nslip),fp2(3,3),
& sgm2(6),cs1(6),df(3,3),
& fg2(3,3),tauc_old(nslip),crite,tol_in,tol_out
! *** Numerical parameters ***
integer(pInt), parameter :: nouter = 50_pInt
real(pReal), parameter :: tol_outer = 1.0e-4_pReal
integer(pInt), parameter :: ninner = 2000_pInt
real(pReal), parameter :: tol_inner = 1.0e-3_pReal
real(pReal), parameter :: eta = 13.7_pReal
integer(pInt), parameter :: numerical = 0_pInt
real(pReal), parameter :: pert_nr = 1.0e-8_pReal
crite=eta*s0_slip/n_slip
!
! *** Tolerances ***
tol_in = tol_inner*s0_slip
tol_out = tol_outer*s0_slip
!
dgmaxc = 0
! *** Error treatment ***
iconv = 0
ising = 0
!
! *** Calculation of Fp_old(-1) ***
invFp_old=Fp_old
call invert(invFp_old,3,0,0,det,3)
if (det==0.0_pReal) then
ising=1
return
endif
!
! *** Calculation of A and T*0 (see Kalidindi) ***
! constitutive <20><><EFBFBD>
A=matmul(transpose(matmul(Fg_new,invFp_old)), matmul(Fg_new,invFp_old))
call math_conv33to6((A-I3)/2,Estar0_v)
Tstar0_v=matmul(Cslip_66,Estar0_v)
!
! *** Calculation of Dslip (see Kalidindi) ***
! constitutive <20><><EFBFBD>
do i=1,nslip
mm=matmul(A,Sslip(i,:,:))
mm1=(mm+transpose(mm))/2
vv = math_33to6(mm1)
Dslip(:,i)=matmul(Cslip_66,vv)
enddo
!
! *** Second level of iterative procedure: Resistences ***
do iouter=1,nouter
! *** First level of iterative procedure: Stresses ***
do iinner=1,ninner
!
! *** Calculation of gdot_slip ***
! constitutive <20><><EFBFBD>
do i=1,nslip
tau_slip(i)=dot_product(Tstar_v,Sslip_v(i,:))
enddo
call slip_rate(tau_slip,tauc_slip_new,gdot_slip,
& dgdot_dtaucslip)
! *** Evaluation of Tstar and Gn (see Kalidindi) ***
vv=0
do i=1,nslip
vv=vv-gdot_slip(i)*Dslip(:,i)
enddo
R1=Tstar_v-Tstar0_v-vv*dt
norm1=maxval(abs(R1))
if (norm1.LT.tol_in) goto 100
!
! *** Jacobi Calculation ***
if (numerical==1) then
! *** Perturbation method ***
else
! *** Analytical Calculation ***
Jacobi=0
do i=1,nslip
do j=1,6
do k=1,6
Jacobi(j,k)=Jacobi(j,k)
& +Dslip(j,i)*Sslip_v(i,k)*dgdot_dtaucslip(i)
enddo
enddo
enddo
Jacobi=Jacobi*dt
do i=1,6
Jacobi(i,i)=1.0_pReal+Jacobi(i,i)
enddo
endif
! *** End of the Jacobi calculation ***
! *** Inversion of the Jacobi matrix ***
invJacobi=Jacobi
call invert(invJacobi,6,0,0,det,6)
if (det==0.0_pReal) then
do i=1,6
Jacobi(i,i)=1.05d0*maxval(Jacobi(i,:))
enddo
invJacobi=Jacobi
call invert(invJacobi,6,0,0,det,6)
if (det==0.0_pReal) then
ising=1
return
endif
endif
dTstar_v=matmul(invJacobi,R1)
! *** Correction (see Kalidindi) ***
do i=1,6
if (abs(dTstar_v(i)).GT.crite) then
dTstar_v(i)=sign(crite,dTstar_v(i))
endif
enddo
Tstar_v=Tstar_v-dTstar_v
!
enddo
iconv=1
return
! *** End of the first level of iterative procedure ***
100 continue
call hardening(tauc_slip_new,gdot_slip,dtauc_slip)
! *** Arrays of residuals ***
R2=tauc_slip_new-tauc_slip_old-dtauc_slip*dt
norm2=maxval(abs(R2))
if (norm2.LT.tol_out) goto 200
tauc_slip_new=tauc_slip_old+dtauc_slip*dt
enddo
iconv=2
return
! *** End of the second level of iterative procedure ***
200 continue
!
call plastic_vel_grad(dt,tau_slip,tauc_slip_new,Lp)
!
! *** Calculation of Fp(t+dt) (see Kalidindi) ***
dLp=I3+Lp*dt
Fp_new=matmul(dLp,Fp_old)
Fp_new=Fp_new/math_det3x3(Fp_new)**(1.0_pReal/3.0_pReal)
!
! *** Calculation of F*(t+dt) (see Kalidindi) ***
invFp_new=Fp_new
call invert(invFp_new,3,0,0,det,3)
if (det==0.0_pReal) then
ising=1
return
endif
Fe=matmul(Fg_new,invFp_new)
!
! *** Calculation of Estar ***
Estar=0.5_pReal*(matmul(transpose(Fe),Fe)-I3)
call CPFEM_conv33to6(Estar,Estar_v)
!
! *** Calculation of the Cauchy stress ***
call cauchy_stress(Estar_v,Fe,cs)
!
return
end
!
!
!
end module