1340 lines
56 KiB
Fortran
1340 lines
56 KiB
Fortran
!----------------------------------------------------------------------------------------------------
|
|
!> @brief internal microstructure state for all plasticity constitutive models
|
|
!----------------------------------------------------------------------------------------------------
|
|
submodule(phase) mechanical
|
|
|
|
|
|
enum, bind(c); enumerator :: &
|
|
PLASTIC_UNDEFINED_ID, &
|
|
PLASTIC_NONE_ID, &
|
|
PLASTIC_ISOTROPIC_ID, &
|
|
PLASTIC_PHENOPOWERLAW_ID, &
|
|
PLASTIC_KINEHARDENING_ID, &
|
|
PLASTIC_DISLOTWIN_ID, &
|
|
PLASTIC_DISLOTUNGSTEN_ID, &
|
|
PLASTIC_NONLOCAL_ID, &
|
|
EIGEN_UNDEFINED_ID, &
|
|
EIGEN_CLEAVAGE_OPENING_ID, &
|
|
EIGEN_THERMAL_EXPANSION_ID
|
|
end enum
|
|
|
|
type(tTensorContainer), dimension(:), allocatable :: &
|
|
! current value
|
|
phase_mechanical_Fe, &
|
|
phase_mechanical_Fi, &
|
|
phase_mechanical_Fp, &
|
|
phase_mechanical_F, &
|
|
phase_mechanical_Li, &
|
|
phase_mechanical_Lp, &
|
|
phase_mechanical_S, &
|
|
phase_mechanical_P, &
|
|
! converged value at end of last solver increment
|
|
phase_mechanical_Fi0, &
|
|
phase_mechanical_Fp0, &
|
|
phase_mechanical_F0, &
|
|
phase_mechanical_Li0, &
|
|
phase_mechanical_Lp0, &
|
|
phase_mechanical_S0
|
|
|
|
|
|
integer(kind(PLASTIC_undefined_ID)), dimension(:), allocatable :: &
|
|
phase_plasticity !< plasticity of each phase
|
|
|
|
interface
|
|
|
|
module subroutine eigen_init(phases)
|
|
class(tNode), pointer :: phases
|
|
end subroutine eigen_init
|
|
|
|
module subroutine elastic_init(phases)
|
|
class(tNode), pointer :: phases
|
|
end subroutine elastic_init
|
|
|
|
module subroutine plastic_init
|
|
end subroutine plastic_init
|
|
|
|
module subroutine phase_hooke_SandItsTangents(S,dS_dFe,dS_dFi,Fe,Fi,ph,en)
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fe, & !< elastic deformation gradient
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
S !< 2nd Piola-Kirchhoff stress tensor in lattice configuration
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dS_dFe, & !< derivative of 2nd P-K stress with respect to elastic deformation gradient
|
|
dS_dFi !< derivative of 2nd P-K stress with respect to intermediate deformation gradient
|
|
end subroutine phase_hooke_SandItsTangents
|
|
|
|
module subroutine plastic_isotropic_LiAndItsTangent(Li,dLi_dMi,Mi,ph,en)
|
|
real(pReal), dimension(3,3), intent(out) :: &
|
|
Li !< inleastic velocity gradient
|
|
real(pReal), dimension(3,3,3,3), intent(out) :: &
|
|
dLi_dMi !< derivative of Li with respect to Mandel stress
|
|
real(pReal), dimension(3,3), intent(in) :: &
|
|
Mi !< Mandel stress
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
end subroutine plastic_isotropic_LiAndItsTangent
|
|
|
|
module function plastic_dotState(subdt,ph,en) result(dotState)
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
real(pReal), intent(in) :: &
|
|
subdt !< timestep
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
|
dotState
|
|
end function plastic_dotState
|
|
|
|
module function plastic_deltaState(ph, en) result(broken)
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
logical :: &
|
|
broken
|
|
end function plastic_deltaState
|
|
|
|
module subroutine phase_LiAndItsTangents(Li, dLi_dS, dLi_dFi, &
|
|
S, Fi, ph,en)
|
|
integer, intent(in) :: &
|
|
ph,en
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S !< 2nd Piola-Kirchhoff stress
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
Li !< intermediate velocity gradient
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dLi_dS, & !< derivative of Li with respect to S
|
|
dLi_dFi
|
|
|
|
end subroutine phase_LiAndItsTangents
|
|
|
|
|
|
module subroutine plastic_LpAndItsTangents(Lp, dLp_dS, dLp_dFi, &
|
|
S, Fi, ph,en)
|
|
integer, intent(in) :: &
|
|
ph,en
|
|
real(pReal), intent(in), dimension(3,3) :: &
|
|
S, & !< 2nd Piola-Kirchhoff stress
|
|
Fi !< intermediate deformation gradient
|
|
real(pReal), intent(out), dimension(3,3) :: &
|
|
Lp !< plastic velocity gradient
|
|
real(pReal), intent(out), dimension(3,3,3,3) :: &
|
|
dLp_dS, &
|
|
dLp_dFi !< derivative of Lp with respect to Fi
|
|
end subroutine plastic_LpAndItsTangents
|
|
|
|
|
|
module subroutine plastic_isotropic_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_isotropic_results
|
|
|
|
module subroutine plastic_phenopowerlaw_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_phenopowerlaw_results
|
|
|
|
module subroutine plastic_kinehardening_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_kinehardening_results
|
|
|
|
module subroutine plastic_dislotwin_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_dislotwin_results
|
|
|
|
module subroutine plastic_dislotungsten_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_dislotungsten_results
|
|
|
|
module subroutine plastic_nonlocal_results(ph,group)
|
|
integer, intent(in) :: ph
|
|
character(len=*), intent(in) :: group
|
|
end subroutine plastic_nonlocal_results
|
|
|
|
module function plastic_dislotwin_homogenizedC(ph,en) result(homogenizedC)
|
|
real(pReal), dimension(6,6) :: homogenizedC
|
|
integer, intent(in) :: ph,en
|
|
end function plastic_dislotwin_homogenizedC
|
|
|
|
pure module function elastic_C66(ph,en) result(C66)
|
|
real(pReal), dimension(6,6) :: C66
|
|
integer, intent(in) :: ph, en
|
|
end function elastic_C66
|
|
|
|
pure module function elastic_mu(ph,en) result(mu)
|
|
real(pReal) :: mu
|
|
integer, intent(in) :: ph, en
|
|
end function elastic_mu
|
|
|
|
pure module function elastic_nu(ph,en) result(nu)
|
|
real(pReal) :: nu
|
|
integer, intent(in) :: ph, en
|
|
end function elastic_nu
|
|
|
|
end interface
|
|
|
|
type :: tOutput !< requested output (per phase)
|
|
character(len=pStringLen), allocatable, dimension(:) :: &
|
|
label
|
|
end type tOutput
|
|
type(tOutput), allocatable, dimension(:) :: output_mechanical
|
|
|
|
procedure(integrateStateFPI), pointer :: integrateState
|
|
|
|
contains
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Initialize mechanical field related constitutive models
|
|
!> @details Initialize elasticity, plasticity and stiffness degradation models.
