DAMASK_EICMD/code/constitutive_phenopowerlaw.f90

1053 lines
66 KiB
Fortran

! Copyright 2011 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief phenomenological crystal plasticity formulation using a powerlaw fitting
!--------------------------------------------------------------------------------------------------
module constitutive_phenopowerlaw
use prec, only: pReal,pInt
implicit none
private
character (len=*), parameter, public :: &
constitutive_phenopowerlaw_label = 'phenopowerlaw'
integer(pInt), dimension(:), allocatable, public :: &
constitutive_phenopowerlaw_sizeDotState, &
constitutive_phenopowerlaw_sizeState, &
constitutive_phenopowerlaw_sizePostResults, & !< cumulative size of post results
constitutive_phenopowerlaw_structure
integer(pInt), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_Noutput, & !< number of outputs per instance of this constitution
constitutive_phenopowerlaw_totalNslip, & !< no. of slip system used in simulation
constitutive_phenopowerlaw_totalNtwin !< no. of twin system used in simulation
integer(pInt), dimension(:,:), allocatable, target, public :: &
constitutive_phenopowerlaw_sizePostResult !< size of each post result output
integer(pInt), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_Nslip, & !< active number of slip systems per family (input parameter, per family)
constitutive_phenopowerlaw_Ntwin !< active number of twin systems per family (input parameter, per family)
character(len=64), dimension(:,:), allocatable, target, public :: &
constitutive_phenopowerlaw_output !< name of each post result output
character(len=32), dimension(:), allocatable, public :: &
constitutive_phenopowerlaw_structureName
real(pReal), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_CoverA, & !< c/a of the crystal (input parameter)
constitutive_phenopowerlaw_gdot0_slip, & !< reference shear strain rate for slip (input parameter)
constitutive_phenopowerlaw_gdot0_twin, & !< reference shear strain rate for twin (input parameter)
constitutive_phenopowerlaw_n_slip, & !< stress exponent for slip (input parameter)
constitutive_phenopowerlaw_n_twin !< stress exponent for twin (input parameter)
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_tau0_slip, & !< initial critical shear stress for slip (input parameter, per family)
constitutive_phenopowerlaw_tau0_twin, & !< initial critical shear stress for twin (input parameter, per family)
constitutive_phenopowerlaw_tausat_slip !< maximum critical shear stress for slip (input parameter, per family)
real(pReal), dimension(:), allocatable, private :: &
constitutive_phenopowerlaw_spr, & !< push-up factor for slip saturation due to twinning
constitutive_phenopowerlaw_twinB, &
constitutive_phenopowerlaw_twinC, &
constitutive_phenopowerlaw_twinD, &
constitutive_phenopowerlaw_twinE, &
constitutive_phenopowerlaw_h0_SlipSlip, & !< reference hardening slip - slip (input parameter)
constitutive_phenopowerlaw_h0_SlipTwin, & !< reference hardening slip - twin (input parameter, no effect at the moment)
constitutive_phenopowerlaw_h0_TwinSlip, & !< reference hardening twin - slip (input parameter)
constitutive_phenopowerlaw_h0_TwinTwin, & !< reference hardening twin - twin (input parameter)
constitutive_phenopowerlaw_a_slip, &
constitutive_phenopowerlaw_aTolResistance, &
constitutive_phenopowerlaw_aTolShear, &
constitutive_phenopowerlaw_aTolTwinfrac
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_interaction_SlipSlip, & !< interaction factors slip - slip (input parameter)
constitutive_phenopowerlaw_interaction_SlipTwin, & !< interaction factors slip - twin (input parameter)
constitutive_phenopowerlaw_interaction_TwinSlip, & !< interaction factors twin - slip (input parameter)
constitutive_phenopowerlaw_interaction_TwinTwin !< interaction factors twin - twin (input parameter)
real(pReal), dimension(:,:,:), allocatable, private :: &
constitutive_phenopowerlaw_hardeningMatrix_SlipSlip, &
constitutive_phenopowerlaw_hardeningMatrix_SlipTwin, &
constitutive_phenopowerlaw_hardeningMatrix_TwinSlip, &
constitutive_phenopowerlaw_hardeningMatrix_TwinTwin, &
constitutive_phenopowerlaw_Cslip_66
real(pReal), dimension(:,:), allocatable, private :: &
constitutive_phenopowerlaw_nonSchmidCoeff
public :: &
constitutive_phenopowerlaw_init, &
constitutive_phenopowerlaw_homogenizedC, &
constitutive_phenopowerlaw_aTolState, &
constitutive_phenopowerlaw_dotState, &
constitutive_phenopowerlaw_deltaState, &
constitutive_phenopowerlaw_dotTemperature, &
constitutive_phenopowerlaw_microstructure, &
constitutive_phenopowerlaw_LpAndItsTangent, &
constitutive_phenopowerlaw_postResults, &
constitutive_phenopowerlaw_stateInit
contains
!--------------------------------------------------------------------------------------------------
!> @brief reading in parameters from material config and doing consistency checks
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_init(myFile)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: math_Mandel3333to66, &
math_Voigt66to3333
use IO
use material
use debug, only: debug_level,&
debug_constitutive,&
debug_levelBasic
use lattice, only: lattice_initializeStructure, lattice_symmetrizeC66, &
lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_maxNinteraction, lattice_NslipSystem, lattice_NtwinSystem, &
lattice_maxNonSchmid, &
lattice_interactionSlipSlip, &
lattice_interactionSlipTwin, &
lattice_interactionTwinSlip, &
lattice_interactionTwinTwin
implicit none
integer(pInt), intent(in) :: myFile
