DAMASK_EICMD/python/damask/util.py

510 lines
18 KiB
Python

import sys
import time
import os
import subprocess
import shlex
from optparse import Option
from queue import Queue
from threading import Thread
import numpy as np
class bcolors:
"""
ASCII Colors (Blender code)
https://svn.blender.org/svnroot/bf-blender/trunk/blender/build_files/scons/tools/bcolors.py
http://stackoverflow.com/questions/287871/print-in-terminal-with-colors-using-python
"""
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
DIM = '\033[2m'
UNDERLINE = '\033[4m'
CROSSOUT = '\033[9m'
def disable(self):
self.HEADER = ''
self.OKBLUE = ''
self.OKGREEN = ''
self.WARNING = ''
self.FAIL = ''
self.ENDC = ''
self.BOLD = ''
self.UNDERLINE = ''
self.CROSSOUT = ''
# -----------------------------
def srepr(arg,glue = '\n'):
"""Joins arguments as individual lines"""
if (not hasattr(arg, "strip") and
(hasattr(arg, "__getitem__") or
hasattr(arg, "__iter__"))):
return glue.join(str(x) for x in arg)
return arg if isinstance(arg,str) else repr(arg)
# -----------------------------
def croak(what, newline = True):
"""Writes formated to stderr"""
if what is not None:
sys.stderr.write(srepr(what,glue = '\n') + ('\n' if newline else ''))
sys.stderr.flush()
# -----------------------------
def report(who = None,
what = None):
"""Reports script and file name"""
croak( (emph(who)+': ' if who is not None else '') + (what if what is not None else '') + '\n' )
# -----------------------------
def report_geom(info,
what = ['grid','size','origin','homogenization','microstructures']):
"""Reports (selected) geometry information"""
output = {
'grid' : 'grid a b c: {}'.format(' x '.join(list(map(str,info['grid' ])))),
'size' : 'size x y z: {}'.format(' x '.join(list(map(str,info['size' ])))),
'origin' : 'origin x y z: {}'.format(' : '.join(list(map(str,info['origin'])))),
'homogenization' : 'homogenization: {}'.format(info['homogenization']),
'microstructures' : 'microstructures: {}'.format(info['microstructures']),
}
for item in what: croak(output[item.lower()])
# -----------------------------
def emph(what):
"""Boldens string"""
return bcolors.BOLD+srepr(what)+bcolors.ENDC
# -----------------------------
def deemph(what):
"""Dims string"""
return bcolors.DIM+srepr(what)+bcolors.ENDC
# -----------------------------
def delete(what):
"""Dims string"""
return bcolors.DIM+srepr(what)+bcolors.ENDC
# -----------------------------
def strikeout(what):
"""Dims string"""
return bcolors.CROSSOUT+srepr(what)+bcolors.ENDC
# -----------------------------
def execute(cmd,
streamIn = None,
wd = './'):
"""Executes a command in given directory and returns stdout and stderr for optional stdin"""
initialPath = os.getcwd()
os.chdir(wd)
process = subprocess.Popen(shlex.split(cmd),
stdout = subprocess.PIPE,
stderr = subprocess.PIPE,
stdin = subprocess.PIPE)
out,error = [i for i in (process.communicate() if streamIn is None
else process.communicate(streamIn.read().encode('utf-8')))]
out = out.decode('utf-8').replace('\x08','')
error = error.decode('utf-8').replace('\x08','')
os.chdir(initialPath)
if process.returncode != 0: raise RuntimeError('{} failed with returncode {}'.format(cmd,process.returncode))
return out,error
def coordGridAndSize(coordinates):
"""Determines grid count and overall physical size along each dimension of an ordered array of coordinates"""
dim = coordinates.shape[1]
coords = [np.unique(coordinates[:,i]) for i in range(dim)]
mincorner = np.array(list(map(min,coords)))
maxcorner = np.array(list(map(max,coords)))
grid = np.array(list(map(len,coords)),'i')
size = grid/np.maximum(np.ones(dim,'d'), grid-1.0) * (maxcorner-mincorner) # size from edge to edge = dim * n/(n-1)
size = np.where(grid > 1, size, min(size[grid > 1]/grid[grid > 1])) # spacing for grid==1 equal to smallest among other ones