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine mechanical_init(phases)
|
|
|
|
class(tNode), pointer :: &
|
|
phases
|
|
|
|
integer :: &
|
|
ce, &
|
|
co, &
|
|
ma, &
|
|
ph, &
|
|
en, &
|
|
Nmembers
|
|
class(tNode), pointer :: &
|
|
num_crystallite, &
|
|
|
|
phase, &
|
|
mech
|
|
|
|
print'(/,1x,a)', '<<<+- phase:mechanical init -+>>>'
|
|
|
|
!-------------------------------------------------------------------------------------------------
|
|
allocate(output_mechanical(phases%length))
|
|
|
|
allocate(phase_mechanical_Fe(phases%length))
|
|
allocate(phase_mechanical_Fi(phases%length))
|
|
allocate(phase_mechanical_Fi0(phases%length))
|
|
allocate(phase_mechanical_Fp(phases%length))
|
|
allocate(phase_mechanical_Fp0(phases%length))
|
|
allocate(phase_mechanical_F(phases%length))
|
|
allocate(phase_mechanical_F0(phases%length))
|
|
allocate(phase_mechanical_Li(phases%length))
|
|
allocate(phase_mechanical_Li0(phases%length))
|
|
allocate(phase_mechanical_Lp(phases%length))
|
|
allocate(phase_mechanical_Lp0(phases%length))
|
|
allocate(phase_mechanical_S(phases%length))
|
|
allocate(phase_mechanical_P(phases%length))
|
|
allocate(phase_mechanical_S0(phases%length))
|
|
|
|
do ph = 1, phases%length
|
|
Nmembers = count(material_phaseID == ph)
|
|
|
|
allocate(phase_mechanical_Fe(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_Fi(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_Fi0(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_Fp(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_Fp0(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_F(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_F0(ph)%data(3,3,Nmembers))
|
|
allocate(phase_mechanical_Li(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_Li0(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_Lp(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_Lp0(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_S(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_P(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
allocate(phase_mechanical_S0(ph)%data(3,3,Nmembers),source=0.0_pReal)
|
|
|
|
phase => phases%get(ph)
|
|
mech => phase%get('mechanical')
|
|
#if defined(__GFORTRAN__)
|
|
output_mechanical(ph)%label = output_as1dString(mech)
|
|
#else
|
|
output_mechanical(ph)%label = mech%get_as1dString('output',defaultVal=emptyStringArray)
|
|
#endif
|
|
enddo
|
|
|
|
do ce = 1, size(material_phaseID,2)
|
|
ma = discretization_materialAt((ce-1)/discretization_nIPs+1)
|
|
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
|
|
ph = material_phaseID(co,ce)
|
|
phase_mechanical_Fi0(ph)%data(1:3,1:3,material_phaseEntry(co,ce)) = material_F_i_0(ma)%data(1:3,1:3,co)
|
|
enddo
|
|
enddo
|
|
|
|
do ph = 1, phases%length
|
|
do en = 1, count(material_phaseID == ph)
|
|
|
|
phase_mechanical_Fp0(ph)%data(1:3,1:3,en) = phase_O_0(ph)%data(en)%asMatrix() ! Fp reflects initial orientation (see 10.1016/j.actamat.2006.01.005)
|
|
phase_mechanical_Fp0(ph)%data(1:3,1:3,en) = phase_mechanical_Fp0(ph)%data(1:3,1:3,en) &
|
|
/ math_det33(phase_mechanical_Fp0(ph)%data(1:3,1:3,en))**(1.0_pReal/3.0_pReal)
|
|
phase_mechanical_F0(ph)%data(1:3,1:3,en) = math_I3
|
|
phase_mechanical_Fe(ph)%data(1:3,1:3,en) = math_inv33(matmul(phase_mechanical_Fi0(ph)%data(1:3,1:3,en), &
|
|
phase_mechanical_Fp0(ph)%data(1:3,1:3,en))) ! assuming that euler angles are given in internal strain free configuration
|
|
enddo
|
|
phase_mechanical_Fp(ph)%data = phase_mechanical_Fp0(ph)%data
|
|
phase_mechanical_Fi(ph)%data = phase_mechanical_Fi0(ph)%data
|
|
phase_mechanical_F(ph)%data = phase_mechanical_F0(ph)%data
|
|
enddo
|
|
|
|
|
|
call elastic_init(phases)
|
|
|
|
allocate(plasticState(phases%length))
|
|
allocate(phase_plasticity(phases%length),source = PLASTIC_UNDEFINED_ID)
|
|
call plastic_init()
|
|
do ph = 1,phases%length
|
|
plasticState(ph)%state0 = plasticState(ph)%state
|
|
enddo
|
|
|
|
num_crystallite => config_numerics%get('crystallite',defaultVal=emptyDict)
|
|
|
|
select case(num_crystallite%get_asString('integrator',defaultVal='FPI'))
|
|
|
|
case('FPI')
|
|
integrateState => integrateStateFPI
|
|
|
|
case('Euler')
|
|
integrateState => integrateStateEuler
|
|
|
|
case('AdaptiveEuler')
|
|
integrateState => integrateStateAdaptiveEuler
|
|
|
|
case('RK4')
|
|
integrateState => integrateStateRK4
|
|
|
|
case('RKCK45')
|
|
integrateState => integrateStateRKCK45
|
|
|
|
case default
|
|
call IO_error(301,ext_msg='integrator')
|
|
|
|
end select
|
|
|
|
|
|
call eigen_init(phases)
|
|
|
|
|
|
end subroutine mechanical_init
|
|
|
|
|
|
module subroutine mechanical_results(group,ph)
|
|
|
|
character(len=*), intent(in) :: group
|
|
integer, intent(in) :: ph
|
|
|
|
|
|
call results(group,ph)
|
|
|
|
select case(phase_plasticity(ph))
|
|
|
|
case(PLASTIC_ISOTROPIC_ID)
|
|
call plastic_isotropic_results(ph,group//'mechanical/')
|
|
|
|
case(PLASTIC_PHENOPOWERLAW_ID)
|
|
call plastic_phenopowerlaw_results(ph,group//'mechanical/')
|
|
|
|
case(PLASTIC_KINEHARDENING_ID)
|
|
call plastic_kinehardening_results(ph,group//'mechanical/')
|
|
|
|
case(PLASTIC_DISLOTWIN_ID)
|
|
call plastic_dislotwin_results(ph,group//'mechanical/')
|
|
|
|
case(PLASTIC_DISLOTUNGSTEN_ID)
|
|
call plastic_dislotungsten_results(ph,group//'mechanical/')
|
|
|
|
case(PLASTIC_NONLOCAL_ID)
|
|
call plastic_nonlocal_results(ph,group//'mechanical/')
|
|
|
|
end select
|
|
|
|
|
|
end subroutine mechanical_results
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculation of stress (P) with time integration based on a residuum in Lp and
|
|
!> intermediate acceleration of the Newton-Raphson correction
|
|
!--------------------------------------------------------------------------------------------------
|
|
function integrateStress(F,subFp0,subFi0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: F,subFp0,subFi0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: ph, en
|
|
|
|
real(pReal), dimension(3,3):: Fp_new, & ! plastic deformation gradient at end of timestep
|
|