integer(pInt), parameter :: maxNchunks = lattice_maxNinteraction + 1_pInt
integer(pInt), dimension(1+2*maxNchunks) :: positions
integer(pInt) section, maxNinstance, i,j,k, f,o, &
mySize, myStructure, index_myFamily, index_otherFamily
character(len=64) :: tag
character(len=1024) :: line = '' ! to start initialized
write(6,*)
write(6,*) '<<<+- constitutive_',trim(constitutive_phenopowerlaw_label),' init -+>>>'
write(6,*) '$Id$'
#include "compilation_info.f90"
maxNinstance = int(count(phase_plasticity == constitutive_phenopowerlaw_label),pInt)
if (maxNinstance == 0) return
if (iand(debug_level(debug_constitutive),debug_levelBasic) /= 0_pInt) then
write(6,'(a16,1x,i5)') '# instances:',maxNinstance
write(6,*)
endif
allocate(constitutive_phenopowerlaw_sizeDotState(maxNinstance))
constitutive_phenopowerlaw_sizeDotState = 0_pInt
allocate(constitutive_phenopowerlaw_sizeState(maxNinstance))
constitutive_phenopowerlaw_sizeState = 0_pInt
allocate(constitutive_phenopowerlaw_sizePostResults(maxNinstance))
constitutive_phenopowerlaw_sizePostResults = 0_pInt
allocate(constitutive_phenopowerlaw_sizePostResult(maxval(phase_Noutput),maxNinstance))
constitutive_phenopowerlaw_sizePostResult = 0_pInt
allocate(constitutive_phenopowerlaw_output(maxval(phase_Noutput),maxNinstance))
constitutive_phenopowerlaw_output = ''
allocate(constitutive_phenopowerlaw_Noutput(maxNinstance))
constitutive_phenopowerlaw_Noutput = 0_pInt
allocate(constitutive_phenopowerlaw_structureName(maxNinstance))
constitutive_phenopowerlaw_structureName = ''
allocate(constitutive_phenopowerlaw_structure(maxNinstance))
constitutive_phenopowerlaw_structure = 0_pInt
allocate(constitutive_phenopowerlaw_Nslip(lattice_maxNslipFamily,maxNinstance))
constitutive_phenopowerlaw_Nslip = 0_pInt
allocate(constitutive_phenopowerlaw_Ntwin(lattice_maxNtwinFamily,maxNinstance))
constitutive_phenopowerlaw_Ntwin = 0_pInt
allocate(constitutive_phenopowerlaw_totalNslip(maxNinstance))
constitutive_phenopowerlaw_totalNslip = 0_pInt
allocate(constitutive_phenopowerlaw_totalNtwin(maxNinstance))
constitutive_phenopowerlaw_totalNtwin = 0_pInt
allocate(constitutive_phenopowerlaw_CoverA(maxNinstance))
constitutive_phenopowerlaw_CoverA = 0.0_pReal
allocate(constitutive_phenopowerlaw_Cslip_66(6,6,maxNinstance))
constitutive_phenopowerlaw_Cslip_66 = 0.0_pReal
allocate(constitutive_phenopowerlaw_gdot0_slip(maxNinstance))
constitutive_phenopowerlaw_gdot0_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_n_slip(maxNinstance))
constitutive_phenopowerlaw_n_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_tau0_slip(lattice_maxNslipFamily,maxNinstance))
constitutive_phenopowerlaw_tau0_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_tausat_slip(lattice_maxNslipFamily,maxNinstance))
constitutive_phenopowerlaw_tausat_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_gdot0_twin(maxNinstance))
constitutive_phenopowerlaw_gdot0_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_n_twin(maxNinstance))
constitutive_phenopowerlaw_n_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_tau0_twin(lattice_maxNtwinFamily,maxNinstance))
constitutive_phenopowerlaw_tau0_twin = 0.0_pReal
allocate(constitutive_phenopowerlaw_spr(maxNinstance))
constitutive_phenopowerlaw_spr = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinB(maxNinstance))
constitutive_phenopowerlaw_twinB = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinC(maxNinstance))
constitutive_phenopowerlaw_twinC = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinD(maxNinstance))
constitutive_phenopowerlaw_twinD = 0.0_pReal
allocate(constitutive_phenopowerlaw_twinE(maxNinstance))
constitutive_phenopowerlaw_twinE = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_SlipSlip(maxNinstance))
constitutive_phenopowerlaw_h0_SlipSlip = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_SlipTwin(maxNinstance))
constitutive_phenopowerlaw_h0_SlipTwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_TwinSlip(maxNinstance))
constitutive_phenopowerlaw_h0_TwinSlip = 0.0_pReal
allocate(constitutive_phenopowerlaw_h0_TwinTwin(maxNinstance))
constitutive_phenopowerlaw_h0_TwinTwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_interaction_SlipSlip(lattice_maxNinteraction,maxNinstance))
constitutive_phenopowerlaw_interaction_SlipSlip = 0.0_pReal
allocate(constitutive_phenopowerlaw_interaction_SlipTwin(lattice_maxNinteraction,maxNinstance))
constitutive_phenopowerlaw_interaction_SlipTwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_interaction_TwinSlip(lattice_maxNinteraction,maxNinstance))
constitutive_phenopowerlaw_interaction_TwinSlip = 0.0_pReal
allocate(constitutive_phenopowerlaw_interaction_TwinTwin(lattice_maxNinteraction,maxNinstance))
constitutive_phenopowerlaw_interaction_TwinTwin = 0.0_pReal
allocate(constitutive_phenopowerlaw_a_slip(maxNinstance))
constitutive_phenopowerlaw_a_slip = 0.0_pReal
allocate(constitutive_phenopowerlaw_aTolResistance(maxNinstance))
constitutive_phenopowerlaw_aTolResistance = 0.0_pReal
allocate(constitutive_phenopowerlaw_aTolShear(maxNinstance))
constitutive_phenopowerlaw_aTolShear = 0.0_pReal
allocate(constitutive_phenopowerlaw_aTolTwinfrac(maxNinstance))
constitutive_phenopowerlaw_aTolTwinfrac = 0.0_pReal
allocate(constitutive_phenopowerlaw_nonSchmidCoeff(lattice_maxNonSchmid,maxNinstance))
constitutive_phenopowerlaw_nonSchmidCoeff = 0.0_pReal
rewind(myFile)
section = 0_pInt
do while (IO_lc(IO_getTag(line,'<','>')) /= 'phase') ! wind forward to <phase>
read(myFile,'(a1024)',END=100) line
enddo
do ! read thru sections of phase part