delta = size/grid
N = grid.prod()
if N != len(coordinates):
raise ValueError('Data count {} does not match grid {}.'.format(len(coordinates),' x '.join(map(repr,grid))))
if np.any(np.abs(np.log10((coords[0][1:]-coords[0][:-1])/delta[0])) > 0.01) \
or np.any(np.abs(np.log10((coords[1][1:]-coords[1][:-1])/delta[1])) > 0.01):
raise ValueError('regular grid spacing {} violated.'.format(' x '.join(map(repr,delta))))
if dim==3 and np.any(np.abs(np.log10((coords[2][1:]-coords[2][:-1])/delta[2])) > 0.01):
raise ValueError('regular grid spacing {} violated.'.format(' x '.join(map(repr,delta))))
return grid,size
# -----------------------------
class extendableOption(Option):
"""
Used for definition of new option parser action 'extend', which enables to take multiple option arguments
taken from online tutorial http://docs.python.org/library/optparse.html
"""
ACTIONS = Option.ACTIONS + ("extend",)
STORE_ACTIONS = Option.STORE_ACTIONS + ("extend",)
TYPED_ACTIONS = Option.TYPED_ACTIONS + ("extend",)
ALWAYS_TYPED_ACTIONS = Option.ALWAYS_TYPED_ACTIONS + ("extend",)
def take_action(self, action, dest, opt, value, values, parser):
if action == "extend":
lvalue = value.split(",")
values.ensure_value(dest, []).extend(lvalue)
else:
Option.take_action(self, action, dest, opt, value, values, parser)
# Print iterations progress
# from https://gist.github.com/aubricus/f91fb55dc6ba5557fbab06119420dd6a
def progressBar(iteration, total, prefix='', bar_length=50):
"""
Call in a loop to create terminal progress bar
@params:
iteration - Required : current iteration (Int)
total - Required : total iterations (Int)
prefix - Optional : prefix string (Str)
bar_length - Optional : character length of bar (Int)
"""
fraction = iteration / float(total)
if not hasattr(progressBar, "last_fraction"): # first call to function
progressBar.start_time = time.time()
progressBar.last_fraction = -1.0
remaining_time = ' n/a'
else:
if fraction <= progressBar.last_fraction or iteration == 0: # reset: called within a new loop
progressBar.start_time = time.time()
progressBar.last_fraction = -1.0
remaining_time = ' n/a'
else:
progressBar.last_fraction = fraction
remainder = (total - iteration) * (time.time()-progressBar.start_time)/iteration
remaining_time = '{: 3d}:'.format(int( remainder//3600)) + \
'{:02d}:'.format(int((remainder//60)%60)) + \
'{:02d}' .format(int( remainder %60))
filled_length = int(round(bar_length * fraction))
bar = '' * filled_length + '' * (bar_length - filled_length)
sys.stderr.write('\r{} {} {}'.format(prefix, bar, remaining_time)),
if iteration == total: sys.stderr.write('\n')
sys.stderr.flush()
class return_message():
"""Object with formatted return message"""
def __init__(self,message):
self.message = message
def __repr__(self):
"""Return message suitable for interactive shells"""
return srepr(self.message)
def leastsqBound(func, x0, args=(), bounds=None, Dfun=None, full_output=0,
col_deriv=0, ftol=1.49012e-8, xtol=1.49012e-8,
gtol=0.0, maxfev=0, epsfcn=None, factor=100, diag=None):
from scipy.optimize import _minpack
"""
Non-linear least square fitting (Levenberg-Marquardt method) with
bounded parameters.
the codes of transformation between int <-> ext refers to the work of
Jonathan J. Helmus: https://github.com/jjhelmus/leastsqbound-scipy
other codes refers to the source code of minpack.py:
..\Lib\site-packages\scipy\optimize\minpack.py
An internal parameter list is used to enforce contraints on the fitting
parameters. The transfomation is based on that of MINUIT package.
please see: F. James and M. Winkler. MINUIT User's Guide, 2004.
bounds : list
(min, max) pairs for each parameter, use None for 'min' or 'max'
when there is no bound in that direction.
