490 lines
18 KiB
Python
490 lines
18 KiB
Python
#!/usr/bin/python
|
|
# -*- coding: iso-8859-1 -*-
|
|
|
|
# This script is used for the post processing of the results achieved by the spectral method.
|
|
# As it reads in the data coming from "materialpoint_results", it can be adopted to the data
|
|
# computed using the FEM solvers. Until now, its capable to handle elements with one IP in a regular order
|
|
# written by M. Diehl, m.diehl@mpie.de
|
|
|
|
import os,sys,re,array,struct,numpy, time, reconstruct
|
|
|
|
class vector:
|
|
x,y,z = [None,None,None]
|
|
|
|
def __init__(self,coords):
|
|
self.x = coords[0]
|
|
self.y = coords[1]
|
|
self.z = coords[2]
|
|
|
|
class element:
|
|
items = []
|
|
type = None
|
|
|
|
def __init__(self,nodes,type):
|
|
self.items = nodes
|
|
self.type = type
|
|
|
|
class element_scalar:
|
|
id = None
|
|
value = None
|
|
|
|
def __init__(self,node,value):
|
|
self.id = node
|
|
self.value = value
|
|
|
|
|
|
class MPIEspectral_result:
|
|
|
|
file = None
|
|
dataOffset = 0
|
|
N_elemental_scalars = 0
|
|
resolution = [0,0,0]
|
|
dimension = [0.0,0.0,0.0]
|
|
theTitle = ''
|
|
wd = ''
|
|
extrapolate = ''
|
|
N_increments = 0
|
|
increment = 0
|
|
N_nodes = 0
|
|
N_node_scalars = 0
|
|
N_elements = 0
|
|
N_element_scalars = 0
|
|
N_element_tensors = 0
|
|
theNodes = []
|
|
theElements = []
|
|
|
|
def __init__(self,filename):
|
|
|
|
self.file = open(filename, 'rb')
|
|
|
|
self.title = self._keyedString('load')
|
|
self.wd = self._keyedString('workingdir')
|
|
self.geometry = self._keyedString('geometry')
|
|
self.N_increments = self._keyedInt('increments')
|
|
self.N_element_scalars = self._keyedInt('materialpoint_sizeResults')
|
|
self.resolution = self._keyedPackedArray('resolution',3,'i')
|
|
self.N_nodes = (self.resolution[0]+1)*(self.resolution[1]+1)*(self.resolution[2]+1)
|
|
self.N_elements = self.resolution[0]*self.resolution[1]*self.resolution[2]
|
|
self.dimension = self._keyedPackedArray('dimension',3,'d')
|
|
a = self.resolution[0]+1
|
|
b = self.resolution[1]+1
|
|
c = self.resolution[2]+1
|
|
self.file.seek(0)
|
|
self.dataOffset = self.file.read(2048).find('eoh')+7
|
|
|
|
|
|
def __str__(self):
|
|
return '\n'.join([
|
|
'title: %s'%self.title,
|
|
'workdir: %s'%self.wd,
|
|
'extrapolation: %s'%self.extrapolate,
|
|
'increments: %i'%self.N_increments,
|
|
'increment: %i'%self.increment,
|
|
'nodes: %i'%self.N_nodes,
|
|
'resolution: %s'%(','.join(map(str,self.resolution))),
|
|
'dimension: %s'%(','.join(map(str,self.dimension))),
|
|
'elements: %i'%self.N_elements,
|
|
'nodal_scalars: %i'%self.N_node_scalars,
|
|
'elemental scalars: %i'%self.N_element_scalars,
|
|
'end of header: %i'%self.dataOffset,
|
|
]
|
|
)
|
|
|
|
def _keyedPackedArray(self,identifier,length = 3,type = 'd'):
|
|
match = {'d': 8,'i': 4}
|
|
self.file.seek(0)
|
|
