DAMASK_EICMD/src/phase_mechanical_eigen_ther...

104 lines
3.7 KiB
Fortran

!--------------------------------------------------------------------------------------------------
!> @author Pratheek Shanthraj, Max-Planck-Institut für Eisenforschung GmbH
!> @brief material subroutine incorporating kinematics resulting from thermal expansion
!> @details to be done
!--------------------------------------------------------------------------------------------------
submodule(phase:eigen) thermalexpansion
integer, dimension(:), allocatable :: kinematics_thermal_expansion_instance
type :: tParameters
type(tPolynomial) :: &
Alpha_11, &
Alpha_33
end type tParameters
type(tParameters), dimension(:), allocatable :: param
contains
!--------------------------------------------------------------------------------------------------
!> @brief module initialization
!> @details reads in material parameters, allocates arrays, and does sanity checks
!--------------------------------------------------------------------------------------------------
module function thermalexpansion_init(kinematics_length) result(myKinematics)
integer, intent(in) :: kinematics_length
logical, dimension(:,:), allocatable :: myKinematics
integer :: Ninstances, p, k
type(tList), pointer :: &
kinematics
type(tDict), pointer :: &
phases, &
phase, &
mech
myKinematics = kinematics_active('thermalexpansion',kinematics_length)
Ninstances = count(myKinematics)
print'(/,a,i2)', ' # phases: ',Ninstances; flush(IO_STDOUT)
if (Ninstances == 0) return
print'(/,1x,a)', '<<<+- phase:mechanical:eigen:thermalexpansion init -+>>>'
phases => config_material%get_dict('phase')
allocate(param(Ninstances))
allocate(kinematics_thermal_expansion_instance(phases%length), source=0)
do p = 1, phases%length
if (any(myKinematics(:,p))) kinematics_thermal_expansion_instance(p) = count(myKinematics(:,1:p))
phase => phases%get_dict(p)
if (count(myKinematics(:,p)) == 0) cycle
mech => phase%get_dict('mechanical')
kinematics => mech%get_list('eigen')
do k = 1, kinematics%length
if (myKinematics(k,p)) then
associate(prm => param(kinematics_thermal_expansion_instance(p)))
prm%Alpha_11 = polynomial(kinematics%get_dict(k),'Alpha_11','T')
if (any(phase_lattice(p) == ['hP','tI'])) &
prm%Alpha_33 = polynomial(kinematics%get_dict(k),'Alpha_33','T')
end associate
end if
end do
end do
end function thermalexpansion_init
!--------------------------------------------------------------------------------------------------
!> @brief constitutive equation for calculating the velocity gradient
!--------------------------------------------------------------------------------------------------
module subroutine thermalexpansion_LiAndItsTangent(Li, dLi_dTstar, ph,me)
integer, intent(in) :: ph, me
real(pREAL), intent(out), dimension(3,3) :: &
Li !< thermal velocity gradient
real(pREAL), intent(out), dimension(3,3,3,3) :: &
dLi_dTstar !< derivative of Li with respect to Tstar (4th-order tensor defined to be zero)
real(pREAL) :: T, dot_T
real(pREAL), dimension(3,3) :: Alpha
T = thermal_T(ph,me)
dot_T = thermal_dot_T(ph,me)
associate(prm => param(kinematics_thermal_expansion_instance(ph)))
Alpha = 0.0_pREAL
Alpha(1,1) = prm%Alpha_11%at(T)
if (any(phase_lattice(ph) == ['hP','tI'])) Alpha(3,3) = prm%Alpha_33%at(T)
Alpha = lattice_symmetrize_33(Alpha,phase_lattice(ph))
Li = dot_T * Alpha
end associate
dLi_dTstar = 0.0_pREAL
end subroutine thermalexpansion_LiAndItsTangent
end submodule thermalexpansion