For example: if there are two parameters needed to be fitting, then
bounds is [(min1,max1), (min2,max2)]
This function is based on 'leastsq' of minpack.py, the annotation of
other parameters can be found in 'leastsq'.
..\Lib\site-packages\scipy\optimize\minpack.py
"""
def _check_func(checker, argname, thefunc, x0, args, numinputs,
output_shape=None):
from numpy import shape
"""The same as that of minpack.py"""
res = np.atleast_1d(thefunc(*((x0[:numinputs],) + args)))
if (output_shape is not None) and (shape(res) != output_shape):
if (output_shape[0] != 1):
if len(output_shape) > 1:
if output_shape[1] == 1:
return shape(res)
msg = "%s: there is a mismatch between the input and output " \
"shape of the '%s' argument" % (checker, argname)
func_name = getattr(thefunc, '__name__', None)
if func_name:
msg += " '%s'." % func_name
else:
msg += "."
raise TypeError(msg)
if np.issubdtype(res.dtype, np.inexact):
dt = res.dtype
else:
dt = dtype(float)
return shape(res), dt
def _int2extGrad(p_int, bounds):
"""Calculate the gradients of transforming the internal (unconstrained) to external (constrained) parameter."""
grad = np.empty_like(p_int)
for i, (x, bound) in enumerate(zip(p_int, bounds)):
lower, upper = bound
if lower is None and upper is None: # No constraints
grad[i] = 1.0
elif upper is None: # only lower bound
grad[i] = x/np.sqrt(x*x + 1.0)
elif lower is None: # only upper bound
grad[i] = -x/np.sqrt(x*x + 1.0)
else: # lower and upper bounds
grad[i] = (upper - lower)*np.cos(x)/2.0
return grad
def _int2extFunc(bounds):
"""Transform internal parameters into external parameters."""
local = [_int2extLocal(b) for b in bounds]
def _transform_i2e(p_int):
p_ext = np.empty_like(p_int)
p_ext[:] = [i(j) for i, j in zip(local, p_int)]
return p_ext
return _transform_i2e
def _ext2intFunc(bounds):
"""Transform external parameters into internal parameters."""
local = [_ext2intLocal(b) for b in bounds]
def _transform_e2i(p_ext):
p_int = np.empty_like(p_ext)
p_int[:] = [i(j) for i, j in zip(local, p_ext)]
return p_int
return _transform_e2i
def _int2extLocal(bound):
"""Transform a single internal parameter to an external parameter."""
lower, upper = bound
if lower is None and upper is None: # no constraints
return lambda x: x
elif upper is None: # only lower bound
return lambda x: lower - 1.0 + np.sqrt(x*x + 1.0)
elif lower is None: # only upper bound
return lambda x: upper + 1.0 - np.sqrt(x*x + 1.0)
else:
return lambda x: lower + ((upper - lower)/2.0)*(np.sin(x) + 1.0)
def _ext2intLocal(bound):
"""Transform a single external parameter to an internal parameter."""