m = re.search('%s%s'%(identifier,'(.{%i})'%(match[type])*length),self.file.read(2048),re.DOTALL)
|
|
values = []
|
|
if m:
|
|
for i in m.groups():
|
|
values.append(struct.unpack(type,i)[0])
|
|
return values
|
|
|
|
def _keyedInt(self,identifier):
|
|
value = None
|
|
self.file.seek(0)
|
|
m = re.search('%s%s'%(identifier,'(.{4})'),self.file.read(2048),re.DOTALL)
|
|
if m:
|
|
value = struct.unpack('i',m.group(1))[0]
|
|
return value
|
|
|
|
def _keyedString(self,identifier):
|
|
value = None
|
|
self.file.seek(0)
|
|
m = re.search(r'(.{4})%s(.*?)\1'%identifier,self.file.read(2048),re.DOTALL)
|
|
if m:
|
|
value = m.group(2)
|
|
return value
|
|
|
|
def extrapolation(self,value):
|
|
self.extrapolate = value
|
|
|
|
def element_scalar(self,elem,idx):
|
|
self.file.seek(self.dataOffset+(self.increment*(4+self.N_elements*self.N_element_scalars*8+4) + 4+(elem*self.N_element_scalars + idx)*8))
|
|
value = struct.unpack('d',self.file.read(8))[0]
|
|
return [elemental_scalar(node,value) for node in self.theElements[elem].items]
|
|
|
|
def readScalar(resolution,file,distance,startingPosition,offset):
|
|
currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
|
|
field = numpy.zeros([resolution[0],resolution[1],resolution[2]], 'd')
|
|
for z in range(0,resolution[2]):
|
|
for y in range(0,resolution[1]):
|
|
for x in range(0,resolution[0]):
|
|
currentPosition = currentPosition + distance*8
|
|
p.file.seek(currentPosition)
|
|
field[x][y][z]=struct.unpack('d',p.file.read(8))[0]
|
|
return field
|
|
|
|
def readTensor(resolution,file,distance,startingPosition,offset):
|
|
currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
|
|
field = numpy.zeros([resolution[0],resolution[1],resolution[2],3,3], 'd')
|
|
for z in range(0,resolution[2]):
|
|
for y in range(0,resolution[1]):
|
|
for x in range(0,resolution[0]):
|
|
currentPosition = currentPosition + distance*8
|
|
p.file.seek(currentPosition)
|
|
for i in range(0,3):
|
|
for j in range(0,3):
|
|
field[x][y][z][i][j]=struct.unpack('d',p.file.read(8))[0]
|
|
return field
|
|
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
def calculateCauchyStress(p_stress,defgrad,res):
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
c_stress = numpy.zeros([res[0],res[1],res[2],3,3],'d')
|
|
for z in range(res[2]):
|
|
for y in range(res[1]):
|
|
for x in range(res[0]):
|
|
jacobi = numpy.linalg.det(defgrad[x,y,z])
|
|
c_stress[x,y,z] = numpy.dot(p_stress[x,y,z],numpy.transpose(defgrad[x,y,z]))/jacobi
|
|
return c_stress
|
|
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
def calculateVonMises(tensor,res):
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
vonMises = numpy.zeros([res[0],res[1],res[2]],'d')
|
|
deviator = numpy.zeros([3,3],'d')
|
|
delta = numpy.zeros([3,3],'d')
|
|
delta[0,0] = 1.0
|
|
delta[1,1] = 1.0
|
|
delta[2,2] = 1.0
|
|