invFp_new, & ! inverse of Fp_new
|
|
invFp_current, & ! inverse of Fp_current
|
|
Lpguess, & ! current guess for plastic velocity gradient
|
|
Lpguess_old, & ! known last good guess for plastic velocity gradient
|
|
Lp_constitutive, & ! plastic velocity gradient resulting from constitutive law
|
|
residuumLp, & ! current residuum of plastic velocity gradient
|
|
residuumLp_old, & ! last residuum of plastic velocity gradient
|
|
deltaLp, & ! direction of next guess
|
|
Fi_new, & ! gradient of intermediate deformation stages
|
|
invFi_new, &
|
|
invFi_current, & ! inverse of Fi_current
|
|
Liguess, & ! current guess for intermediate velocity gradient
|
|
Liguess_old, & ! known last good guess for intermediate velocity gradient
|
|
Li_constitutive, & ! intermediate velocity gradient resulting from constitutive law
|
|
residuumLi, & ! current residuum of intermediate velocity gradient
|
|
residuumLi_old, & ! last residuum of intermediate velocity gradient
|
|
deltaLi, & ! direction of next guess
|
|
Fe, & ! elastic deformation gradient
|
|
S, & ! 2nd Piola-Kirchhoff Stress in plastic (lattice) configuration
|
|
A, &
|
|
B, &
|
|
temp_33
|
|
real(pReal), dimension(9) :: temp_9 ! needed for matrix inversion by LAPACK
|
|
integer, dimension(9) :: devNull_9 ! needed for matrix inversion by LAPACK
|
|
real(pReal), dimension(9,9) :: dRLp_dLp, & ! partial derivative of residuum (Jacobian for Newton-Raphson scheme)
|
|
dRLi_dLi ! partial derivative of residuumI (Jacobian for Newton-Raphson scheme)
|
|
real(pReal), dimension(3,3,3,3):: dS_dFe, & ! partial derivative of 2nd Piola-Kirchhoff stress
|
|
dS_dFi, &
|
|
dFe_dLp, & ! partial derivative of elastic deformation gradient
|
|
dFe_dLi, &
|
|
dFi_dLi, &
|
|
dLp_dFi, &
|
|
dLi_dFi, &
|
|
dLp_dS, &
|
|
dLi_dS
|
|
real(pReal) steplengthLp, &
|
|
steplengthLi, &
|
|
atol_Lp, &
|
|
atol_Li, &
|
|
devNull
|
|
integer NiterationStressLp, & ! number of stress integrations
|
|
NiterationStressLi, & ! number of inner stress integrations
|
|
ierr, & ! error indicator for LAPACK
|
|
o, &
|
|
p, &
|
|
jacoCounterLp, &
|
|
jacoCounterLi ! counters to check for Jacobian update
|
|
logical :: error,broken
|
|
|
|
|
|
broken = .true.
|
|
call plastic_dependentState(ph,en)
|
|
|
|
Lpguess = phase_mechanical_Lp(ph)%data(1:3,1:3,en) ! take as first guess
|
|
Liguess = phase_mechanical_Li(ph)%data(1:3,1:3,en) ! take as first guess
|
|
|
|
call math_invert33(invFp_current,devNull,error,subFp0)
|
|
if (error) return ! error
|
|
call math_invert33(invFi_current,devNull,error,subFi0)
|
|
if (error) return ! error
|
|
|
|
A = matmul(F,invFp_current) ! intermediate tensor needed later to calculate dFe_dLp
|
|
|
|
jacoCounterLi = 0
|
|
steplengthLi = 1.0_pReal
|
|
residuumLi_old = 0.0_pReal
|
|
Liguess_old = Liguess
|
|
|
|
NiterationStressLi = 0
|
|
LiLoop: do
|
|
NiterationStressLi = NiterationStressLi + 1
|
|
if (NiterationStressLi>num%nStress) return ! error
|
|
|
|
invFi_new = matmul(invFi_current,math_I3 - Delta_t*Liguess)
|
|
Fi_new = math_inv33(invFi_new)
|
|
|
|
jacoCounterLp = 0
|
|
steplengthLp = 1.0_pReal
|
|
residuumLp_old = 0.0_pReal
|
|
Lpguess_old = Lpguess
|
|
|
|
NiterationStressLp = 0
|
|
LpLoop: do
|
|
NiterationStressLp = NiterationStressLp + 1
|
|
if (NiterationStressLp>num%nStress) return ! error
|
|
|
|
B = math_I3 - Delta_t*Lpguess
|
|
Fe = matmul(matmul(A,B), invFi_new)
|
|
call phase_hooke_SandItsTangents(S, dS_dFe, dS_dFi, &
|
|
Fe, Fi_new, ph, en)
|
|
|
|
call plastic_LpAndItsTangents(Lp_constitutive, dLp_dS, dLp_dFi, &
|
|
S, Fi_new, ph,en)
|
|
|
|
!* update current residuum and check for convergence of loop
|
|
atol_Lp = max(num%rtol_crystalliteStress * max(norm2(Lpguess),norm2(Lp_constitutive)), & ! absolute tolerance from largest acceptable relative error
|
|
num%atol_crystalliteStress) ! minimum lower cutoff
|
|
residuumLp = Lpguess - Lp_constitutive
|
|
|
|
if (any(IEEE_is_NaN(residuumLp))) then
|
|
return ! error
|
|
elseif (norm2(residuumLp) < atol_Lp) then ! converged if below absolute tolerance
|
|
exit LpLoop
|
|
elseif (NiterationStressLp == 1 .or. norm2(residuumLp) < norm2(residuumLp_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
|
|
residuumLp_old = residuumLp ! ...remember old values and...
|
|
Lpguess_old = Lpguess
|
|
steplengthLp = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
|
|
else ! not converged and residuum not improved...
|
|
steplengthLp = num%subStepSizeLp * steplengthLp ! ...try with smaller step length in same direction
|
|
Lpguess = Lpguess_old &
|
|
+ deltaLp * stepLengthLp
|
|
cycle LpLoop
|
|
endif
|
|
|
|
calculateJacobiLp: if (mod(jacoCounterLp, num%iJacoLpresiduum) == 0) then
|
|
jacoCounterLp = jacoCounterLp + 1
|
|
|
|
do o=1,3; do p=1,3
|
|
dFe_dLp(o,1:3,p,1:3) = - Delta_t * A(o,p)*transpose(invFi_new) ! dFe_dLp(i,j,k,l) = -Delta_t * A(i,k) invFi(l,j)
|
|
enddo; enddo
|
|
dRLp_dLp = math_eye(9) &
|
|
- math_3333to99(math_mul3333xx3333(math_mul3333xx3333(dLp_dS,dS_dFe),dFe_dLp))
|
|
temp_9 = math_33to9(residuumLp)
|
|
call dgesv(9,1,dRLp_dLp,9,devNull_9,temp_9,9,ierr) ! solve dRLp/dLp * delta Lp = -res for delta Lp
|
|
if (ierr /= 0) return ! error
|
|
deltaLp = - math_9to33(temp_9)
|
|
endif calculateJacobiLp
|
|
|
|
Lpguess = Lpguess &
|
|
+ deltaLp * steplengthLp
|
|
enddo LpLoop
|
|
|
|
call phase_LiAndItsTangents(Li_constitutive, dLi_dS, dLi_dFi, &
|
|
S, Fi_new, ph,en)
|
|
|
|
!* update current residuum and check for convergence of loop
|
|
atol_Li = max(num%rtol_crystalliteStress * max(norm2(Liguess),norm2(Li_constitutive)), & ! absolute tolerance from largest acceptable relative error
|
|
num%atol_crystalliteStress) ! minimum lower cutoff
|
|
residuumLi = Liguess - Li_constitutive
|
|
if (any(IEEE_is_NaN(residuumLi))) then
|
|
return ! error
|
|
elseif (norm2(residuumLi) < atol_Li) then ! converged if below absolute tolerance
|
|
exit LiLoop
|
|
elseif (NiterationStressLi == 1 .or. norm2(residuumLi) < norm2(residuumLi_old)) then ! not converged, but improved norm of residuum (always proceed in first iteration)...
