382 lines
16 KiB
Python
382 lines
16 KiB
Python
import time
|
|
import shutil
|
|
import os
|
|
import sys
|
|
from datetime import datetime
|
|
|
|
import pytest
|
|
import numpy as np
|
|
import h5py
|
|
|
|
from damask import Result
|
|
from damask import Rotation
|
|
from damask import Orientation
|
|
from damask import tensor
|
|
from damask import mechanics
|
|
from damask import grid_filters
|
|
|
|
@pytest.fixture
|
|
def default(tmp_path,reference_dir):
|
|
"""Small Result file in temp location for modification."""
|
|
fname = '12grains6x7x8_tensionY.hdf5'
|
|
shutil.copy(reference_dir/fname,tmp_path)
|
|
f = Result(tmp_path/fname)
|
|
f.pick('times',20.0)
|
|
return f
|
|
|
|
@pytest.fixture
|
|
def single_phase(tmp_path,reference_dir):
|
|
"""Single phase Result file in temp location for modification."""
|
|
fname = '6grains6x7x8_single_phase_tensionY.hdf5'
|
|
shutil.copy(reference_dir/fname,tmp_path)
|
|
return Result(tmp_path/fname)
|
|
|
|
@pytest.fixture
|
|
def reference_dir(reference_dir_base):
|
|
"""Directory containing reference results."""
|
|
return reference_dir_base/'Result'
|
|
|
|
|
|
class TestResult:
|
|
|
|
def test_self_report(self,default):
|
|
print(default)
|
|
|
|
|
|
def test_pick_all(self,default):
|
|
default.pick('increments',True)
|
|
a = default.get_dataset_location('F')
|
|
default.pick('increments','*')
|
|
b = default.get_dataset_location('F')
|
|
default.pick('increments',default.incs_in_range(0,np.iinfo(int).max))
|
|
c = default.get_dataset_location('F')
|
|
|
|
default.pick('times',True)
|
|
d = default.get_dataset_location('F')
|
|
default.pick('times','*')
|
|
e = default.get_dataset_location('F')
|
|
default.pick('times',default.times_in_range(0.0,np.inf))
|
|
f = default.get_dataset_location('F')
|
|
assert a == b == c == d == e ==f
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
|
def test_pick_none(self,default,what):
|
|
default.pick(what,False)
|
|
a = default.get_dataset_location('F')
|
|
default.pick(what,[])
|
|
b = default.get_dataset_location('F')
|
|
|
|
assert a == b == []
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
|
def test_pick_more(self,default,what):
|
|
default.pick(what,False)
|
|
default.pick_more(what,'*')
|
|
a = default.get_dataset_location('F')
|
|
|
|
default.pick(what,True)
|
|
b = default.get_dataset_location('F')
|
|
|
|
assert a == b
|
|
|
|
@pytest.mark.parametrize('what',['increments','times','phases']) # ToDo: discuss homogenizations
|
|
def test_pick_less(self,default,what):
|
|
default.pick(what,True)
|
|
default.pick_less(what,'*')
|
|
a = default.get_dataset_location('F')
|
|
|
|
default.pick(what,False)
|
|
b = default.get_dataset_location('F')
|
|
|
|
assert a == b == []
|
|
|
|
def test_pick_invalid(self,default):
|
|
with pytest.raises(AttributeError):
|
|
default.pick('invalid',True)
|
|
|
|
def test_add_absolute(self,default):
|
|
default.add_absolute('F_e')
|
|
loc = {'F_e': default.get_dataset_location('F_e'),
|
|
'|F_e|': default.get_dataset_location('|F_e|')}
|
|
in_memory = np.abs(default.read_dataset(loc['F_e'],0))
|
|
in_file = default.read_dataset(loc['|F_e|'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('mode',['direct','function'])
|
|
def test_add_calculation(self,default,tmp_path,mode):
|
|
|
|
if mode == 'direct':
|
|
default.add_calculation('x','2.0*np.abs(#F#)-1.0','-','my notes')
|
|
else:
|
|
with open(tmp_path/'f.py','w') as f:
|
|
f.write("import numpy as np\ndef my_func(field):\n return 2.0*np.abs(field)-1.0\n")
|
|
sys.path.insert(0,str(tmp_path))
|
|
import f
|
|
default.enable_user_function(f.my_func)
|
|
default.add_calculation('x','my_func(#F#)','-','my notes')
|
|