for z in range(res[2]):
|
|
for y in range(res[1]):
|
|
for x in range(res[0]):
|
|
deviator = tensor[x,y,z] - 1.0/3.0*tensor[x,y,z,0,0]*tensor[x,y,z,1,1]*tensor[x,y,z,2,2]*delta
|
|
J_2 = deviator[0,0]*deviator[1,1]\
|
|
+ deviator[1,1]*deviator[2,2]\
|
|
+ deviator[0,0]*deviator[2,2]\
|
|
- (deviator[0,1])**2\
|
|
- (deviator[1,2])**2\
|
|
- (deviator[0,2])**2
|
|
vonMises[x,y,z] = numpy.sqrt(3*J_2)
|
|
return vonMises
|
|
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
def mesh(res,geomdim,defgrad_av,centroids):
|
|
#+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
|
|
neighbor = numpy.array([[0, 0, 0],
|
|
[1, 0, 0],
|
|
[1, 1, 0],
|
|
[0, 1, 0],
|
|
[0, 0, 1],
|
|
[1, 0, 1],
|
|
[1, 1, 1],
|
|
[0, 1, 1]])
|
|
|
|
wrappedCentroids = numpy.zeros([res[0]+2,res[1]+2,res[2]+2,3],'d')
|
|
nodes = numpy.zeros([res[0]+1,res[1]+1,res[2]+1,3],'d')
|
|
wrappedCentroids[1:-1,1:-1,1:-1] = centroids
|
|
diag = numpy.ones(3,'i')
|
|
shift = numpy.zeros(3,'i')
|
|
lookup = numpy.zeros(3,'i')
|
|
|
|
for k in range(res[2]+2):
|
|
for j in range(res[1]+2):
|
|
for i in range(res[0]+2):
|
|
if (k==0 or k==res[2]+1 or \
|
|
j==0 or j==res[1]+1 or \
|
|
i==0 or i==res[0]+1 ):
|
|
me = numpy.array([i,j,k],'i')
|
|
shift = numpy.sign(res+diag-2*me)*(numpy.abs(res+diag-2*me)/(res+diag))
|
|
lookup = me-diag+shift*res
|
|
wrappedCentroids[i,j,k] = centroids[lookup[0],lookup[1],lookup[2]]- \
|
|
numpy.dot(defgrad_av, shift*geomdim)
|
|
for k in range(res[2]+1):
|
|
for j in range(res[1]+1):
|
|
for i in range(res[0]+1):
|
|
for n in range(8):
|
|
nodes[i,j,k] += wrappedCentroids[i+neighbor[n,0],j+neighbor[n,1],k+neighbor[n,2]]
|
|
nodes[:,:,:] /= 8.0
|
|
|
|
return nodes
|
|
|
|
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
def centroids(res,geomdimension,defgrad):
|
|
# +++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++
|
|
corner = numpy.array([[0, 0, 0],
|
|
[1, 0, 0],
|
|
[1, 1, 0],
|
|
[0, 1, 0],
|
|
[1, 1, 1],
|
|
[0, 1, 1],
|
|
[0, 0, 1],
|
|
[1, 0, 1]])
|
|
step = numpy.array([[ 1, 1, 1],
|
|
[-1, 1, 1],
|
|
[-1,-1, 1],
|
|
[ 1,-1, 1],
|
|
[-1,-1,-1],
|
|
[ 1,-1,-1],
|
|
[ 1, 1,-1],
|
|
[-1, 1,-1]])
|
|
|
|
order = numpy.array([[0, 1, 2],
|
|
[0, 2, 1],
|
|
[1, 0, 2],
|
|
[1, 2, 0],
|
|
[2, 0, 1],
|
|
[2, 1, 0]])
|
|
|
|
cornerCoords = numpy.zeros([8,res[0],res[1],res[2],3], 'd')
|
|
coord = numpy.zeros([8,6,res[0],res[1],res[2],3], 'd')
|
|
centroids = numpy.zeros([res[0],res[1],res[2],3], 'd')
|
|
myStep = numpy.zeros(3,'d')
|
|
rear = numpy.zeros(3, 'i')
|
|
init = numpy.zeros(3, 'i')
|
|
oppo = numpy.zeros(3, 'i')
|
|
me = numpy.zeros(3, 'i')
|
|
ones = numpy.ones(3, 'i')
|
|
fones = numpy.ones(3, 'd')
|
|
defgrad_av=numpy.average(numpy.average(numpy.average(defgrad,0),0),0)
|
|
print defgrad_av
|
|
for s in range(8):# corners
|
|
init = corner[s]*(res-ones)
|
|
oppo = corner[(s+4)%8]*(res-ones)