read(myFile,'(a1024)',END=100) line
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt ! advance section counter
cycle ! skip to next line
endif
if (section > 0_pInt .and. phase_plasticity(section) == constitutive_phenopowerlaw_label) then ! one of my sections
i = phase_plasticityInstance(section) ! which instance of my plasticity is present phase
positions = IO_stringPos(line,maxNchunks)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('plasticity','elasticity')
cycle
case ('(output)')
constitutive_phenopowerlaw_Noutput(i) = constitutive_phenopowerlaw_Noutput(i) + 1_pInt
constitutive_phenopowerlaw_output(constitutive_phenopowerlaw_Noutput(i),i) = &
IO_lc(IO_stringValue(line,positions,2_pInt))
case ('lattice_structure')
constitutive_phenopowerlaw_structureName(i) = IO_lc(IO_stringValue(line,positions,2_pInt))
case ('covera_ratio')
constitutive_phenopowerlaw_CoverA(i) = IO_floatValue(line,positions,2_pInt)
case ('c11')
constitutive_phenopowerlaw_Cslip_66(1,1,i) = IO_floatValue(line,positions,2_pInt)
case ('c12')
constitutive_phenopowerlaw_Cslip_66(1,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c13')
constitutive_phenopowerlaw_Cslip_66(1,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c22')
constitutive_phenopowerlaw_Cslip_66(2,2,i) = IO_floatValue(line,positions,2_pInt)
case ('c23')
constitutive_phenopowerlaw_Cslip_66(2,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c33')
constitutive_phenopowerlaw_Cslip_66(3,3,i) = IO_floatValue(line,positions,2_pInt)
case ('c44')
constitutive_phenopowerlaw_Cslip_66(4,4,i) = IO_floatValue(line,positions,2_pInt)
case ('c55')
constitutive_phenopowerlaw_Cslip_66(5,5,i) = IO_floatValue(line,positions,2_pInt)
case ('c66')
constitutive_phenopowerlaw_Cslip_66(6,6,i) = IO_floatValue(line,positions,2_pInt)
case ('nslip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_Nslip(j,i) = IO_intValue(line,positions,1_pInt+j)
case ('gdot0_slip')
constitutive_phenopowerlaw_gdot0_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('n_slip')
constitutive_phenopowerlaw_n_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('tau0_slip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tau0_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('tausat_slip')
forall (j = 1_pInt:lattice_maxNslipFamily)&
constitutive_phenopowerlaw_tausat_slip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('a_slip', 'w0_slip')
constitutive_phenopowerlaw_a_slip(i) = IO_floatValue(line,positions,2_pInt)
case ('ntwin')
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_Ntwin(j,i) = IO_intValue(line,positions,1_pInt+j)
case ('gdot0_twin')
constitutive_phenopowerlaw_gdot0_twin(i) = IO_floatValue(line,positions,2_pInt)
case ('n_twin')
constitutive_phenopowerlaw_n_twin(i) = IO_floatValue(line,positions,2_pInt)
case ('tau0_twin')
forall (j = 1_pInt:lattice_maxNtwinFamily)&
constitutive_phenopowerlaw_tau0_twin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('s_pr')
constitutive_phenopowerlaw_spr(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_b')
constitutive_phenopowerlaw_twinB(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_c')
constitutive_phenopowerlaw_twinC(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_d')
constitutive_phenopowerlaw_twinD(i) = IO_floatValue(line,positions,2_pInt)
case ('twin_e')
constitutive_phenopowerlaw_twinE(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_slipslip')
constitutive_phenopowerlaw_h0_SlipSlip(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_sliptwin')
constitutive_phenopowerlaw_h0_SlipTwin(i) = IO_floatValue(line,positions,2_pInt)
call IO_warning(42_pInt,ext_msg=trim(tag)//' ('//constitutive_phenopowerlaw_label//')')
case ('h0_twinslip')
constitutive_phenopowerlaw_h0_TwinSlip(i) = IO_floatValue(line,positions,2_pInt)
case ('h0_twintwin')
constitutive_phenopowerlaw_h0_TwinTwin(i) = IO_floatValue(line,positions,2_pInt)
case ('atol_resistance')
constitutive_phenopowerlaw_aTolResistance(i) = IO_floatValue(line,positions,2_pInt)
case ('atol_shear')
constitutive_phenopowerlaw_aTolShear(i) = IO_floatValue(line,positions,2_pInt)
case ('atol_twinfrac')
constitutive_phenopowerlaw_aTolTwinfrac(i) = IO_floatValue(line,positions,2_pInt)
case ('interaction_slipslip')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_SlipSlip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_sliptwin')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_SlipTwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_twinslip')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_TwinSlip(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('interaction_twintwin')
forall (j = 1_pInt:lattice_maxNinteraction) &
constitutive_phenopowerlaw_interaction_TwinTwin(j,i) = IO_floatValue(line,positions,1_pInt+j)
case ('nonschmid_coefficients')
forall (j = 1_pInt:lattice_maxNonSchmid) &
constitutive_phenopowerlaw_nonSchmidCoeff(j,i) = IO_floatValue(line,positions,1_pInt+j)
case default
call IO_error(210_pInt,ext_msg=tag//' ('//constitutive_phenopowerlaw_label//')')
end select
endif
enddo
100 do i = 1_pInt,maxNinstance
constitutive_phenopowerlaw_structure(i) = lattice_initializeStructure(constitutive_phenopowerlaw_structureName(i), & ! get structure
constitutive_phenopowerlaw_CoverA(i))
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i) = &
min(lattice_NslipSystem(1:lattice_maxNslipFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active slip systems per family to min of available and requested
constitutive_phenopowerlaw_Nslip(1:lattice_maxNslipFamily,i))
