448 lines
27 KiB
Groff
448 lines
27 KiB
Groff
! common block definition file taken from respective MSC.Marc release and reformated to free format
|
|
!***********************************************************************
|
|
!
|
|
! File: concom.cmn
|
|
!
|
|
! MSC.Marc include file
|
|
!
|
|
integer &
|
|
iacous, iasmbl, iautth, ibear, icompl, iconj, icreep, ideva, idyn, idynt,&
|
|
ielas, ielcma, ielect, iform, ifour, iharm, ihcps, iheat, iheatt, ihresp,&
|
|
ijoule, ilem, ilnmom, iloren, inc, incext, incsub, ipass, iplres, ipois,&
|
|
ipoist, irpflo, ismall, ismalt, isoil, ispect, ispnow, istore, iswep, ithcrp,&
|
|
itherm, iupblg, iupdat, jacflg, jel, jparks, largst, lfond, loadup, loaduq,&
|
|
lodcor, lovl, lsub, magnet, ncycle, newtnt, newton, noshr, linear, ivscpl,&
|
|
icrpim, iradrt, ipshft, itshr, iangin, iupmdr, iconjf, jincfl, jpermg, jhour,&
|
|
isolvr, jritz, jtable, jshell, jdoubl, jform, jcentr, imini, kautth, iautof,&
|
|
ibukty, iassum, icnstd, icnstt, kmakmas, imethvp, iradrte, iradrtp, iupdate, iupdatp,&
|
|
ncycnt, marmen , idynme, ihavca, ispf, kmini, imixex, largtt, kdoela, iautofg,&
|
|
ipshftp, idntrc, ipore, jtablm, jtablc, isnecma, itrnspo, imsdif, jtrnspo, mcnear,&
|
|
imech, imecht, ielcmat, ielectt, magnett, imsdift, noplas, jtabls, jactch, jtablth,&
|
|
kgmsto , jpzo, ifricsh, iremkin, iremfor, ishearp, jspf, machining, jlshell, icompsol,&
|
|
iupblgfo, jcondir, nstcrp, nactive, ipassref, nstspnt, ibeart, icheckmpc, noline, icuring,&
|
|
ishrink, ioffsflg, isetoff, ioffsetm,iharmt, inc_incdat, iautspc, ibrake, icbush, istream_input,&
|
|
iprsinp, ivlsinp, ifirst_time,ipin_m, jgnstr_glb, imarc_return,iqvcinp, nqvceid, istpnx, imicro1,&
|
|
iaxisymm, jbreakglue,iglstif, jfastasm,iwear, iwearcf, imixmeth, ielcmadyn, idinout, igena_meth,&
|
|
magf_meth, non_assumed, iredoboudry, ioffsz0,icomplt, mesh_dual, iactrp, mgnewton, iusedens,igsigd0,&
|
|
iaem, icosim, inodels, nlharm, iampini, iphasetr, inonlcl, inonlct, iforminp,ispecerror,&
|
|
icsprg, imol, imolt, idatafit,iharmpar, inclcase, imultifreq,init_elas, ifatig, iftgmat,&
|
|
nchybrid
|
|
dimension :: ideva(60)
|
|
integer num_concom
|
|
parameter(num_concom=261)
|
|
common/marc_concom/&
|
|
iacous, iasmbl, iautth, ibear, icompl, iconj, icreep, ideva, idyn, idynt,&
|
|
ielas, ielcma, ielect, iform, ifour, iharm, ihcps, iheat, iheatt, ihresp,&
|
|