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'x': default.get_dataset_location('x')}
|
|
in_memory = 2.0*np.abs(default.read_dataset(loc['F'],0))-1.0
|
|
in_file = default.read_dataset(loc['x'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stress_Cauchy(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'P': default.get_dataset_location('P'),
|
|
'sigma':default.get_dataset_location('sigma')}
|
|
in_memory = mechanics.stress_Cauchy(default.read_dataset(loc['P'],0),
|
|
default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['sigma'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_determinant(self,default):
|
|
default.add_determinant('P')
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
'det(P)':default.get_dataset_location('det(P)')}
|
|
in_memory = np.linalg.det(default.read_dataset(loc['P'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['det(P)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_deviator(self,default):
|
|
default.add_deviator('P')
|
|
loc = {'P' :default.get_dataset_location('P'),
|
|
's_P':default.get_dataset_location('s_P')}
|
|
in_memory = tensor.deviatoric(default.read_dataset(loc['P'],0))
|
|
in_file = default.read_dataset(loc['s_P'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('eigenvalue,function',[('max',np.amax),('min',np.amin)])
|
|
def test_add_eigenvalue(self,default,eigenvalue,function):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_eigenvalue('sigma',eigenvalue)
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'lambda':default.get_dataset_location(f'lambda_{eigenvalue}(sigma)')}
|
|
in_memory = function(tensor.eigenvalues(default.read_dataset(loc['sigma'],0)),axis=1,keepdims=True)
|
|
in_file = default.read_dataset(loc['lambda'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('eigenvalue,idx',[('max',2),('mid',1),('min',0)])
|
|
def test_add_eigenvector(self,default,eigenvalue,idx):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_eigenvector('sigma',eigenvalue)
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'v(sigma)':default.get_dataset_location(f'v_{eigenvalue}(sigma)')}
|
|
in_memory = tensor.eigenvectors(default.read_dataset(loc['sigma'],0))[:,idx]
|
|
in_file = default.read_dataset(loc['v(sigma)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.parametrize('d',[[1,0,0],[0,1,0],[0,0,1]])
|
|
def test_add_IPF_color(self,default,d):
|
|
default.add_IPF_color('O',np.array(d))
|
|
loc = {'O': default.get_dataset_location('O'),
|
|
'color': default.get_dataset_location('IPFcolor_[{} {} {}]'.format(*d))}
|
|
qu = default.read_dataset(loc['O']).view(np.double).squeeze()
|
|
crystal_structure = default.get_crystal_structure()
|
|
c = Orientation(rotation=qu,
|
|
lattice={'fcc':'cF',
|
|
'bcc':'cI',
|
|
'hex':'hP'}[crystal_structure])
|
|
in_memory = np.uint8(c.IPF_color(np.array(d))*255)
|
|
in_file = default.read_dataset(loc['color'])
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_maximum_shear(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_maximum_shear('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'max_shear(sigma)':default.get_dataset_location('max_shear(sigma)')}
|
|
in_memory = mechanics.maximum_shear(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['max_shear(sigma)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain('F',t,m)
|
|
label = f'epsilon_{t}^{m}(F)'
|
|
default.add_equivalent_Mises(label)
|
|
loc = {label :default.get_dataset_location(label),
|
|
label+'_vM':default.get_dataset_location(label+'_vM')}
|
|
in_memory = mechanics.equivalent_strain_Mises(default.read_dataset(loc[label],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc[label+'_vM'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_stress(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_equivalent_Mises('sigma')