|
|
for o in range(6): # orders
|
|
for k in range(init[order[o,2]],oppo[order[o,2]]+step[s,order[o,2]],step[s,order[o,2]]):
|
|
rear[order[o,1]] = init[order[o,1]]
|
|
for j in range(init[order[o,1]],oppo[order[o,1]]+step[s,order[o,1]],step[s,order[o,1]]):
|
|
rear[order[o,0]] = init[order[o,0]]
|
|
for i in range(init[order[o,0]],oppo[order[o,0]]+step[s,order[o,0]],step[s,order[o,0]]):
|
|
me[order[o,0]] = i
|
|
me[order[o,1]] = j
|
|
me[order[o,2]] = k
|
|
if (numpy.all(me == init)):
|
|
coord[s,o,me[0],me[1],me[2]] = geomdimension * (numpy.dot(defgrad_av,corner[s]) + \
|
|
numpy.dot(defgrad[me[0],me[1],me[2]],0.5*step[s]/res))
|
|
else:
|
|
myStep = (me-rear)*geomdimension/res
|
|
coord[s,o,me[0],me[1],me[2]] = coord[s,o,rear[0],rear[1],rear[2]]+ \
|
|
0.5*numpy.dot(defgrad[me[0],me[1],me[2]] + \
|
|
defgrad[rear[0],rear[1],rear[2]],myStep)
|
|
|
|
rear[:] = me[:]
|
|
cornerCoords[s] = numpy.average(coord[s],0)
|
|
for k in range(res[2]):
|
|
for j in range(res[1]):
|
|
for i in range(res[0]):
|
|
parameter_coords=(2.0*numpy.array([i,j,k])-res+fones)/(res-fones)
|
|
pos = (fones + parameter_coords)
|
|
neg = (fones - parameter_coords)
|
|
centroids[i,j,k] = ( cornerCoords[0,i,j,k] *neg[0]*neg[1]*neg[2]\
|
|
+ cornerCoords[1,i,j,k] *pos[0]*neg[1]*neg[2]\
|
|
+ cornerCoords[2,i,j,k] *pos[0]*pos[1]*neg[2]\
|
|
+ cornerCoords[3,i,j,k] *neg[0]*pos[1]*neg[2]\
|
|
+ cornerCoords[4,i,j,k] *pos[0]*pos[1]*pos[2]\
|
|
+ cornerCoords[5,i,j,k] *neg[0]*pos[1]*pos[2]\
|
|
+ cornerCoords[6,i,j,k] *neg[0]*neg[1]*pos[2]\
|
|
+ cornerCoords[7,i,j,k] *pos[0]*neg[1]*pos[2])*0.125
|
|
return centroids, defgrad_av
|
|
|
|
# function writes scalar values to a mesh (geometry)
|
|
def writeVtkAscii(filename,geometry,scalar,resolution):
|
|
prodnn=(p.resolution[0]+1)*(p.resolution[1]+1)*(p.resolution[2]+1)
|
|
vtk = open(filename, 'w')
|
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
|
vtk.write('just a test\n') # header
|
|
vtk.write('ASCII\n') # header
|
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
|
vtk.write('POINTS ') # header
|
|
vtk.write(str(prodnn)) # header
|
|
vtk.write(' FLOAT\n') # header
|
|
|
|
# nodes
|
|
for k in range (resolution[2]+1):
|
|
for j in range (resolution[1]+1):
|
|
for i in range (resolution[0]+1):
|
|
vtk.write('\t'.join(map(str,geometry[i,j,k]))+'\n')
|
|
vtk.write('\n')
|
|
vtk.write('CELLS ')
|
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
|
|
vtk.write('\t')
|
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]*9))
|
|
vtk.write('\n')
|
|
|
|
# elements
|
|
for i in range (resolution[2]):
|
|
for j in range (resolution[1]):
|
|
for k in range (resolution[0]):
|
|
vtk.write('8')
|
|
vtk.write('\t')
|
|
base = i*(resolution[1]+1)*(resolution[2]+1)+j*(resolution[1]+1)+k
|
|