ijoule, ilem, ilnmom, iloren, inc, incext, incsub, ipass, iplres, ipois,&
|
|
ipoist, irpflo, ismall, ismalt, isoil, ispect, ispnow, istore, iswep, ithcrp,&
|
|
itherm, iupblg, iupdat, jacflg, jel, jparks, largst, lfond, loadup, loaduq,&
|
|
lodcor, lovl, lsub, magnet, ncycle, newtnt, newton, noshr, linear, ivscpl,&
|
|
icrpim, iradrt, ipshft, itshr, iangin, iupmdr, iconjf, jincfl, jpermg, jhour,&
|
|
isolvr, jritz, jtable, jshell, jdoubl, jform, jcentr, imini, kautth, iautof,&
|
|
ibukty, iassum, icnstd, icnstt, kmakmas, imethvp, iradrte, iradrtp, iupdate, iupdatp,&
|
|
ncycnt, marmen, idynme, ihavca, ispf, kmini, imixex, largtt, kdoela, iautofg,&
|
|
ipshftp, idntrc, ipore, jtablm, jtablc, isnecma, itrnspo, imsdif, jtrnspo, mcnear,&
|
|
imech, imecht, ielcmat, ielectt, magnett, imsdift, noplas, jtabls, jactch, jtablth,&
|
|
kgmsto , jpzo, ifricsh, iremkin, iremfor, ishearp, jspf, machining, jlshell, icompsol,&
|
|
iupblgfo, jcondir, nstcrp, nactive, ipassref, nstspnt, ibeart, icheckmpc, noline, icuring,&
|
|
ishrink, ioffsflg, isetoff, ioffsetm,iharmt, inc_incdat, iautspc, ibrake, icbush, istream_input,&
|
|
iprsinp, ivlsinp, ifirst_time,ipin_m, jgnstr_glb, imarc_return,iqvcinp, nqvceid, istpnx, imicro1,&
|
|
iaxisymm, jbreakglue,iglstif, jfastasm,iwear, iwearcf, imixmeth, ielcmadyn, idinout, igena_meth,&
|
|
magf_meth, non_assumed, iredoboudry, ioffsz0,icomplt, mesh_dual, iactrp, mgnewton, iusedens,igsigd0,&
|
|
iaem, icosim, inodels, nlharm, iampini, iphasetr, inonlcl, inonlct, iforminp,ispecerror,&
|
|
icsprg, imol, imolt, idatafit,iharmpar, inclcase, imultifreq,init_elas, ifatig, iftgmat,&
|
|
nchybrid
|
|
!
|
|
! comments of variables:
|
|
!
|
|
! iacous Control flag for acoustic analysis. Input data.
|
|
! iacous=1 modal acoustic analysis.
|
|
! iacous=2 harmonic acoustic-structural analysis.
|
|
! iasmbl Control flag to indicate that operator matrix should be
|
|
! recalculated.
|
|
! iautth Control flag for AUTO THERM option.
|
|
! ibear Control flag for bearing analysis. Input data.
|
|
! icompl Control variable to indicate that a complex analysis is
|
|
! being performed. Either a Harmonic analysis with damping,
|
|
! or a harmonic electro-magnetic analysis. Input data.
|
|
! iconj Flag for EBE conjugate gradient solver (=solver 1, retired)
|
|
! Also used for VKI iterative solver.
|
|
! icreep Control flag for creep analysis. Input data.