constitutive_phenopowerlaw_Ntwin(1:lattice_maxNtwinFamily,i) = &
min(lattice_NtwinSystem(1:lattice_maxNtwinFamily,constitutive_phenopowerlaw_structure(i)),& ! limit active twin systems per family to min of available and requested
constitutive_phenopowerlaw_Ntwin(:,i))
constitutive_phenopowerlaw_totalNslip(i) = sum(constitutive_phenopowerlaw_Nslip(:,i)) ! how many slip systems altogether
constitutive_phenopowerlaw_totalNtwin(i) = sum(constitutive_phenopowerlaw_Ntwin(:,i)) ! how many twin systems altogether
if (constitutive_phenopowerlaw_structure(i) < 1 ) call IO_error(205_pInt,e=i)
if (any(constitutive_phenopowerlaw_tau0_slip(:,i) < 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tau0_slip (' &
//constitutive_phenopowerlaw_label//')')
if (constitutive_phenopowerlaw_gdot0_slip(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='gdot0_slip (' &
//constitutive_phenopowerlaw_label//')')
if (constitutive_phenopowerlaw_n_slip(i) <= 0.0_pReal) call IO_error(211_pInt,e=i,ext_msg='n_slip (' &
//constitutive_phenopowerlaw_label//')')
if (any(constitutive_phenopowerlaw_tausat_slip(:,i) <= 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tausat_slip (' &
//constitutive_phenopowerlaw_label//')')
if (any(constitutive_phenopowerlaw_a_slip(i) == 0.0_pReal .and. &
constitutive_phenopowerlaw_Nslip(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='a_slip (' &
//constitutive_phenopowerlaw_label//')')
if (any(constitutive_phenopowerlaw_tau0_twin(:,i) < 0.0_pReal .and. &
constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='tau0_twin (' &
//constitutive_phenopowerlaw_label//')')
if ( constitutive_phenopowerlaw_gdot0_twin(i) <= 0.0_pReal .and. &
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='gdot0_twin (' &
//constitutive_phenopowerlaw_label//')')
if ( constitutive_phenopowerlaw_n_twin(i) <= 0.0_pReal .and. &
any(constitutive_phenopowerlaw_Ntwin(:,i) > 0)) call IO_error(211_pInt,e=i,ext_msg='n_twin (' &
//constitutive_phenopowerlaw_label//')')
if (constitutive_phenopowerlaw_aTolResistance(i) <= 0.0_pReal) &
constitutive_phenopowerlaw_aTolResistance(i) = 1.0_pReal ! default absolute tolerance 1 Pa
if (constitutive_phenopowerlaw_aTolShear(i) <= 0.0_pReal) &
constitutive_phenopowerlaw_aTolShear(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6
if (constitutive_phenopowerlaw_aTolTwinfrac(i) <= 0.0_pReal) &
constitutive_phenopowerlaw_aTolTwinfrac(i) = 1.0e-6_pReal ! default absolute tolerance 1e-6
enddo
allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from slip activity
maxval(constitutive_phenopowerlaw_totalNslip),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(maxval(constitutive_phenopowerlaw_totalNslip),& ! slip resistance from twin activity
maxval(constitutive_phenopowerlaw_totalNtwin),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from slip activity
maxval(constitutive_phenopowerlaw_totalNslip),&
maxNinstance))
allocate(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(maxval(constitutive_phenopowerlaw_totalNtwin),& ! twin resistance from twin activity
maxval(constitutive_phenopowerlaw_totalNtwin),&
maxNinstance))
constitutive_phenopowerlaw_hardeningMatrix_SlipSlip = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_SlipTwin = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_TwinSlip = 0.0_pReal
constitutive_phenopowerlaw_hardeningMatrix_TwinTwin = 0.0_pReal
do i = 1_pInt,maxNinstance
do o = 1_pInt,constitutive_phenopowerlaw_Noutput(i)
select case(constitutive_phenopowerlaw_output(o,i))
case('resistance_slip', &
'shearrate_slip', &
'resolvedstress_slip' &
)
mySize = constitutive_phenopowerlaw_totalNslip(i)
case('resistance_twin', &
'shearrate_twin', &
'resolvedstress_twin' &
)
mySize = constitutive_phenopowerlaw_totalNtwin(i)
case('totalshear', &
'totalvolfrac' &
)
mySize = 1_pInt
case default
call IO_error(212_pInt,ext_msg=constitutive_phenopowerlaw_output(o,i)//' ('//constitutive_phenopowerlaw_label//')')
end select
if (mySize > 0_pInt) then ! any meaningful output found
constitutive_phenopowerlaw_sizePostResult(o,i) = mySize
constitutive_phenopowerlaw_sizePostResults(i) = &
constitutive_phenopowerlaw_sizePostResults(i) + mySize
endif
enddo
constitutive_phenopowerlaw_sizeDotState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
constitutive_phenopowerlaw_totalNtwin(i)+ 2_pInt ! s_slip, s_twin, sum(gamma), sum(f)
constitutive_phenopowerlaw_sizeState(i) = constitutive_phenopowerlaw_totalNslip(i)+ &
constitutive_phenopowerlaw_totalNtwin(i)+ 2_pInt ! s_slip, s_twin, sum(gamma), sum(f)
myStructure = constitutive_phenopowerlaw_structure(i)
constitutive_phenopowerlaw_Cslip_66(:,:,i) = lattice_symmetrizeC66(constitutive_phenopowerlaw_structureName(i),&
constitutive_phenopowerlaw_Cslip_66(:,:,i))
! assign elasticity tensor
constitutive_phenopowerlaw_Cslip_66(:,:,i) = &
math_Mandel3333to66(math_Voigt66to3333(constitutive_phenopowerlaw_Cslip_66(:,:,i)))
do f = 1_pInt,lattice_maxNslipFamily ! >>> interaction slip -- X
index_myFamily = sum(constitutive_phenopowerlaw_Nslip(1:f-1_pInt,i))
do j = 1_pInt,constitutive_phenopowerlaw_Nslip(f,i) ! loop over (active) systems in my family (slip)
do o = 1_pInt,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(index_myFamily+j,index_otherFamily+k,i) = &
constitutive_phenopowerlaw_interaction_SlipSlip(lattice_interactionSlipSlip( &
sum(lattice_NslipSystem(1:f-1,myStructure))+j, &
sum(lattice_NslipSystem(1:o-1,myStructure))+k, &
myStructure), i )
enddo; enddo
do o = 1_pInt,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(index_myFamily+j,index_otherFamily+k,i) = &