|
|
residuumLi_old = residuumLi ! ...remember old values and...
|
|
Liguess_old = Liguess
|
|
steplengthLi = 1.0_pReal ! ...proceed with normal step length (calculate new search direction)
|
|
else ! not converged and residuum not improved...
|
|
steplengthLi = num%subStepSizeLi * steplengthLi ! ...try with smaller step length in same direction
|
|
Liguess = Liguess_old &
|
|
+ deltaLi * steplengthLi
|
|
cycle LiLoop
|
|
endif
|
|
|
|
calculateJacobiLi: if (mod(jacoCounterLi, num%iJacoLpresiduum) == 0) then
|
|
jacoCounterLi = jacoCounterLi + 1
|
|
|
|
temp_33 = matmul(matmul(A,B),invFi_current)
|
|
do o=1,3; do p=1,3
|
|
dFe_dLi(1:3,o,1:3,p) = -Delta_t*math_I3(o,p)*temp_33 ! dFe_dLp(i,j,k,l) = -Delta_t * A(i,k) invFi(l,j)
|
|
dFi_dLi(1:3,o,1:3,p) = -Delta_t*math_I3(o,p)*invFi_current
|
|
enddo; enddo
|
|
do o=1,3; do p=1,3
|
|
dFi_dLi(1:3,1:3,o,p) = matmul(matmul(Fi_new,dFi_dLi(1:3,1:3,o,p)),Fi_new)
|
|
enddo; enddo
|
|
dRLi_dLi = math_eye(9) &
|
|
- math_3333to99(math_mul3333xx3333(dLi_dS, math_mul3333xx3333(dS_dFe, dFe_dLi) &
|
|
+ math_mul3333xx3333(dS_dFi, dFi_dLi))) &
|
|
- math_3333to99(math_mul3333xx3333(dLi_dFi, dFi_dLi))
|
|
temp_9 = math_33to9(residuumLi)
|
|
call dgesv(9,1,dRLi_dLi,9,devNull_9,temp_9,9,ierr) ! solve dRLi/dLp * delta Li = -res for delta Li
|
|
if (ierr /= 0) return ! error
|
|
deltaLi = - math_9to33(temp_9)
|
|
endif calculateJacobiLi
|
|
|
|
Liguess = Liguess &
|
|
+ deltaLi * steplengthLi
|
|
enddo LiLoop
|
|
|
|
invFp_new = matmul(invFp_current,B)
|
|
call math_invert33(Fp_new,devNull,error,invFp_new)
|
|
if (error) return ! error
|
|
|
|
phase_mechanical_P(ph)%data(1:3,1:3,en) = matmul(matmul(F,invFp_new),matmul(S,transpose(invFp_new)))
|
|
phase_mechanical_S(ph)%data(1:3,1:3,en) = S
|
|
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = Lpguess
|
|
phase_mechanical_Li(ph)%data(1:3,1:3,en) = Liguess
|
|
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = Fp_new / math_det33(Fp_new)**(1.0_pReal/3.0_pReal) ! regularize
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = Fi_new
|
|
phase_mechanical_Fe(ph)%data(1:3,1:3,en) = matmul(matmul(F,invFp_new),invFi_new)
|
|
broken = .false.
|
|
|
|
end function integrateStress
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with adaptive 1st order explicit Euler method
|
|
!> using Fixed Point Iteration to adapt the stepsize
|
|
!--------------------------------------------------------------------------------------------------
|
|
function integrateStateFPI(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
logical :: &
|
|
broken
|
|
|
|
integer :: &
|
|
NiterationState, & !< number of iterations in state loop
|
|
sizeDotState
|
|
real(pReal) :: &
|
|
zeta
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
|
r, & ! state residuum
|
|
dotState
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState,2) :: &
|
|
dotState_last
|
|
|
|
|
|
broken = .true.
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) return
|
|
|
|
sizeDotState = plasticState(ph)%sizeDotState
|
|
plasticState(ph)%state(1:sizeDotState,en) = subState0 + dotState * Delta_t
|
|
|
|
iteration: do NiterationState = 1, num%nState
|
|
|
|
dotState_last(1:sizeDotState,2) = merge(dotState_last(1:sizeDotState,1),0.0, nIterationState > 1)
|
|
dotState_last(1:sizeDotState,1) = dotState
|
|
|
|
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
|
if(broken) exit iteration
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) exit iteration
|
|
|
|
zeta = damper(dotState,dotState_last(1:sizeDotState,1),dotState_last(1:sizeDotState,2))
|
|
dotState = dotState * zeta &
|
|
+ dotState_last(1:sizeDotState,1) * (1.0_pReal - zeta)
|
|
r = plasticState(ph)%state(1:sizeDotState,en) &
|
|
- subState0 &
|
|
- dotState * Delta_t
|
|
plasticState(ph)%state(1:sizeDotState,en) = plasticState(ph)%state(1:sizeDotState,en) - r
|
|
|
|
if (converged(r,plasticState(ph)%state(1:sizeDotState,en),plasticState(ph)%atol(1:sizeDotState))) then
|
|
broken = plastic_deltaState(ph,en)
|
|
exit iteration
|
|
endif
|
|
|
|
enddo iteration
|
|
|
|
|
|
contains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculate the damping for correction of state and dot state
|
|
!--------------------------------------------------------------------------------------------------
|
|
real(pReal) pure function damper(omega_0,omega_1,omega_2)
|
|
|
|
real(pReal), dimension(:), intent(in) :: &
|
|
omega_0, omega_1, omega_2
|
|
|
|
real(pReal) :: dot_prod12, dot_prod22
|
|
|
|
|
|
dot_prod12 = dot_product(omega_0-omega_1, omega_1-omega_2)
|
|
dot_prod22 = dot_product(omega_1-omega_2, omega_1-omega_2)
|
|
|
|
if (min(dot_product(omega_0,omega_1),dot_prod12) < 0.0_pReal .and. dot_prod22 > 0.0_pReal) then
|
|
damper = 0.75_pReal + 0.25_pReal * tanh(2.0_pReal + 4.0_pReal * dot_prod12 / dot_prod22)
|
|
else
|
|
damper = 1.0_pReal
|
|
endif
|
|
|
|
end function damper
|
|
|
|
end function integrateStateFPI
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate state with 1st order explicit Euler method
|
|
!--------------------------------------------------------------------------------------------------
|
|
function integrateStateEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en !< grain index in grain loop
|
|
logical :: &
|
|
broken
|
|
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
|
dotState
|
|
integer :: &
|
|
sizeDotState
|
|
|
|
|
|
broken = .true.