|
|
! ideva(60) - debug print out flag
|
|
! 1 print element stiffness matrices, mass matrix
|
|
! 2 output matrices used in tying
|
|
! 3 force the solution of a nonpositive definite matrix
|
|
! 4 print info of connections to each node
|
|
! 5 info of gap convergence, internal heat generated, contact
|
|
! touching and separation
|
|
! 6 nodal value array during rezoning
|
|
! 7 tying info in CONRAD GAP option, fluid element numbers in
|
|
! CHANNEL option
|
|
! 8 output incremental displacements in local coord. system
|
|
! 9 latent heat output
|
|
! 10 stress-strain in local coord. system
|
|
! 11 additional info on interlaminar stress
|
|
! 12 output right hand side and solution vector
|
|
! 13 info of CPU resources used and memory available on NT
|
|
! 14 info of mesh adaption process, 2D outline information
|
|
! info of penetration checking for remeshing
|
|
! save .fem files after afmesh3d meshing
|
|
! 15 surface energy balance flag
|
|
! 16 print info regarding pyrolysis
|
|
! 17 print info of "streamline topology"
|
|
! 18 print mesh data changes after remeshing
|
|
! 19 print material flow stress data read in from *.mat file
|
|
! if unit flag is on, print out flow stress after conversion
|
|
! 20 print information on table input
|
|
! 21 print out information regarding kinematic boundary conditions
|
|
! 22 print out information regarding dist loads, point loads, film
|
|
! and foundations
|
|
! 23 print out information about automatic domain decomposition
|
|
! 24 print out iteration information in SuperForm status report file
|
|
! 25 print out information for ablation
|
|
! 26 print out information for films - Table input
|
|
! 27 print out the tying forces
|
|
! 28 print out for CASI solver, convection,
|
|
! 29 DDM single file debug printout
|
|
! 30 print out cavity debug info
|
|
! 31 print out welding related info
|
|
! 32 prints categorized DDM memory usage
|
|
! 33 print out the cutting info regarding machining feature
|
|
! 34 print out the list of quantities which can be defined via a table
|
|
! and for each quantity the supported independent variables
|
|
! 35 print out detailed coupling region info
|
|
! 36 print out solver debug info level 1 (Least Detailed)
|
|
! 37 print out solver debug info level 1 (Medium Detailed)
|
|
! 38 print out solver debug info level 1 (Very Detailed)
|
|
! 39 print detailed memory allocation info
|
|
! 40 print out marc-adams debug info
|
|
! 41 output rezone mapping post file for debugging
|
|
! 42 output post file after calling oprofos() for debugging
|
|
! 43 debug printout for vcct
|
|
! 44 debug printout for progressive failure
|
|
! 45 print out automatically generated midside node coordinates (arecrd)
|
|
! 46 print out message about routine and location, where the ibort is raised (ibort_inc)
|
|
! 47 print out summary message of element variables on a
|
|
! group-basis after all the automatic changes have been
|
|
! made (em_ellibp)
|
|
! 48 Automatically generate check results based on max and min vals.
|
|
! These vals are stored in the checkr file, which is inserted
|
|
! into the *dat file by the generate_check_results script from /marc/tools
|
|
! 49 Automatically generate check results based on the real calculated values
|
|
! at the sppecified check result locations.
|
|
! These vals are stored in the checkr file, which is inserted
|
|
! into the *dat file by the update_check_results script from /marc/tools
|
|
! 50 generate a file containing the resistance or capacity matrix;
|
|
! this file can be used to compare results with a reference file
|
|
! 51 print out detailed information for segment-to-segment contact
|
|
! 52 print out detailed relative displacement information
|
|
! for uniaxial sliding contact
|
|
! 53 print out detailed sliding direction information for
|
|
! uniaxial sliding contact
|
|
! 54 print out detailed information for edges attached to a curve
|
|
! 55 print information related to viscoelasticity calculations
|
|
! 56 print out detailed information for element coloring for multithreading
|
|
! 57 print out extra overheads due to multi-threading.
|
|
! These overhead includes (i) time and (ii) memory.
|
|
! The memory report will be summed over all the children.
|
|
!
|
|
!
|
|
! 58 debug output for ELSTO usage
|
|
!
|
|
! idyn Control flag for dynamics. Input data.
|
|
! 1 = eigenvalue extraction and / or modal superposition
|
|
! 2 = Newmark Beta and Single Step Houbolt (ssh with idynme=1)
|
|
! 3 = Houbolt
|
|
! 4 = Central difference
|
|
! 5 = Newer central difference
|
|
! idynt Copy of idyn at begining of increment
|
|
! ielas Control flag for ELASTIC analysis. Input data.
|
|
! Set by user or automatically turned on by Fourier option.
|
|
! Implies that each load case is treated separately.
|
|
! In Adaptive meshing analysis , forces re-analysis until
|
|
! convergence obtained.
|
|
! Also seriously misused to indicate no convergence.