constitutive_phenopowerlaw_interaction_SlipTwin(lattice_interactionSlipTwin( &
sum(lattice_NslipSystem(1:f-1_pInt,myStructure))+j, &
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
myStructure), i )
enddo; enddo
enddo; enddo
do f = 1_pInt,lattice_maxNtwinFamily ! >>> interaction twin -- X
index_myFamily = sum(constitutive_phenopowerlaw_Ntwin(1:f-1_pInt,i))
do j = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,i) ! loop over (active) systems in my family (twin)
do o = 1_pInt,lattice_maxNslipFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Nslip(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Nslip(o,i) ! loop over (active) systems in other family (slip)
constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(index_myFamily+j,index_otherFamily+k,i) = &
constitutive_phenopowerlaw_interaction_TwinSlip(lattice_interactionTwinSlip( &
sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, &
sum(lattice_NslipSystem(1:o-1_pInt,myStructure))+k, &
myStructure), i )
enddo; enddo
do o = 1_pInt,lattice_maxNtwinFamily
index_otherFamily = sum(constitutive_phenopowerlaw_Ntwin(1:o-1_pInt,i))
do k = 1_pInt,constitutive_phenopowerlaw_Ntwin(o,i) ! loop over (active) systems in other family (twin)
constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(index_myFamily+j,index_otherFamily+k,i) = &
constitutive_phenopowerlaw_interaction_TwinTwin(lattice_interactionTwinTwin( &
sum(lattice_NtwinSystem(1:f-1_pInt,myStructure))+j, &
sum(lattice_NtwinSystem(1:o-1_pInt,myStructure))+k, &
myStructure), i )
enddo; enddo
enddo; enddo
! report to out file...
enddo
end subroutine constitutive_phenopowerlaw_init
!--------------------------------------------------------------------------------------------------
!> @brief initial microstructural state
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_stateInit(myInstance)
use lattice, only: lattice_maxNslipFamily, lattice_maxNtwinFamily
implicit none
integer(pInt), intent(in) :: myInstance
integer(pInt) :: i
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(myInstance)) :: constitutive_phenopowerlaw_stateInit
constitutive_phenopowerlaw_stateInit = 0.0_pReal
do i = 1_pInt,lattice_maxNslipFamily
constitutive_phenopowerlaw_stateInit(1+&
sum(constitutive_phenopowerlaw_Nslip(1:i-1,myInstance)) : &
sum(constitutive_phenopowerlaw_Nslip(1:i ,myInstance))) = &
constitutive_phenopowerlaw_tau0_slip(i,myInstance)
enddo
do i = 1_pInt,lattice_maxNtwinFamily
constitutive_phenopowerlaw_stateInit(1+sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
sum(constitutive_phenopowerlaw_Ntwin(1:i-1,myInstance)) : &
sum(constitutive_phenopowerlaw_Nslip(:,myInstance))+&
sum(constitutive_phenopowerlaw_Ntwin(1:i ,myInstance))) = &
constitutive_phenopowerlaw_tau0_twin(i,myInstance)
enddo
end function constitutive_phenopowerlaw_stateInit
!--------------------------------------------------------------------------------------------------
!> @brief absolute state tolerance
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_aTolState(myInstance)
implicit none
integer(pInt), intent(in) :: myInstance ! number specifying the current instance of the plasticity
real(pReal), dimension(constitutive_phenopowerlaw_sizeState(myInstance)) :: &
constitutive_phenopowerlaw_aTolState ! relevant state values for the current instance of this plasticity
constitutive_phenopowerlaw_aTolState(1:constitutive_phenopowerlaw_totalNslip(myInstance)+ &
constitutive_phenopowerlaw_totalNtwin(myInstance)) = &
constitutive_phenopowerlaw_aTolResistance(myInstance)
constitutive_phenopowerlaw_aTolState(1+constitutive_phenopowerlaw_totalNslip(myInstance)+ &
constitutive_phenopowerlaw_totalNtwin(myInstance)) = &
constitutive_phenopowerlaw_aTolShear(myInstance)
constitutive_phenopowerlaw_aTolState(2+constitutive_phenopowerlaw_totalNslip(myInstance)+ &
constitutive_phenopowerlaw_totalNtwin(myInstance)) = &
constitutive_phenopowerlaw_aTolTwinFrac(myInstance)
end function constitutive_phenopowerlaw_aTolState
!--------------------------------------------------------------------------------------------------
!> @brief homogenized elacticity matrix
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_homogenizedC(state,ipc,ip,el)
use prec, only: p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: &
ipc, & !component-ID of current integration point
ip, & !current integration point
el !current element
integer(pInt) matID
real(pReal), dimension(6,6) :: constitutive_phenopowerlaw_homogenizedC
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! state variables
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
constitutive_phenopowerlaw_homogenizedC = constitutive_phenopowerlaw_Cslip_66(1:6,1:6,matID)
end function constitutive_phenopowerlaw_homogenizedC
!--------------------------------------------------------------------------------------------------
!> @brief calculate derived quantities from state (dummy subroutine, not used here)
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_microstructure(Temperature,state,ipc,ip,el)
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: &
ipc, & !component-ID of current integration point
ip, & !current integration point
el !current element
integer(pInt) :: matID
real(pReal), intent(in) :: Temperature ! temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
end subroutine constitutive_phenopowerlaw_microstructure
!--------------------------------------------------------------------------------------------------