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) return
|
|
|
|
sizeDotState = plasticState(ph)%sizeDotState
|
|
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
|
|
+ dotState * Delta_t
|
|
|
|
broken = plastic_deltaState(ph,en)
|
|
if(broken) return
|
|
|
|
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
|
|
|
end function integrateStateEuler
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief integrate stress, state with 1st order Euler method with adaptive step size
|
|
!--------------------------------------------------------------------------------------------------
|
|
function integrateStateAdaptiveEuler(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
logical :: &
|
|
broken
|
|
|
|
integer :: &
|
|
sizeDotState
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
|
r, &
|
|
dotState
|
|
|
|
|
|
broken = .true.
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) return
|
|
|
|
sizeDotState = plasticState(ph)%sizeDotState
|
|
|
|
r = - dotState * 0.5_pReal * Delta_t
|
|
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
|
|
+ dotState * Delta_t
|
|
|
|
broken = plastic_deltaState(ph,en)
|
|
if(broken) return
|
|
|
|
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
|
if(broken) return
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) return
|
|
|
|
broken = .not. converged(r + 0.5_pReal * dotState * Delta_t, &
|
|
plasticState(ph)%state(1:sizeDotState,en), &
|
|
plasticState(ph)%atol(1:sizeDotState))
|
|
|
|
end function integrateStateAdaptiveEuler
|
|
|
|
|
|
!---------------------------------------------------------------------------------------------------
|
|
!> @brief Integrate state (including stress integration) with the classic Runge Kutta method
|
|
!---------------------------------------------------------------------------------------------------
|
|
function integrateStateRK4(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: ph, en
|
|
logical :: broken
|
|
|
|
real(pReal), dimension(3,3), parameter :: &
|
|
A = reshape([&
|
|
0.5_pReal, 0.0_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.5_pReal, 0.0_pReal, &
|
|
0.0_pReal, 0.0_pReal, 1.0_pReal],&
|
|
shape(A))
|
|
real(pReal), dimension(3), parameter :: &
|
|
C = [0.5_pReal, 0.5_pReal, 1.0_pReal]
|
|
real(pReal), dimension(4), parameter :: &
|
|
B = [1.0_pReal/6.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/3.0_pReal, 1.0_pReal/6.0_pReal]
|
|
|
|
|
|
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C)
|
|
|
|
end function integrateStateRK4
|
|
|
|
|
|
!---------------------------------------------------------------------------------------------------
|
|
!> @brief Integrate state (including stress integration) with the Cash-Carp method
|
|
!---------------------------------------------------------------------------------------------------
|
|
function integrateStateRKCK45(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: ph, en
|
|
logical :: broken
|
|
|
|
real(pReal), dimension(5,5), parameter :: &
|
|
A = reshape([&
|
|
1._pReal/5._pReal, .0_pReal, .0_pReal, .0_pReal, .0_pReal, &
|
|
3._pReal/40._pReal, 9._pReal/40._pReal, .0_pReal, .0_pReal, .0_pReal, &
|
|
3_pReal/10._pReal, -9._pReal/10._pReal, 6._pReal/5._pReal, .0_pReal, .0_pReal, &
|
|
-11._pReal/54._pReal, 5._pReal/2._pReal, -70.0_pReal/27.0_pReal, 35.0_pReal/27.0_pReal, .0_pReal, &
|
|
1631._pReal/55296._pReal,175._pReal/512._pReal,575._pReal/13824._pReal,44275._pReal/110592._pReal,253._pReal/4096._pReal],&
|
|
shape(A))
|
|
real(pReal), dimension(5), parameter :: &
|
|
C = [0.2_pReal, 0.3_pReal, 0.6_pReal, 1.0_pReal, 0.875_pReal]
|
|
real(pReal), dimension(6), parameter :: &
|
|
B = &
|
|
[37.0_pReal/378.0_pReal, .0_pReal, 250.0_pReal/621.0_pReal, &
|
|
125.0_pReal/594.0_pReal, .0_pReal, 512.0_pReal/1771.0_pReal], &
|
|
DB = B - &
|
|
[2825.0_pReal/27648.0_pReal, .0_pReal, 18575.0_pReal/48384.0_pReal,&
|
|
13525.0_pReal/55296.0_pReal, 277.0_pReal/14336.0_pReal, 1._pReal/4._pReal]
|
|
|
|
|
|
broken = integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB)
|
|
|
|
end function integrateStateRKCK45
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Integrate state (including stress integration) with an explicit Runge-Kutta method or an
|
|
!! embedded explicit Runge-Kutta method
|
|
!--------------------------------------------------------------------------------------------------
|
|
function integrateStateRK(F_0,F,subFp0,subFi0,subState0,Delta_t,ph,en,A,B,C,DB) result(broken)
|
|
|
|
real(pReal), intent(in),dimension(3,3) :: F_0,F,subFp0,subFi0
|
|
real(pReal), intent(in),dimension(:) :: subState0
|
|
real(pReal), intent(in) :: Delta_t
|
|
real(pReal), dimension(:,:), intent(in) :: A
|
|
real(pReal), dimension(:), intent(in) :: B, C
|
|
real(pReal), dimension(:), intent(in), optional :: DB
|
|
integer, intent(in) :: &
|
|
ph, &
|
|
en
|
|
logical :: broken
|
|
|
|
integer :: &
|
|
stage, & ! stage index in integration stage loop
|
|
n, &
|
|
sizeDotState
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState) :: &
|
|
dotState
|
|
real(pReal), dimension(plasticState(ph)%sizeDotState,size(B)) :: &
|
|
plastic_RKdotState
|
|
|
|
|
|
broken = .true.
|
|
|
|
dotState = plastic_dotState(Delta_t,ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) return
|
|
|
|
sizeDotState = plasticState(ph)%sizeDotState
|
|
|
|
do stage = 1, size(A,1)
|
|
|
|
plastic_RKdotState(1:sizeDotState,stage) = dotState
|
|
dotState = A(1,stage) * plastic_RKdotState(1:sizeDotState,1)
|
|
|
|
do n = 2, stage
|
|
dotState = dotState &
|
|
+ A(n,stage) * plastic_RKdotState(1:sizeDotState,n)
|
|
enddo
|
|
|
|
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
|
|
+ dotState * Delta_t
|
|
|
|
broken = integrateStress(F_0+(F-F_0)*Delta_t*C(stage),subFp0,subFi0,Delta_t*C(stage), ph,en)
|
|
if(broken) exit
|
|
|
|
dotState = plastic_dotState(Delta_t*C(stage), ph,en)
|
|
if (any(IEEE_is_NaN(dotState))) exit
|
|
|
|
enddo
|
|
if(broken) return
|
|
|
|
|
|
plastic_RKdotState(1:sizeDotState,size(B)) = dotState
|
|
dotState = matmul(plastic_RKdotState,B)
|
|
plasticState(ph)%state(1:sizeDotState,en) = subState0 &
|
|
+ dotState * Delta_t
|
|
|
|
if(present(DB)) &
|
|
broken = .not. converged(matmul(plastic_RKdotState(1:sizeDotState,1:size(DB)),DB) * Delta_t, &
|
|
plasticState(ph)%state(1:sizeDotState,en), &
|
|
plasticState(ph)%atol(1:sizeDotState))
|
|
|
|
if(broken) return
|
|
|
|
broken = plastic_deltaState(ph,en)
|
|
if(broken) return
|
|
|
|
broken = integrateStress(F,subFp0,subFi0,Delta_t,ph,en)
|
|
|
|
end function integrateStateRK
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Write mechanical results to HDF5 output file.