|
|
! = 1 elastic option with fourier analysis
|
|
! = 2 elastic option without fourier analysis
|
|
! =-1 no convergence in recycles or max # increments reached
|
|
! Set to 1 if ELASTIC or SUBSTRUC parameter cards are used,
|
|
! or if fourier option is used.
|
|
! Then set to 2 if not fourier analysis.
|
|
! ielcma Control flag for electromagnetic analysis. Input data.
|
|
! ielcma = 1 Harmonic formulation
|
|
! ielcma = 2 Transient formulation
|
|
! ielect Control flag for electrostatic option. Input data.
|
|
! iform Control flag indicating that contact will be performed.
|
|
! ifour Control flag for Fourier analysis.
|
|
! 0 = Odd and even terms.
|
|
! 1 = symmetric (cosine) terms
|
|
! 2 = antisymmetric (sine) terms.
|
|
! iharm Control flag to indicate that a harmonic analysis will
|
|
! be performed. May change between passes.
|
|
! ihcps Control flag for coupled thermal - stress analysis.
|
|
! iheat Control flag for heat transfer analysis. Input data.
|
|
! iheatt Permanent control flag for heat transfer analysis.
|
|
! Note in coupled analysis iheatt will remain as one,
|
|
! but iheat will be zero in stress pass.
|
|
! ihresp Control flag to indicate to perform a harmonic subincrement.
|
|
! ijoule Control flag for Joule heating.
|
|
! ilem Control flag to determin which vector is to be transformed.
|
|
! Control flag to see where one is:
|
|
! ilem = 1 - elem.f
|
|
! ilem = 2 - initst.f
|
|
! ilem = 3 - pressr.f
|
|
! ilem = 3 - fstif.f
|
|
! ilem = 4 - jflux.f
|
|
! ilem = 4 - strass.f
|
|
! ilem = 5 - mass.f
|
|
! ilem = 5 - osolty.f
|
|
! ilnmom Control flag for soil - pore pressure calculation. Input data.
|
|
! ilnmom = 0 - perform only pore pressure calculation.
|
|
! = 1 - couples pore pressure - displacement analysis
|
|
! iloren Control flag for DeLorenzi J-Integral evaluation. Input data.
|
|
! inc Increment number.
|
|
! incext Control flag indicating that currently working on a
|
|
! subincrement.
|
|
! Could be due to harmonics , damping component (bearing),
|
|
! stiffness component (bearing), auto therm creep or
|
|
! old viscoplaticity
|
|
! incsub Sub-increment number.
|
|
! ipass Control flag for which part of coupled analysis.
|
|
! ipass = -1 - reset to base values
|
|
! ipass = 0 - do nothing
|
|
! ipass = 1 - stress part
|
|
! ipass = 2 - heat transfer part
|
|
! iplres Flag indicating that either second matrix is stored.
|
|
! dynamic analysis - mass matrix
|
|
! heat transfer - specific heat matrix
|
|
! buckle - initial stress stiffness
|
|
! ipois Control flag indicating Poisson type analysis
|
|
! ipois = 1 for heat transfer
|
|
! = 1 for heat transfer part of coupled
|
|
! = 1 for bearing
|
|
! = 1 for electrostatic
|
|
! = 1 for magnetostatic
|
|
! ipoist Permanent copy of ipois. In coupled analysis , ipois = 0
|
|
! in stress portion, yet ipoist will still =1.
|
|
! irpflo global flag for rigid plastic flow analysis
|
|
! = 1 eularian formulation
|
|
! = 2 regular formulation; rigid material present in the analysis
|
|
|
|
! ismall control flag to indicate small displacement analysis. input data.
|
|
! ismall = 0 - large disp included.
|
|
! ismall = 1 - small displacement.
|
|
! the flag is changing between passes.
|
|
! ismalt permanent copy of ismall . in heat transfer portion of
|
|
! coupled analysis ismall =0 , but ismalt remains the same.
|
|
! isoil control flag indicating that soil / pore pressure
|
|
! calculation . input data.