!> @brief plastic velocity gradient and its tangent
!--------------------------------------------------------------------------------------------------
subroutine constitutive_phenopowerlaw_LpAndItsTangent(Lp,dLp_dTstar,Tstar_v,Temperature,state,ipc,ip,el)
use prec, only: p_vec
use math, only: math_Plain3333to99,math_Mandel6to33
use lattice, only: lattice_Sslip,lattice_Sslip_v,lattice_Stwin,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem,NnonSchmid
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: &
ipc, & ! component-ID at current integration point
ip, & ! current integration point
el ! current element
integer(pInt) matID,nSlip,nTwin,f,i,j,k,l,m,n, structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems) :: state
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), dimension(3,3), intent(out) :: Lp ! plastic velocity gradient
real(pReal), dimension(3,3,3,3) :: dLp_dTstar3333 ! derivative of Lp (4th-rank tensor)
real(pReal), dimension(9,9), intent(out) :: dLp_dTstar
real(pReal), dimension(3,3,2) :: nonSchmid_tensor
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip_pos,gdot_slip_neg,dgdot_dtauslip_pos,dgdot_dtauslip_neg,tau_slip_pos,tau_slip_neg
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_twin,dgdot_dtautwin,tau_twin
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1_pInt
index_F = nSlip + nTwin + 2_pInt
Lp = 0.0_pReal
dLp_dTstar3333 = 0.0_pReal
dLp_dTstar = 0.0_pReal
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
!--------------------------------------------------------------------------------------------------
! Calculation of Lp
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID))
tau_slip_neg(j) = tau_slip_pos(j)
nonSchmid_tensor(1:3,1:3,1) = math_Mandel6to33(lattice_Sslip_v(1:6,1,index_myFamily+i,structID))
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,1)
do k = 1, NnonSchmid(structID)
tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID))
tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID))
nonSchmid_tensor(1:3,1:3,1) = nonSchmid_tensor(1:3,1:3,1) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*&
math_Mandel6to33(lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID))
nonSchmid_tensor(1:3,1:3,2) = nonSchmid_tensor(1:3,1:3,2) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)*&
math_Mandel6to33(lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID))
enddo
gdot_slip_pos(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* &
((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*&
sign(1.0_pReal,tau_slip_pos(j))
gdot_slip_neg(j) = 0.5_pReal*constitutive_phenopowerlaw_gdot0_slip(matID)* &
((abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))*&
sign(1.0_pReal,tau_slip_neg(j))
Lp = Lp + (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
(gdot_slip_pos(j)+gdot_slip_neg(j))*lattice_Sslip(1:3,1:3,index_myFamily+i,structID)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
if (gdot_slip_pos(j) /= 0.0_pReal) then
dgdot_dtauslip_pos(j) = gdot_slip_pos(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_pos(j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip_pos(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* &
nonSchmid_tensor(m,n,1)
endif
if (gdot_slip_neg(j) /= 0.0_pReal) then
dgdot_dtauslip_neg(j) = gdot_slip_neg(j)*constitutive_phenopowerlaw_n_slip(matID)/tau_slip_neg(j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtauslip_neg(j)*lattice_Sslip(k,l,index_myFamily+i,structID)* &
nonSchmid_tensor(m,n,2)
endif
enddo
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
!--------------------------------------------------------------------------------------------------
! Calculation of Lp
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
Lp = Lp + gdot_twin(j)*lattice_Stwin(1:3,1:3,index_myFamily+i,structID)
!--------------------------------------------------------------------------------------------------
! Calculation of the tangent of Lp
if (gdot_twin(j) /= 0.0_pReal) then
dgdot_dtautwin(j) = gdot_twin(j)*constitutive_phenopowerlaw_n_twin(matID)/tau_twin(j)
forall (k=1_pInt:3_pInt,l=1_pInt:3_pInt,m=1_pInt:3_pInt,n=1_pInt:3_pInt) &
dLp_dTstar3333(k,l,m,n) = dLp_dTstar3333(k,l,m,n) + &
dgdot_dtautwin(j)*lattice_Stwin(k,l,index_myFamily+i,structID)* &
lattice_Stwin(m,n,index_myFamily+i,structID)
endif
enddo
enddo
dLp_dTstar = math_Plain3333to99(dLp_dTstar3333)
end subroutine constitutive_phenopowerlaw_LpAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief of change of microstructure, evolution of state variable
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_dotState(Tstar_v,Temperature,state,ipc,ip,el)
use prec, only: p_vec
use lattice, only: lattice_Sslip_v, lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem,lattice_shearTwin,NnonSchmid
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase, phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: &
ipc, & !< component-ID at current integration point
ip, & !< current integration point
el !< current element
integer(pInt) matID,nSlip,nTwin,f,i,j,k,structID,index_Gamma,index_F,index_myFamily
real(pReal) Temperature,c_SlipSlip,c_SlipTwin,c_TwinSlip,c_TwinTwin, ssat_offset
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
real(pReal), dimension(6), intent(in) :: Tstar_v !< 2nd Piola Kirchhoff stress tensor (Mandel)
real(pReal), dimension(constitutive_phenopowerlaw_totalNslip(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_slip,tau_slip_pos,tau_slip_neg,left_SlipSlip,left_SlipTwin,right_SlipSlip,right_TwinSlip