|
|
loc = {'sigma' :default.get_dataset_location('sigma'),
|
|
'sigma_vM':default.get_dataset_location('sigma_vM')}
|
|
in_memory = mechanics.equivalent_stress_Mises(default.read_dataset(loc['sigma'],0)).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['sigma_vM'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_Mises_invalid(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_calculation('sigma_y','#sigma#',unit='y')
|
|
default.add_equivalent_Mises('sigma_y')
|
|
assert default.get_dataset_location('sigma_y_vM') == []
|
|
|
|
def test_add_Mises_stress_strain(self,default):
|
|
default.add_stress_Cauchy('P','F')
|
|
default.add_calculation('sigma_y','#sigma#',unit='y')
|
|
default.add_calculation('sigma_x','#sigma#',unit='x')
|
|
default.add_equivalent_Mises('sigma_y',kind='strain')
|
|
default.add_equivalent_Mises('sigma_x',kind='stress')
|
|
loc = {'y' :default.get_dataset_location('sigma_y_vM'),
|
|
'x' :default.get_dataset_location('sigma_x_vM')}
|
|
assert not np.allclose(default.read_dataset(loc['y'],0),default.read_dataset(loc['x'],0))
|
|
|
|
def test_add_norm(self,default):
|
|
default.add_norm('F',1)
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'|F|_1':default.get_dataset_location('|F|_1')}
|
|
in_memory = np.linalg.norm(default.read_dataset(loc['F'],0),ord=1,axis=(1,2),keepdims=True)
|
|
in_file = default.read_dataset(loc['|F|_1'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stress_second_Piola_Kirchhoff(self,default):
|
|
default.add_stress_second_Piola_Kirchhoff('P','F')
|
|
loc = {'F':default.get_dataset_location('F'),
|
|
'P':default.get_dataset_location('P'),
|
|
'S':default.get_dataset_location('S')}
|
|
in_memory = mechanics.stress_second_Piola_Kirchhoff(default.read_dataset(loc['P'],0),
|
|
default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['S'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
@pytest.mark.skip(reason='requires rework of lattice.f90')
|
|
@pytest.mark.parametrize('polar',[True,False])
|
|
def test_add_pole(self,default,polar):
|
|
pole = np.array([1.,0.,0.])
|
|
default.add_pole('O',pole,polar)
|
|
loc = {'O': default.get_dataset_location('O'),
|
|
'pole': default.get_dataset_location('p^{}_[1 0 0)'.format(u'rφ' if polar else 'xy'))}
|
|
rot = Rotation(default.read_dataset(loc['O']).view(np.double))
|
|
rotated_pole = rot * np.broadcast_to(pole,rot.shape+(3,))
|
|
xy = rotated_pole[:,0:2]/(1.+abs(pole[2]))
|
|
in_memory = xy if not polar else \
|
|
np.block([np.sqrt(xy[:,0:1]*xy[:,0:1]+xy[:,1:2]*xy[:,1:2]),np.arctan2(xy[:,1:2],xy[:,0:1])])
|
|
in_file = default.read_dataset(loc['pole'])
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_rotation(self,default):
|
|
default.add_rotation('F')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'R(F)': default.get_dataset_location('R(F)')}
|
|
in_memory = mechanics.rotation(default.read_dataset(loc['F'],0)).as_matrix()
|
|
in_file = default.read_dataset(loc['R(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_spherical(self,default):
|
|
default.add_spherical('P')
|
|
loc = {'P': default.get_dataset_location('P'),
|
|
'p_P': default.get_dataset_location('p_P')}
|
|
in_memory = tensor.spherical(default.read_dataset(loc['P'],0),False).reshape(-1,1)
|
|
in_file = default.read_dataset(loc['p_P'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_strain(self,default):
|
|
t = ['V','U'][np.random.randint(0,2)]
|
|
m = np.random.random()*2.0 - 1.0
|
|
default.add_strain('F',t,m)
|
|
label = f'epsilon_{t}^{m}(F)'
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