|
|
! ispect control flag for response spectrum calculation. input data.
|
|
! ispnow control flag to indicate to perform a spectrum response
|
|
! calculation now.
|
|
! istore store stresses flag.
|
|
! istore = 0 in elem.f and if first pass of creep
|
|
! convergence checking in ogetst.f
|
|
! or harmonic analysis or thruc.f if not
|
|
! converged.
|
|
! iswep control flag for eigenvalue analysis.
|
|
! iswep=1 - go do extraction process
|
|
! ithcrp control flag for auto therm creep option. input data.
|
|
! itherm control flag for either temperature dependent material
|
|
! properties and/or thermal loads.
|
|
! iupblg control flag for follower force option. input data.
|
|
! iupdat control flag for update lagrange option for current element.
|
|
! jacflg control flag for lanczos iteration method. input data.
|
|
! jel control flag indicating that total load applied in
|
|
! increment, ignore previous solution.
|
|
! jel = 1 in increment 0
|
|
! = 1 if elastic or fourier
|
|
! = 1 in subincrements with elastic and adaptive
|
|
! jparks control flag for j integral by parks method. input data.
|
|
! largst control flag for finite strain plasticity. input data.
|
|
! lfond control variable that indicates if doing elastic
|
|
! foundation or film calculation. influences whether
|
|
! this is volumetric or surface integration.
|
|
! loadup control flag that indicates that nonlinearity occurred
|
|
! during previous increment.
|
|
! loaduq control flag that indicates that nonlinearity occurred.
|
|
! lodcor control flag for switching on the residual load correction.
|
|
! notice in input stage lodcor=0 means no loadcor,
|
|
! after omarc lodcor=1 means no loadcor
|
|
! lovl control flag for determining which "overlay" is to
|
|
! be called from ellib.
|
|
! lovl = 1 omarc
|
|
! = 2 oaread
|
|
! = 3 opress
|
|
! = 4 oasemb
|
|
! = 5 osolty
|
|
! = 6 ogetst
|
|
! = 7 oscinc
|
|
! = 8 odynam
|
|
! = 9 opmesh
|
|
! = 10 omesh2
|
|
! = 11 osetz
|
|
! = 12 oass
|
|
! = 13 oincdt
|
|
! = 14 oasmas
|
|
! = 15 ofluas
|
|
! = 16 ofluso
|
|
! = 17 oshtra
|
|
! = 18 ocass
|
|
! = 19 osoltc
|
|
! = 20 orezon
|
|
! = 21 otest
|
|
! = 22 oeigen
|
|
! lsub control variable to determine which part of element
|
|
! assembly function is being done.
|
|
! lsub = 1 - no longer used
|
|
! = 2 - beta*
|
|
! = 3 - cons*
|
|
! = 4 - ldef*
|
|
! = 5 - posw*
|
|
! = 6 - theta*
|
|
! = 7 - tmarx*
|
|
! = 8 - geom*
|
|
! magnet control flag for magnetostatic analysis. input data.
|
|
! ncycle cycle number. accumulated in osolty.f
|
|
! note first time through oasemb.f , ncycle = 0.
|
|
! newtnt control flag for permanent copy of newton.
|
|
! newton iteration type. input data.
|
|
! newton : = 1 full newton raphson
|
|
! 2 modified newton raphson
|
|
! 3 newton raphson with strain correct.
|
|
! 4 direct substitution
|
|
! 5 direct substitution followed by n.r.
|
|
! 6 direct substitution with line search
|
|
! 7 full newton raphson with secant initial stress
|
|
! 8 secant method
|
|
! 9 full newton raphson with line search
|
|
! noshr control flag for calculation interlaminar shears for
|
|
! elements 22,45, and 75. input data.
|
|
!ees
|
|
!