real(pReal), dimension(constitutive_phenopowerlaw_totalNtwin(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
gdot_twin,tau_twin,left_TwinSlip,left_TwinTwin,right_SlipTwin,right_TwinTwin
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_phenopowerlaw_dotState
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1_pInt
index_F = nSlip + nTwin + 2_pInt
constitutive_phenopowerlaw_dotState = 0.0_pReal
!--------------------------------------------------------------------------------------------------
! system-independent (nonlinear) prefactors to M_Xx (X influenced by x) matrices
c_SlipSlip = constitutive_phenopowerlaw_h0_SlipSlip(matID)*&
(1.0_pReal + &
constitutive_phenopowerlaw_twinC(matID)*state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinB(matID))
c_SlipTwin = 0.0_pReal
c_TwinSlip = constitutive_phenopowerlaw_h0_TwinSlip(matID)*&
state(ipc,ip,el)%p(index_Gamma)**constitutive_phenopowerlaw_twinE(matID)
c_TwinTwin = constitutive_phenopowerlaw_h0_TwinTwin(matID)*&
state(ipc,ip,el)%p(index_F)**constitutive_phenopowerlaw_twinD(matID)
!-- calculate left and right vectors and calculate dot gammas
ssat_offset = constitutive_phenopowerlaw_spr(matID)*sqrt(state(ipc,ip,el)%p(index_F))
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
left_SlipSlip(j) = 1.0_pReal ! no system-dependent left part
left_SlipTwin(j) = 1.0_pReal ! no system-dependent left part
right_SlipSlip(j) = (1.0_pReal-state(ipc,ip,el)%p(j) / &
(constitutive_phenopowerlaw_tausat_slip(f,matID)+ssat_offset)) &
**constitutive_phenopowerlaw_a_slip(matID)
right_TwinSlip(j) = 1.0_pReal ! no system-dependent part
!--------------------------------------------------------------------------------------------------
! Calculation of dot gamma
tau_slip_pos(j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID))
tau_slip_neg(j) = tau_slip_pos(j)
do k = 1, NnonSchmid(structID)
tau_slip_pos(j) = tau_slip_pos(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID))
tau_slip_neg(j) = tau_slip_neg(j) + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID))
enddo
gdot_slip(j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* &
((abs(tau_slip_pos(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) &
+(abs(tau_slip_neg(j))/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))&
*sign(1.0_pReal,tau_slip_pos(j))
enddo
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
left_TwinSlip(j) = 1.0_pReal ! no system-dependent right part
left_TwinTwin(j) = 1.0_pReal ! no system-dependent right part
right_SlipTwin(j) = 1.0_pReal ! no system-dependent right part
right_TwinTwin(j) = 1.0_pReal ! no system-dependent right part
!* Calculation of dot vol frac
tau_twin(j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
gdot_twin(j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau_twin(j))/state(ipc,ip,el)%p(nSlip+j))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau_twin(j)))
enddo
enddo
!--------------------------------------------------------------------------------------------------
! calculate the overall hardening based on above
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j) = & ! evolution of slip resistance j
c_SlipSlip * left_SlipSlip(j) * &
dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipSlip(j,1:nSlip,matID), &
right_SlipSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
c_SlipTwin * left_SlipTwin(j) * &
dot_product(constitutive_phenopowerlaw_hardeningMatrix_SlipTwin(j,1:nTwin,matID), &
right_SlipTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
constitutive_phenopowerlaw_dotState(index_Gamma) = constitutive_phenopowerlaw_dotState(index_Gamma) + &
abs(gdot_slip(j))
enddo
enddo
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j+1_pInt
constitutive_phenopowerlaw_dotState(j+nSlip) = & ! evolution of twin resistance j
c_TwinSlip * left_TwinSlip(j) * &
dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinSlip(j,1:nSlip,matID), &
right_TwinSlip*abs(gdot_slip)) + & ! dot gamma_slip modulated by right-side slip factor
c_TwinTwin * left_TwinTwin(j) * &
dot_product(constitutive_phenopowerlaw_hardeningMatrix_TwinTwin(j,1:nTwin,matID), &
right_TwinTwin*gdot_twin) ! dot gamma_twin modulated by right-side twin factor
constitutive_phenopowerlaw_dotState(index_F) = constitutive_phenopowerlaw_dotState(index_F) + &
gdot_twin(j)/lattice_shearTwin(index_myFamily+i,structID)
enddo
enddo
end function constitutive_phenopowerlaw_dotState
!--------------------------------------------------------------------------------------------------
!> @brief (instantaneous) incremental change of microstructure
!--------------------------------------------------------------------------------------------------
function constitutive_phenopowerlaw_deltaState(Tstar_v, Temperature, state, g,ip,el)
use prec, only: pReal, &
pInt, &
p_vec
use mesh, only: mesh_NcpElems, &
mesh_maxNips
use material, only: homogenization_maxNgrains, &
material_phase, &
phase_plasticityInstance
implicit none
integer(pInt), intent(in) :: g, & ! current grain number
ip, & ! current integration point
el ! current element number
real(pReal), intent(in) :: Temperature ! temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! current 2nd Piola-Kirchhoff stress in Mandel notation
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: &
state ! current microstructural state
real(pReal), dimension(constitutive_phenopowerlaw_sizeDotState(phase_plasticityInstance(material_phase(g,ip,el)))) :: &
constitutive_phenopowerlaw_deltaState ! change of state variables / microstructure
constitutive_phenopowerlaw_deltaState = 0.0_pReal