|
|
!--------------------------------------------------------------------------------------------------
|
|
subroutine results(group,ph)
|
|
|
|
character(len=*), intent(in) :: group
|
|
integer, intent(in) :: ph
|
|
|
|
integer :: ou
|
|
|
|
|
|
call results_closeGroup(results_addGroup(group//'/mechanical'))
|
|
|
|
do ou = 1, size(output_mechanical(ph)%label)
|
|
|
|
select case (output_mechanical(ph)%label(ou))
|
|
case('F')
|
|
call results_writeDataset(phase_mechanical_F(ph)%data,group//'/mechanical/','F',&
|
|
'deformation gradient','1')
|
|
case('F_e')
|
|
call results_writeDataset(phase_mechanical_Fe(ph)%data,group//'/mechanical/','F_e',&
|
|
'elastic deformation gradient','1')
|
|
case('F_p')
|
|
call results_writeDataset(phase_mechanical_Fp(ph)%data,group//'/mechanical/','F_p', &
|
|
'plastic deformation gradient','1')
|
|
case('F_i')
|
|
call results_writeDataset(phase_mechanical_Fi(ph)%data,group//'/mechanical/','F_i', &
|
|
'inelastic deformation gradient','1')
|
|
case('L_p')
|
|
call results_writeDataset(phase_mechanical_Lp(ph)%data,group//'/mechanical/','L_p', &
|
|
'plastic velocity gradient','1/s')
|
|
case('L_i')
|
|
call results_writeDataset(phase_mechanical_Li(ph)%data,group//'/mechanical/','L_i', &
|
|
'inelastic velocity gradient','1/s')
|
|
case('P')
|
|
call results_writeDataset(phase_mechanical_P(ph)%data,group//'/mechanical/','P', &
|
|
'first Piola-Kirchhoff stress','Pa')
|
|
case('S')
|
|
call results_writeDataset(phase_mechanical_S(ph)%data,group//'/mechanical/','S', &
|
|
'second Piola-Kirchhoff stress','Pa')
|
|
case('O')
|
|
call results_writeDataset(to_quaternion(phase_O(ph)%data),group//'/mechanical','O', &
|
|
'crystal orientation as quaternion','q_0 (q_1 q_2 q_3)')
|
|
call results_addAttribute('lattice',phase_lattice(ph),group//'/mechanical/O')
|
|
if (any(phase_lattice(ph) == ['hP', 'tI'])) &
|
|
call results_addAttribute('c/a',phase_cOverA(ph),group//'/mechanical/O')
|
|
end select
|
|
end do
|
|
|
|
|
|
contains
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Convert orientation array to quaternion array
|
|
!--------------------------------------------------------------------------------------------------
|
|
function to_quaternion(dataset)
|
|
|
|
type(tRotation), dimension(:), intent(in) :: dataset
|
|
real(pReal), dimension(4,size(dataset,1)) :: to_quaternion
|
|
|
|
integer :: i
|
|
|
|
|
|
do i = 1, size(dataset,1)
|
|
to_quaternion(:,i) = dataset(i)%asQuaternion()
|
|
enddo
|
|
|
|
end function to_quaternion
|
|
|
|
end subroutine results
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Forward data after successful increment.
|
|
! ToDo: Any guessing for the current states possible?
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine mechanical_forward()
|
|
|
|
integer :: ph
|
|
|
|
|
|
do ph = 1, size(plasticState)
|
|
phase_mechanical_Fi0(ph) = phase_mechanical_Fi(ph)
|
|
phase_mechanical_Fp0(ph) = phase_mechanical_Fp(ph)
|
|
phase_mechanical_F0(ph) = phase_mechanical_F(ph)
|
|
phase_mechanical_Li0(ph) = phase_mechanical_Li(ph)
|
|
phase_mechanical_Lp0(ph) = phase_mechanical_Lp(ph)
|
|
phase_mechanical_S0(ph) = phase_mechanical_S(ph)
|
|
plasticState(ph)%state0 = plasticState(ph)%state
|
|
enddo
|
|
|
|
end subroutine mechanical_forward
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief calculate stress (P)
|
|
!--------------------------------------------------------------------------------------------------
|
|
module function phase_mechanical_constitutive(Delta_t,co,ce) result(converged_)
|
|
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: &
|
|
co, &
|
|
ce
|
|
logical :: converged_
|
|
|
|
real(pReal) :: &
|
|
formerSubStep
|
|
integer :: &
|
|
ph, en, sizeDotState
|
|
logical :: todo
|
|
real(pReal) :: subFrac,subStep
|
|
real(pReal), dimension(3,3) :: &
|
|
subFp0, &
|
|
subFi0, &
|
|
subLp0, &
|
|
subLi0, &
|
|
subF0, &
|
|
subF
|
|
real(pReal), dimension(plasticState(material_phaseID(co,ce))%sizeState) :: subState0
|
|
|
|
|
|
ph = material_phaseID(co,ce)
|
|
en = material_phaseEntry(co,ce)
|
|
|
|
subState0 = plasticState(ph)%state0(:,en)
|
|
subLi0 = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
|
|
subLp0 = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
|
|
subFp0 = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
|
|
subFi0 = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
|
|
subF0 = phase_mechanical_F0(ph)%data(1:3,1:3,en)
|
|
subFrac = 0.0_pReal
|
|
todo = .true.
|
|
subStep = 1.0_pReal/num%subStepSizeCryst
|
|
converged_ = .false. ! pretend failed step of 1/subStepSizeCryst
|
|
|
|
todo = .true.
|
|
cutbackLooping: do while (todo)
|
|
|
|
if (converged_) then
|
|
formerSubStep = subStep
|
|
subFrac = subFrac + subStep
|
|
subStep = min(1.0_pReal - subFrac, num%stepIncreaseCryst * subStep)
|
|
|
|
todo = subStep > 0.0_pReal ! still time left to integrate on?