|
|
! jactch = 1 or 2 if elements are activated or deactivated
|
|
! = 3 if elements are adaptively remeshed or rezoned
|
|
! = 0 normally / reset to 0 when assembly is done
|
|
! ifricsh = 0 call to fricsh in otest not needed
|
|
! = 1 call to fricsh (nodal friction) in otest needed
|
|
! iremkin = 0 remove deactivated kinematic boundary conditions
|
|
! immediately - only in new input format (this is default)
|
|
! = 1 remove deactivated kinematic boundary conditions
|
|
! gradually - only in new input format
|
|
! iremfor = 0 remove force boundary conditions immediately -
|
|
! only in new input format (this is default)
|
|
! = 1 remove force boundary conditions gradually -
|
|
! only in new input format (this is default)
|
|
! ishearp set to 1 if shear panel elements are present in the model
|
|
!
|
|
! jspf = 0 not in spf loadcase
|
|
! > 0 in spf loadcase (jspf=1 during first increment)
|
|
! machining = 1 if the metal cutting feature is used, for memory allocation purpose
|
|
! = 0 (default) if no metal cutting feature required
|
|
!
|
|
! jlshell = 1 if there is a shell element in the mesh
|
|
! icompsol = 1 if there is a composite solid element in the mesh
|
|
! iupblgfo = 1 if follower force for point loads
|
|
! jcondir = 1 if contact priority option is used
|
|
! nstcrp = 0 (default) steady state creep flag (undocumented feature.
|
|
! if not 0, turns off special ncycle = 0 code in radial.f)
|
|
! nactive = number of active passes, if =1 then it's not a coupled analysis
|
|
! ipassref = reference ipass, if not in a multiphysics pass ipass=ipassref
|
|
! icheckmpc = value of mpc-check parameter option
|
|
! noline = set to 1 in osolty if no line seacrh should be done in ogetst
|
|
! icuring = set to 1 if the curing is included for the heat transfer analysis.
|
|
! ishrink = set to 1 if shrinkage strain is included for mechancial analysis.
|
|
! ioffsflg = 1 for small displacement beam/shell offsets
|
|
! = 2 for large displacement beam/shell offsets
|
|
! isetoff = 0 - do not apply beam/shell offsets
|
|
! = 1 - apply beam/shell offsets
|
|
! ioffsetm = min. value of offset flag
|
|
! iharmt = 1 global flag if a coupled analysis contains an harmonic pass
|
|
! inc_incdat = flag to record increment number of a new loadcase in incdat.f
|
|
! iautspc = flag for AutoSPC option
|
|
! ibrake = brake squeal in this increment
|
|
! icbush = set to 1 if cbush elements present in model
|
|
! istream_input = set to 1 for streaming input calling Marc as library
|
|
! iprsinp = set to 1 if pressure input, introduced so other variables
|
|
! such as h could be a function of pressure
|
|
! ivlsinp = set to 1 if velocity input, introduced so other variables
|
|
! such as h could be a function of velocity
|
|
! ipin_m = # of beam element with PIN flag
|
|
! jgnstr_glb = global control over pre or fast integrated composite shells
|
|
! imarc_return = Marc return flag for streaming input control
|
|
! iqvcimp = if non-zero, then the number of QVECT boundary conditions
|
|
! nqvceid = number of QVECT boundary conditions, where emisivity/absorbtion id entered
|
|
! istpnx = 1 if to stop at end of increment
|
|
! imicro1 = 1 if micro1 interface is used
|
|
! iaxisymm = set to 1 if axisymmetric analysis
|
|
! jbreakglue = set to 1 if breaking glued option is used
|
|
! iglstif = 1 if ddm and global stiffness matrix formed (sgi solver 6 or solver9)
|
|
! jfastasm = 1 do fast assembly using SuperForm code
|
|
! iwear = set to 1 if wear model, set to 2 if wear model and coordinates updated
|
|
! iwearcf = set to 1 to store nodal coefficient of friction for wear calculation
|
|
! imixmeth = set=1 then use nonlinear mixture material - allocate memory
|
|
! ielcmadyn = flag for magnetodynamics