end function constitutive_phenopowerlaw_deltaState
!--------------------------------------------------------------------------------------------------
!> @brief calculates the rate of change of temperature (dummy function)
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_dotTemperature(Tstar_v,Temperature,state,ipc,ip,el)
use prec, only: pReal,pInt,p_vec
use mesh, only: mesh_NcpElems, mesh_maxNips
use material, only: homogenization_maxNgrains
implicit none
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor in Mandel notation
real(pReal), intent(in) :: Temperature
integer(pInt), intent(in):: ipc, & ! grain number
ip, & ! integration point number
el ! element number
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state ! state of the current microstructure
real(pReal) constitutive_phenopowerlaw_dotTemperature ! rate of change of temparature
constitutive_phenopowerlaw_dotTemperature = 0.0_pReal
end function constitutive_phenopowerlaw_dotTemperature
!--------------------------------------------------------------------------------------------------
!> @brief return array of constitutive results
!--------------------------------------------------------------------------------------------------
pure function constitutive_phenopowerlaw_postResults(Tstar_v,Temperature,dt,state,ipc,ip,el)
use prec, only: pReal,pInt,p_vec
use lattice, only: lattice_Sslip_v,lattice_Stwin_v, lattice_maxNslipFamily, lattice_maxNtwinFamily, &
lattice_NslipSystem,lattice_NtwinSystem,NnonSchmid
use mesh, only: mesh_NcpElems,mesh_maxNips
use material, only: homogenization_maxNgrains,material_phase,phase_plasticityInstance,phase_Noutput
implicit none
integer(pInt), intent(in) :: &
ipc, & !component-ID at current integration point
ip, & !current integration point
el !current element
real(pReal), intent(in) :: &
dt, & !current time increment
Temperature
real(pReal), dimension(6), intent(in) :: Tstar_v ! 2nd Piola Kirchhoff stress tensor (Mandel)
type(p_vec), dimension(homogenization_maxNgrains,mesh_maxNips,mesh_NcpElems), intent(in) :: state
integer(pInt) matID,o,f,i,c,nSlip,nTwin,j,k,structID,index_Gamma,index_F,index_myFamily
real(pReal) tau_slip_pos,tau_slip_neg,tau
real(pReal), dimension(constitutive_phenopowerlaw_sizePostResults(phase_plasticityInstance(material_phase(ipc,ip,el)))) :: &
constitutive_phenopowerlaw_postResults
matID = phase_plasticityInstance(material_phase(ipc,ip,el))
structID = constitutive_phenopowerlaw_structure(matID)
nSlip = constitutive_phenopowerlaw_totalNslip(matID)
nTwin = constitutive_phenopowerlaw_totalNtwin(matID)
index_Gamma = nSlip + nTwin + 1_pInt
index_F = nSlip + nTwin + 2_pInt
constitutive_phenopowerlaw_postResults = 0.0_pReal
c = 0_pInt
do o = 1_pInt,phase_Noutput(material_phase(ipc,ip,el))
select case(constitutive_phenopowerlaw_output(o,matID))
case ('resistance_slip')
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nSlip) = state(ipc,ip,el)%p(1:nSlip)
c = c + nSlip
case ('shearrate_slip')
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
tau_slip_pos = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID))
tau_slip_neg = tau_slip_pos
do k = 1, NnonSchmid(structID)
tau_slip_pos = tau_slip_pos + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k,index_myFamily+i,structID))
tau_slip_neg = tau_slip_neg + constitutive_phenopowerlaw_nonSchmidCoeff(k,matID)* &
dot_product(Tstar_v,lattice_Sslip_v(1:6,2*k+1,index_myFamily+i,structID))
enddo
constitutive_phenopowerlaw_postResults(c+j) = constitutive_phenopowerlaw_gdot0_slip(matID)*0.5_pReal* &
((abs(tau_slip_pos)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID) &
+(abs(tau_slip_neg)/state(ipc,ip,el)%p(j))**constitutive_phenopowerlaw_n_slip(matID))&
*sign(1.0_pReal,tau_slip_pos)
enddo; enddo
c = c + nSlip
case ('resolvedstress_slip')
j = 0_pInt
do f = 1_pInt,lattice_maxNslipFamily ! loop over all slip families
index_myFamily = sum(lattice_NslipSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Nslip(f,matID) ! process each (active) slip system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Sslip_v(1:6,1,index_myFamily+i,structID))
enddo; enddo
c = c + nSlip
case ('totalshear')
constitutive_phenopowerlaw_postResults(c+1_pInt) = state(ipc,ip,el)%p(index_Gamma)
c = c + 1_pInt
case ('resistance_twin')
constitutive_phenopowerlaw_postResults(c+1_pInt:c+nTwin) = state(ipc,ip,el)%p(1_pInt+nSlip:nTwin+nSlip)
c = c + nTwin
case ('shearrate_twin')
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
tau = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
constitutive_phenopowerlaw_postResults(c+j) = (1.0_pReal-state(ipc,ip,el)%p(index_F))*& ! 1-F
constitutive_phenopowerlaw_gdot0_twin(matID)*&
(abs(tau)/state(ipc,ip,el)%p(j+nSlip))**&
constitutive_phenopowerlaw_n_twin(matID)*max(0.0_pReal,sign(1.0_pReal,tau))
enddo; enddo
c = c + nTwin
case ('resolvedstress_twin')
j = 0_pInt
do f = 1_pInt,lattice_maxNtwinFamily ! loop over all twin families
index_myFamily = sum(lattice_NtwinSystem(1:f-1_pInt,structID)) ! at which index starts my family
do i = 1_pInt,constitutive_phenopowerlaw_Ntwin(f,matID) ! process each (active) twin system in family
j = j + 1_pInt
constitutive_phenopowerlaw_postResults(c+j) = dot_product(Tstar_v,lattice_Stwin_v(1:6,index_myFamily+i,structID))
enddo; enddo
c = c + nTwin
case ('totalvolfrac')
constitutive_phenopowerlaw_postResults(c+1_pInt) = state(ipc,ip,el)%p(index_F)
c = c + 1_pInt
end select
enddo
end function constitutive_phenopowerlaw_postResults
end module constitutive_phenopowerlaw