vtk.write(str(base))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+1))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+resolution[1]+2))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+resolution[1]+1))
|
|
vtk.write('\t')
|
|
base = base + (resolution[1]+1)*(resolution[2]+1)
|
|
vtk.write(str(base))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+1))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+resolution[1]+2))
|
|
vtk.write('\t')
|
|
vtk.write(str(base+resolution[1]+1))
|
|
vtk.write('\n')
|
|
vtk.write('\n')
|
|
vtk.write('CELL_TYPES ')
|
|
vtk.write('\t')
|
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2]))
|
|
vtk.write('\n')
|
|
for i in range (resolution[0]*resolution[1]*resolution[2]):
|
|
vtk.write('12\n')
|
|
vtk.write('\nCELL_DATA ') # header
|
|
vtk.write(str(resolution[0]*resolution[1]*resolution[2])) # header
|
|
vtk.write('\n') # header
|
|
vtk.write('SCALARS HorizontalSpeed float\n') # header
|
|
vtk.write('LOOKUP_TABLE default\n') # header
|
|
for k in range (resolution[2]):
|
|
for j in range (resolution[1]):
|
|
for i in range (resolution[0]):
|
|
vtk.write(str(scalar[i,j,k]))
|
|
vtk.write('\n')
|
|
return
|
|
|
|
# function writes scalar values to a point field
|
|
def writeVtkAsciiDots(filename,coordinates,scalar,resolution):
|
|
prodnn=(p.resolution[0])*(p.resolution[1])*(p.resolution[2])
|
|
vtk = open(filename, 'w')
|
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
|
vtk.write('just a test\n') # header
|
|
vtk.write('ASCII\n') # header
|
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
|
vtk.write('POINTS ') # header
|
|
vtk.write(str(prodnn)) # header
|
|
vtk.write(' FLOAT\n') # header
|
|
# points
|
|
for k in range (resolution[2]):
|
|
for j in range (resolution[1]):
|
|
for i in range (resolution[0]):
|
|
vtk.write('\t'.join(map(str,coordinates[i,j,k]))+'\n')
|
|
vtk.write('\n')
|
|
vtk.write('CELLS ')
|
|
vtk.write(str(prodnn))
|
|
vtk.write('\t')
|
|
vtk.write(str(prodnn*2))
|
|
vtk.write('\n')
|
|
for i in range(prodnn):
|
|
vtk.write('1\t' + str(i) + '\n')
|
|
vtk.write('CELL_TYPES ')
|
|
vtk.write('\t')
|
|
vtk.write(str(prodnn))
|
|
vtk.write('\n')
|
|
for i in range (prodnn):
|
|
vtk.write('1\n')
|
|
vtk.write('\nPOINT_DATA ') # header
|
|
vtk.write(str(prodnn)) # header
|
|
vtk.write('\n') # header
|
|
vtk.write('SCALARS HorizontalSpeed float\n') # header
|
|
vtk.write('LOOKUP_TABLE default\n') # header
|
|
for k in range (resolution[2]):
|
|
for j in range (resolution[1]):
|
|
for i in range (resolution[0]):
|
|
vtk.write(str(scalar[i,j,k]))
|
|
vtk.write('\n')
|
|
return
|
|
|
|
# functiongives the corner box for the average defgrad
|
|
def writeVtkAsciidefgrad_av(filename,diag,defgrad):
|
|
|
|
points = numpy.array([\
|
|
[0.0,0.0,0.0,],\
|
|
[diag[0],0.0,0.0,],\
|
|
[diag[0],diag[1],0.0,],\
|
|
[0.0,diag[1],0.0,],\
|
|
[0.0,0.0,diag[2],],\
|
|
[diag[0],0.0,diag[2],],\
|
|
[diag[0],diag[1],diag[2],],\