label: default.get_dataset_location(label)}
|
|
in_memory = mechanics.strain(default.read_dataset(loc['F'],0),t,m)
|
|
in_file = default.read_dataset(loc[label],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_right(self,default):
|
|
default.add_stretch_tensor('F','U')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'U(F)': default.get_dataset_location('U(F)')}
|
|
in_memory = mechanics.stretch_right(default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['U(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_stretch_left(self,default):
|
|
default.add_stretch_tensor('F','V')
|
|
loc = {'F': default.get_dataset_location('F'),
|
|
'V(F)': default.get_dataset_location('V(F)')}
|
|
in_memory = mechanics.stretch_left(default.read_dataset(loc['F'],0))
|
|
in_file = default.read_dataset(loc['V(F)'],0)
|
|
assert np.allclose(in_memory,in_file)
|
|
|
|
def test_add_invalid(self,default):
|
|
with pytest.raises(TypeError):
|
|
default.add_calculation('#invalid#*2')
|
|
|
|
@pytest.mark.parametrize('overwrite',['off','on'])
|
|
def test_add_overwrite(self,default,overwrite):
|
|
default.pick('times',default.times_in_range(0,np.inf)[-1])
|
|
|
|
default.add_stress_Cauchy()
|
|
loc = default.get_dataset_location('sigma')
|
|
with h5py.File(default.fname,'r') as f:
|
|
# h5py3 compatibility
|
|
try:
|
|
created_first = f[loc[0]].attrs['Created'].decode()
|
|
except AttributeError:
|
|
created_first = f[loc[0]].attrs['Created']
|
|
created_first = datetime.strptime(created_first,'%Y-%m-%d %H:%M:%S%z')
|
|
|
|
if overwrite == 'on':
|
|
default.allow_modification()
|
|
else:
|
|
default.disallow_modification()
|
|
|
|
time.sleep(2.)
|
|
try:
|
|
default.add_calculation('sigma','#sigma#*0.0+311.','not the Cauchy stress')
|
|
except ValueError:
|
|
pass
|
|
with h5py.File(default.fname,'r') as f:
|
|
# h5py3 compatibility
|
|
try:
|
|
created_second = f[loc[0]].attrs['Created'].decode()
|
|
except AttributeError:
|
|
created_second = f[loc[0]].attrs['Created']
|
|
created_second = datetime.strptime(created_second,'%Y-%m-%d %H:%M:%S%z')
|
|
if overwrite == 'on':
|
|
assert created_first < created_second and np.allclose(default.read_dataset(loc),311.)
|
|
else:
|
|
assert created_first == created_second and not np.allclose(default.read_dataset(loc),311.)
|
|
|
|
@pytest.mark.parametrize('allowed',['off','on'])
|
|
def test_rename(self,default,allowed):
|
|
if allowed == 'on':
|
|
F = default.read_dataset(default.get_dataset_location('F'))
|
|
default.allow_modification()
|
|
default.rename('F','new_name')
|
|
assert np.all(F == default.read_dataset(default.get_dataset_location('new_name')))
|
|
default.disallow_modification()
|
|
|
|
with pytest.raises(PermissionError):
|
|
default.rename('P','another_new_name')
|
|
|
|
@pytest.mark.parametrize('mode',['cell','node'])
|
|
def test_coordinates(self,default,mode):
|
|
if mode == 'cell':
|
|
a = grid_filters.cell_coord0(default.grid,default.size,default.origin)
|
|
b = default.cell_coordinates.reshape(tuple(default.grid)+(3,),order='F')
|
|
elif mode == 'node':
|
|
a = grid_filters.node_coord0(default.grid,default.size,default.origin)
|
|
b = default.node_coordinates.reshape(tuple(default.grid+1)+(3,),order='F')
|
|
assert np.allclose(a,b)
|
|
|
|
@pytest.mark.parametrize('output',['F',[],['F','P']])
|
|
def test_vtk(self,tmp_path,default,output):
|
|
os.chdir(tmp_path)
|
|
default.save_vtk(output)
|
|
|
|
@pytest.mark.parametrize('mode',['point','cell'])
|
|
def test_vtk_mode(self,tmp_path,single_phase,mode):
|
|
os.chdir(tmp_path)
|
|
single_phase.save_vtk(mode=mode)
|
|
|
|
def test_XDMF(self,tmp_path,single_phase):
|
|
os.chdir(tmp_path)
|
|
single_phase.save_XDMF()
|