|
|
! 0 - electromagnetics using newmark beta
|
|
! 1 - transient magnetics using backward euler
|
|
! idinout = flag to control if inside out elements should be deactivated
|
|
! igena_meth = 0 - generalized alpha parameters depend on whether or not contact
|
|
! is flagged (dynamic,7)
|
|
! 10 - generalized alpha parameters are optimized for a contact
|
|
! analysis (dynamic,8)
|
|
! 11 - generalized alpha parameters are optimized for an analysis
|
|
! without contact (dynamic,8)
|
|
! magf_meth = - Method to compute force in magnetostatic - structural
|
|
! = 1 - Virtual work method based on finite difference for the force computation
|
|
! = 2 - Maxwell stress tensor
|
|
! = 3 - Virtual work method based on local derivative for the force computation
|
|
! non_assumed = 1 no assumed strain formulation (forced)
|
|
! iredoboudry set to 1 if contact boundary needs to be recalculated
|
|
! ioffsz0 = 1 if composite are used with reference position.ne.0
|
|
! icomplt = 1 global flag if a coupled analysis contains an complex pass
|
|
! mesh_dual = 1 two independent meshes are used in magnetodynamic/thermal/structural
|
|
! one for magnetodynamic and the other for the remaining passes
|
|
! iactrp = 1 in an analysis with global remeshing, include inactive
|
|
! rigid bodies on post file
|
|
! mgnewton = 1 Use full Newton Raphson iteration for magnetostatic pass
|
|
!
|
|
! iusedens > 0 if mass density is used in the analysis (dynamics, mass dependent loading)
|
|
! igsigd0 = 1 set varselem(igsigd) to zero in next oasemb
|
|
! iaem = 1 if marc is called from aem (0 - off - default)
|
|
! icosim = 1 if marc is used in co-simulation software (ADAMS-MARC)
|
|
! inodels = 1 nodal integration elements 239/240/241 present
|
|
! nlharm = 0 harmonic subincrements are linear
|
|
! = 1 harmonic subincrements are nonlinear
|
|
! iampini = 0 amplitude of previous harmonic subinc is initial estimate (default)
|
|
! = 1 zero amplitude is initial estimate
|
|
! iphasetr = 1 phase transformation material model is used
|
|
! iforminp flag indicating that contact is switched on via the CONTACT
|
|
! option in the input file (as opposed to the case that contact
|
|
! is switched on internally due to cyclic symmetry or model
|
|
! section creation)
|
|
! ispecerror = a+10*b (only for spectrum response analysis with missing mass option)
|
|
! a=0 or a=1 (modal shape with non-zero shift)
|
|
! b=0 or b=1 (recover with new assembly of stiffness matrix)
|
|
! icsprg = set to 1 if spring elements present in model
|
|
! imol Control flag for molecualr diffusion pass
|
|
! imolt Permanent control flag for molecualr diffusion pass
|
|
! Note in coupled analysis imolt will remain as one,
|
|
! but imol will be zero in stress pass or thermal pass.
|
|
! idatafit = run Marc to fit parameters
|
|
! iharmpar = 1 if harmonic parameter option is used
|
|
! inclcase load case increment use for cyclic plasticity data fitting
|
|
! imultifreq flag to indicate how many harmonic magnetodynamic passes are computed in coupled
|
|
! magnetodynamic/thermal(/structural) analyses.
|
|
! 0 or 1 one pass 2 two passes 3 or more is not supported
|
|
! init_elas use elastic stress-strain law as the material tangent for
|
|
! the first cycle of an increment
|
|
! ifatig = 1 stress-life fatigue
|
|
! = 2 strain-life fatigue
|
|
! iftgmat = 0 no fatigue material properties in the dat file
|
|
! = 1 fatigue material properties in the dat file
|
|
! nchybrid cycle count used for hybrid contact; meant to force an extra iteration
|
|
! if the overlap for a node in hybrid contact is too large
|
|
!
|
|
!***********************************************************************
|
|
!$omp threadprivate(/marc_concom/)
|
|
!!
|