|
|
[0.0,diag[1],diag[2],]]\
|
|
)
|
|
vtk = open(filename, 'w')
|
|
vtk.write('# vtk DataFile Version 3.1\n') # header
|
|
vtk.write('just a test\n') # header
|
|
vtk.write('ASCII\n') # header
|
|
vtk.write('DATASET UNSTRUCTURED_GRID\n') # header
|
|
vtk.write('POINTS 8') # header
|
|
vtk.write(' FLOAT\n') # header
|
|
|
|
# points
|
|
for p in range (8):
|
|
vtk.write('\t'.join(map(str,numpy.dot(defgrad_av,points[p])))+'\n')
|
|
vtk.write('\n')
|
|
vtk.write('CELLS 8 16\n')
|
|
vtk.write('\n'.join(['1\t%i'%i for i in range(8)])+'\n')
|
|
vtk.write('CELL_TYPES 8\n')
|
|
vtk.write('\n'.join(['1']*8)+'\n')
|
|
|
|
return
|
|
|
|
print '*********************************************************************************'
|
|
print 'Post Processing for Material subroutine for BVP solution using spectral method'
|
|
print '*********************************************************************************\n'
|
|
|
|
#reading in the header of the results file
|
|
name = 'dipl32'
|
|
p = MPIEspectral_result(name+'.spectralOut')
|
|
p.extrapolation('')
|
|
print p
|
|
|
|
# Ended reading of header
|
|
|
|
res_x=p.resolution[0]
|
|
res_y=p.resolution[1]
|
|
res_z=p.resolution[2]
|
|
|
|
# for i in range(1,3):
|
|
# print('new step')
|
|
# c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
|
# for j in range(p.N_element_scalars):
|
|
# #def readScalar(resolution,file,distance,startingPosition,offset):
|
|
# #currentPosition = startingPosition+offset*8+4 - distance*8 # we add distance later on
|
|
# #field = numpy.zeros([resolution[0],resolution[1],resolution[2]], 'd')
|
|
# #for z in range(0,resolution[2]):
|
|
# #for y in range(0,resolution[1]):
|
|
# #for x in range(0,resolution[0]):
|
|
# currentPosition = c_pos + j*8 +4
|
|
# p.file.seek(currentPosition)
|
|
# print(struct.unpack('d',p.file.read(8)))
|
|
|
|
|
|
ms=numpy.zeros([res_x,res_y,res_z,3], 'd')
|
|
for i in range(249,250):
|
|
c_pos = p.dataOffset + i*(p.N_element_scalars*8*p.N_elements + 8) #8 accounts for header&footer
|
|
defgrad = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,16)
|
|
p_stress = readTensor(p.resolution,p.file,p.N_element_scalars,c_pos,58)
|
|
#c_stress = calculateCauchyStress(p_stress,defgrad,p.resolution)
|
|
#grain = calculateVonMises(c_stress,p.resolution)
|
|
defgrad_av=numpy.average(numpy.average(numpy.average(defgrad,0),0),0)
|
|
centroids_coord = reconstruct.deformed(res_x,res_y,res_z,p.dimension,defgrad,defgrad_av)
|
|
ms = reconstruct.mesh(p.resolution[0],p.resolution[1],p.resolution[2],p.dimension,defgrad_av,centroids_coord)
|
|
writeVtkAscii(name+'-mesh-fortran-%s.vtk'%i,ms,p_stress[:,:,:,1,2],p.resolution)
|
|
#writeVtkAsciidefgrad_av(name+'-box-%i.vtk'%i,p.dimension,defgrad_av)
|
|
#writeVtkAsciiDots(name+'-points-%i.vtk'%i,centroids_coord,grain,p.resolution)
|
|
sys.stdout.flush()
|
|
|
|
|