DAMASK_EICMD/processing/post/ascii2hdf5.py

84 lines
3.3 KiB
Python

#!/usr/bin/env python2.7
# -*- coding: UTF-8 no BOM -*-
# ------------------------------------------------------------------- #
# NOTE: #
# 1. Not all output is defined in the DS_HDF5.xml, please add new #
# new one to the system wide definition file #
# <DAMASK_ROOT>/lib/damask/DS_HDF5.xml #
# or specify your own when initializing HDF5 class #
# ------------------------------------------------------------------- #
import os
import damask
import numpy as np
from optparse import OptionParser
scriptName = os.path.splitext(os.path.basename(__file__))[0]
scriptID = ' '.join([scriptName,damask.version])
# --------------------------------------------------------------------
# MAIN
# --------------------------------------------------------------------
desp_msg = "Convert DAMASK ascii table to HDF5 file"
parser = OptionParser(option_class=damask.extendableOption,
usage='%prog options [file[s]]',
description = desp_msg,
version = scriptID)
parser.add_option('-D', '--DefinitionFile',
dest = 'storage definition file',
type = 'string',
metavar = 'string',
help = 'definition file for H5 data storage')
parser.add_option('-d','--debug',
dest = 'debug output toggle',
type = 'boolean',
metavar = 'boolean',
help = 'toggle on debug output') # not necessary for now
parser.set_defaults(debug=False,
DefinitionFile='default')
(options,filenames) = parser.parse_args()
if options.DefinitionFile == 'default':
defFile = None
else:
defFile = options.DefinitionFile
# ----- read in data using DAMASK ASCII table class ----- #
asciiTable = damask.ASCIItable(name=filenames, buffered=False)
asciiTable.head_read()
asciiTable.data_readArray()
incNum = int(asciiTable.data[asciiTable.label_index('inc'), 0])
fullTable = np.copy(asciiTable.data) # deep copy all data, just to be safe
labels = asciiTable.labels()
labels_idx = [asciiTable.label_index(label) for label in labels]
featuresDim = [labels_idx[i+1] - labels_idx[i] for i in xrange(len(labels)-1)]
featuresDim.append(fullTable.shape[1] - labels_idx[-1])
# ----- create a new HDF5 file and save the data -----#
# Will overwrite existing HDF5 file with the same name
h5f = damask.H5Table(filenames.replace(".txt", ".h5"),
new_file=True,
dsXMLFile=defFile)
# adding increment number as root level attributes
h5f.add_attr('inc', incNum)
for fi in xrange(len(labels)):
featureName = labels[fi]
if featureName == 'inc': continue
# remove trouble maker "("" and ")"
if "(" in featureName: featureName = featureName.replace("(", "")
if ")" in featureName: featureName = featureName.replace(")", "")
featureIdx = labels_idx[fi]
featureDim = featuresDim[fi]
# grab the data hook
dataset = fullTable[:, featureIdx:featureIdx+featureDim]
# reshape tensor to 3x3 --> just make life slightly easier
if dataset.shape[1] == 9:
dataset = dataset.reshape((dataset.shape[0], 3, 3))
# write out data
h5f.add_data(featureName, dataset)