|
|
|
|
if (todo) then
|
|
subF0 = subF
|
|
subLp0 = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
|
|
subLi0 = phase_mechanical_Li(ph)%data(1:3,1:3,en)
|
|
subFp0 = phase_mechanical_Fp(ph)%data(1:3,1:3,en)
|
|
subFi0 = phase_mechanical_Fi(ph)%data(1:3,1:3,en)
|
|
subState0 = plasticState(ph)%state(:,en)
|
|
endif
|
|
!--------------------------------------------------------------------------------------------------
|
|
! cut back (reduced time and restore)
|
|
else
|
|
subStep = num%subStepSizeCryst * subStep
|
|
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = subFp0
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = subFi0
|
|
phase_mechanical_S(ph)%data(1:3,1:3,en) = phase_mechanical_S0(ph)%data(1:3,1:3,en)
|
|
if (subStep < 1.0_pReal) then ! actual (not initial) cutback
|
|
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = subLp0
|
|
phase_mechanical_Li(ph)%data(1:3,1:3,en) = subLi0
|
|
endif
|
|
plasticState(ph)%state(:,en) = subState0
|
|
todo = subStep > num%subStepMinCryst ! still on track or already done (beyond repair)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! prepare for integration
|
|
if (todo) then
|
|
sizeDotState = plasticState(ph)%sizeDotState
|
|
subF = subF0 &
|
|
+ subStep * (phase_mechanical_F(ph)%data(1:3,1:3,en) - phase_mechanical_F0(ph)%data(1:3,1:3,en))
|
|
converged_ = .not. integrateState(subF0,subF,subFp0,subFi0,subState0(1:sizeDotState),subStep * Delta_t,ph,en)
|
|
endif
|
|
|
|
enddo cutbackLooping
|
|
|
|
end function phase_mechanical_constitutive
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Restore data after homog cutback.
|
|
!--------------------------------------------------------------------------------------------------
|
|
module subroutine mechanical_restore(ce,includeL)
|
|
|
|
integer, intent(in) :: ce
|
|
logical, intent(in) :: &
|
|
includeL !< protect agains fake cutback
|
|
|
|
integer :: &
|
|
co, ph, en
|
|
|
|
|
|
do co = 1,homogenization_Nconstituents(material_homogenizationID(ce))
|
|
ph = material_phaseID(co,ce)
|
|
en = material_phaseEntry(co,ce)
|
|
if (includeL) then
|
|
phase_mechanical_Lp(ph)%data(1:3,1:3,en) = phase_mechanical_Lp0(ph)%data(1:3,1:3,en)
|
|
phase_mechanical_Li(ph)%data(1:3,1:3,en) = phase_mechanical_Li0(ph)%data(1:3,1:3,en)
|
|
endif ! maybe protecting everything from overwriting makes more sense
|
|
|
|
phase_mechanical_Fp(ph)%data(1:3,1:3,en) = phase_mechanical_Fp0(ph)%data(1:3,1:3,en)
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en) = phase_mechanical_Fi0(ph)%data(1:3,1:3,en)
|
|
phase_mechanical_S(ph)%data(1:3,1:3,en) = phase_mechanical_S0(ph)%data(1:3,1:3,en)
|
|
|
|
plasticState(ph)%state(:,en) = plasticState(ph)%State0(:,en)
|
|
enddo
|
|
|
|
end subroutine mechanical_restore
|
|
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
!> @brief Calculate tangent (dPdF).
|
|
!--------------------------------------------------------------------------------------------------
|
|
module function phase_mechanical_dPdF(Delta_t,co,ce) result(dPdF)
|
|
|
|
real(pReal), intent(in) :: Delta_t
|
|
integer, intent(in) :: &
|
|
co, & !< counter in constituent loop
|
|
ce
|
|
real(pReal), dimension(3,3,3,3) :: dPdF
|
|
|
|
integer :: &
|
|
o, &
|
|
p, ph, en
|
|
real(pReal), dimension(3,3) :: devNull, &
|
|
invSubFp0,invSubFi0,invFp,invFi, &
|
|
temp_33_1, temp_33_2, temp_33_3
|
|
real(pReal), dimension(3,3,3,3) :: dSdFe, &
|
|
dSdF, &
|
|
dSdFi, &
|
|
dLidS, & ! tangent in lattice configuration
|
|
dLidFi, &
|
|
dLpdS, &
|
|
dLpdFi, &
|
|
dFidS, &
|
|
dFpinvdF, &
|
|
rhs_3333, &
|
|
lhs_3333, &
|
|
temp_3333
|
|
real(pReal), dimension(9,9):: temp_99
|
|
logical :: error
|
|
|
|
|
|
ph = material_phaseID(co,ce)
|
|
en = material_phaseEntry(co,ce)
|
|
|
|
call phase_hooke_SandItsTangents(devNull,dSdFe,dSdFi, &
|
|
phase_mechanical_Fe(ph)%data(1:3,1:3,en), &
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en),ph,en)
|
|
call phase_LiAndItsTangents(devNull,dLidS,dLidFi, &
|
|
phase_mechanical_S(ph)%data(1:3,1:3,en), &
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en), &
|
|
ph,en)
|
|
|
|
invFp = math_inv33(phase_mechanical_Fp(ph)%data(1:3,1:3,en))
|
|
invFi = math_inv33(phase_mechanical_Fi(ph)%data(1:3,1:3,en))
|
|
invSubFp0 = math_inv33(phase_mechanical_Fp0(ph)%data(1:3,1:3,en))
|
|
invSubFi0 = math_inv33(phase_mechanical_Fi0(ph)%data(1:3,1:3,en))
|
|
|
|
if (sum(abs(dLidS)) < tol_math_check) then
|
|
dFidS = 0.0_pReal
|
|
else
|
|
lhs_3333 = 0.0_pReal; rhs_3333 = 0.0_pReal
|
|
do o=1,3; do p=1,3
|
|
lhs_3333(1:3,1:3,o,p) = lhs_3333(1:3,1:3,o,p) &
|
|
+ matmul(invSubFi0,dLidFi(1:3,1:3,o,p)) * Delta_t
|
|
lhs_3333(1:3,o,1:3,p) = lhs_3333(1:3,o,1:3,p) &
|
|
+ invFi*invFi(p,o)
|
|
rhs_3333(1:3,1:3,o,p) = rhs_3333(1:3,1:3,o,p) &
|
|
- matmul(invSubFi0,dLidS(1:3,1:3,o,p)) * Delta_t
|
|
enddo; enddo
|
|
call math_invert(temp_99,error,math_3333to99(lhs_3333))
|
|
if (error) then
|
|
call IO_warning(warning_ID=600, &
|
|
ext_msg='inversion error in analytic tangent calculation')
|
|
dFidS = 0.0_pReal
|
|
else
|
|
dFidS = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
|
|
endif
|
|
dLidS = math_mul3333xx3333(dLidFi,dFidS) + dLidS
|
|
endif
|
|
|
|
call plastic_LpAndItsTangents(devNull,dLpdS,dLpdFi, &
|
|
phase_mechanical_S(ph)%data(1:3,1:3,en), &
|
|
phase_mechanical_Fi(ph)%data(1:3,1:3,en),ph,en)
|
|
dLpdS = math_mul3333xx3333(dLpdFi,dFidS) + dLpdS
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate dSdF
|
|
temp_33_1 = transpose(matmul(invFp,invFi))
|
|
temp_33_2 = matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invSubFp0)
|
|
temp_33_3 = matmul(matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invFp), invSubFi0)
|
|
|
|
do o=1,3; do p=1,3
|
|
rhs_3333(p,o,1:3,1:3) = matmul(dSdFe(p,o,1:3,1:3),temp_33_1)
|
|
temp_3333(1:3,1:3,p,o) = matmul(matmul(temp_33_2,dLpdS(1:3,1:3,p,o)), invFi) &
|
|
+ matmul(temp_33_3,dLidS(1:3,1:3,p,o))
|
|
enddo; enddo
|
|
lhs_3333 = math_mul3333xx3333(dSdFe,temp_3333) * Delta_t &
|
|
+ math_mul3333xx3333(dSdFi,dFidS)
|
|
|
|
call math_invert(temp_99,error,math_eye(9)+math_3333to99(lhs_3333))
|
|
if (error) then
|
|
call IO_warning(warning_ID=600, &
|
|
ext_msg='inversion error in analytic tangent calculation')
|
|
dSdF = rhs_3333
|
|
else
|
|
dSdF = math_mul3333xx3333(math_99to3333(temp_99),rhs_3333)
|
|
endif
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! calculate dFpinvdF
|
|
temp_3333 = math_mul3333xx3333(dLpdS,dSdF)
|
|
do o=1,3; do p=1,3
|
|
dFpinvdF(1:3,1:3,p,o) = - matmul(invSubFp0, matmul(temp_3333(1:3,1:3,p,o),invFi)) * Delta_t
|
|
enddo; enddo
|
|
|
|
!--------------------------------------------------------------------------------------------------
|
|
! assemble dPdF
|
|
temp_33_1 = matmul(phase_mechanical_S(ph)%data(1:3,1:3,en),transpose(invFp))
|
|
temp_33_2 = matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),invFp)
|
|
temp_33_3 = matmul(temp_33_2,phase_mechanical_S(ph)%data(1:3,1:3,en))
|
|
|
|
dPdF = 0.0_pReal
|
|
do p=1,3
|
|
dPdF(p,1:3,p,1:3) = transpose(matmul(invFp,temp_33_1))
|
|
enddo
|
|
do o=1,3; do p=1,3
|
|
dPdF(1:3,1:3,p,o) = dPdF(1:3,1:3,p,o) &
|
|
+ matmul(matmul(phase_mechanical_F(ph)%data(1:3,1:3,en),dFpinvdF(1:3,1:3,p,o)),temp_33_1) &
|
|
+ matmul(matmul(temp_33_2,dSdF(1:3,1:3,p,o)),transpose(invFp)) &
|
|
+ matmul(temp_33_3,transpose(dFpinvdF(1:3,1:3,p,o)))
|
|
enddo; enddo
|
|
|
|
end function phase_mechanical_dPdF
|
|
|
|
|
|
module subroutine mechanical_restartWrite(groupHandle,ph)
|
|
|
|
integer(HID_T), intent(in) :: groupHandle
|
|
integer, intent(in) :: ph
|
|
|
|
|
|
call HDF5_write(plasticState(ph)%state,groupHandle,'omega_plastic')
|
|
call HDF5_write(phase_mechanical_Fi(ph)%data,groupHandle,'F_i')
|
|
call HDF5_write(phase_mechanical_Li(ph)%data,groupHandle,'L_i')
|
|
call HDF5_write(phase_mechanical_Lp(ph)%data,groupHandle,'L_p')
|
|
call HDF5_write(phase_mechanical_Fp(ph)%data,groupHandle,'F_p')
|
|
call HDF5_write(phase_mechanical_S(ph)%data,groupHandle,'S')
|
|
call HDF5_write(phase_mechanical_F(ph)%data,groupHandle,'F')
|
|
|
|
end subroutine mechanical_restartWrite
|
|
|
|
|
|
module subroutine mechanical_restartRead(groupHandle,ph)
|
|
|
|
integer(HID_T), intent(in) :: groupHandle
|
|
integer, intent(in) :: ph
|
|
|
|
|
|
call HDF5_read(plasticState(ph)%state0,groupHandle,'omega_plastic')
|
|
call HDF5_read(phase_mechanical_Fi0(ph)%data,groupHandle,'F_i')
|
|
call HDF5_read(phase_mechanical_Li0(ph)%data,groupHandle,'L_i')
|
|
call HDF5_read(phase_mechanical_Lp0(ph)%data,groupHandle,'L_p')
|
|
call HDF5_read(phase_mechanical_Fp0(ph)%data,groupHandle,'F_p')
|
|
call HDF5_read(phase_mechanical_S0(ph)%data,groupHandle,'S')
|
|
call HDF5_read(phase_mechanical_F0(ph)%data,groupHandle,'F')
|
|
|
|
end subroutine mechanical_restartRead
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Get first Piola-Kichhoff stress (for use by non-mech physics)
|
|
!----------------------------------------------------------------------------------------------
|
|
module function mechanical_S(ph,en) result(S)
|
|
|
|
integer, intent(in) :: ph,en
|
|
real(pReal), dimension(3,3) :: S
|
|
|
|
|
|
S = phase_mechanical_S(ph)%data(1:3,1:3,en)
|
|
|
|
end function mechanical_S
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Get plastic velocity gradient (for use by non-mech physics)
|
|
!----------------------------------------------------------------------------------------------
|
|
module function mechanical_L_p(ph,en) result(L_p)
|
|
|
|
integer, intent(in) :: ph,en
|
|
real(pReal), dimension(3,3) :: L_p
|
|
|
|
|
|
L_p = phase_mechanical_Lp(ph)%data(1:3,1:3,en)
|
|
|
|
end function mechanical_L_p
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Get elastic deformation gradient (for use by non-mech physics)
|
|
!----------------------------------------------------------------------------------------------
|
|
module function mechanical_F_e(ph,en) result(F_e)
|
|
|
|
integer, intent(in) :: ph,en
|
|
real(pReal), dimension(3,3) :: F_e
|
|
|
|
|
|
F_e = phase_mechanical_Fe(ph)%data(1:3,1:3,en)
|
|
|
|
end function mechanical_F_e
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Get second Piola-Kichhoff stress (for use by homogenization)
|
|
!----------------------------------------------------------------------------------------------
|
|
module function phase_P(co,ce) result(P)
|
|
|
|
integer, intent(in) :: co, ce
|
|
real(pReal), dimension(3,3) :: P
|
|
|
|
|
|
P = phase_mechanical_P(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce))
|
|
|
|
end function phase_P
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Get deformation gradient (for use by homogenization)
|
|
!----------------------------------------------------------------------------------------------
|
|
module function phase_F(co,ce) result(F)
|
|
|
|
integer, intent(in) :: co, ce
|
|
real(pReal), dimension(3,3) :: F
|
|
|
|
|
|
F = phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce))
|
|
|
|
end function phase_F
|
|
|
|
|
|
!----------------------------------------------------------------------------------------------
|
|
!< @brief Set deformation gradient (for use by homogenization)
|
|
!----------------------------------------------------------------------------------------------
|
|
module subroutine phase_set_F(F,co,ce)
|
|
|
|
real(pReal), dimension(3,3), intent(in) :: F
|
|
integer, intent(in) :: co, ce
|
|
|
|
|
|
phase_mechanical_F(material_phaseID(co,ce))%data(1:3,1:3,material_phaseEntry(co,ce)) = F
|
|
|
|
end subroutine phase_set_F
|
|
|
|
end submodule mechanical
|