lower, upper = bound
if lower is None and upper is None: # no constraints
return lambda x: x
elif upper is None: # only lower bound
return lambda x: np.sqrt((x - lower + 1.0)**2 - 1.0)
elif lower is None: # only upper bound
return lambda x: np.sqrt((x - upper - 1.0)**2 - 1.0)
else:
return lambda x: np.arcsin((2.0*(x - lower)/(upper - lower)) - 1.0)
i2e = _int2extFunc(bounds)
e2i = _ext2intFunc(bounds)
x0 = np.asarray(x0).flatten()
n = len(x0)
if len(bounds) != n:
raise ValueError('the length of bounds is inconsistent with the number of parameters ')
if not isinstance(args, tuple):
args = (args,)
shape, dtype = _check_func('leastsq', 'func', func, x0, args, n)
m = shape[0]
if n > m:
raise TypeError('Improper input: N=%s must not exceed M=%s' % (n, m))
if epsfcn is None:
epsfcn = np.finfo(dtype).eps
def funcWarp(x, *args):
return func(i2e(x), *args)
xi0 = e2i(x0)
if Dfun is None:
if maxfev == 0:
maxfev = 200*(n + 1)
retval = _minpack._lmdif(funcWarp, xi0, args, full_output, ftol, xtol,
gtol, maxfev, epsfcn, factor, diag)
else:
if col_deriv:
_check_func('leastsq', 'Dfun', Dfun, x0, args, n, (n, m))
else:
_check_func('leastsq', 'Dfun', Dfun, x0, args, n, (m, n))
if maxfev == 0:
maxfev = 100*(n + 1)
def DfunWarp(x, *args):
return Dfun(i2e(x), *args)
retval = _minpack._lmder(funcWarp, DfunWarp, xi0, args, full_output, col_deriv,
ftol, xtol, gtol, maxfev, factor, diag)
errors = {0: ["Improper input parameters.", TypeError],
1: ["Both actual and predicted relative reductions "
"in the sum of squares\n are at most %f" % ftol, None],
2: ["The relative error between two consecutive "
"iterates is at most %f" % xtol, None],
3: ["Both actual and predicted relative reductions in "
"the sum of squares\n are at most %f and the "
"relative error between two consecutive "
"iterates is at \n most %f" % (ftol, xtol), None],
4: ["The cosine of the angle between func(x) and any "
"column of the\n Jacobian is at most %f in "
"absolute value" % gtol, None],
5: ["Number of calls to function has reached "
"maxfev = %d." % maxfev, ValueError],
6: ["ftol=%f is too small, no further reduction "
"in the sum of squares\n is possible.""" % ftol,
ValueError],
7: ["xtol=%f is too small, no further improvement in "
"the approximate\n solution is possible." % xtol,
ValueError],
8: ["gtol=%f is too small, func(x) is orthogonal to the "
"columns of\n the Jacobian to machine "
"precision." % gtol, ValueError],
'unknown': ["Unknown error.", TypeError]}
info = retval[-1] # The FORTRAN return value
if info not in [1, 2, 3, 4] and not full_output:
if info in [5, 6, 7, 8]:
np.warnings.warn(errors[info][0], RuntimeWarning)
else:
try:
raise errors[info][1](errors[info][0])
except KeyError:
raise errors['unknown'][1](errors['unknown'][0])
mesg = errors[info][0]
x = i2e(retval[0])
if full_output:
grad = _int2extGrad(retval[0], bounds)
retval[1]['fjac'] = (retval[1]['fjac'].T / np.take(grad,
retval[1]['ipvt'] - 1)).T
cov_x = None
if info in [1, 2, 3, 4]:
from numpy.dual import inv
from numpy.linalg import LinAlgError
perm = np.take(np.eye(n), retval[1]['ipvt'] - 1, 0)
r = np.triu(np.transpose(retval[1]['fjac'])[:n, :])
R = np.dot(r, perm)
try:
cov_x = inv(np.dot(np.transpose(R), R))
except LinAlgError as inverror:
print(inverror)
pass
return (x, cov_x) + retval[1:-1] + (mesg, info)
else:
return (x, info)
def _general_function(params, ydata, xdata, function):
return function(xdata, *params) - ydata
def _weighted_general_function(params, ydata, xdata, function, weights):
return (function(xdata, *params) - ydata)*weights
def curve_fit_bound(f, xdata, ydata, p0=None, sigma=None, bounds=None, **kw):
"""Similar as 'curve_fit' in minpack.py"""
if p0 is None:
# determine number of parameters by inspecting the function
import inspect
args, varargs, varkw, defaults = inspect.getargspec(f)
if len(args) < 2:
msg = "Unable to determine number of fit parameters."
raise ValueError(msg)
if 'self' in args:
p0 = [1.0] * (len(args)-2)
else:
p0 = [1.0] * (len(args)-1)
if np.isscalar(p0):
p0 = np.array([p0])
args = (ydata, xdata, f)
if sigma is None:
func = _general_function
else:
func = _weighted_general_function
args += (1.0/np.asarray(sigma),)
return_full = kw.pop('full_output', False)
res = leastsqBound(func, p0, args=args, bounds = bounds, full_output=True, **kw)
(popt, pcov, infodict, errmsg, ier) = res
if ier not in [1, 2, 3, 4]:
msg = "Optimal parameters not found: " + errmsg
raise RuntimeError(msg)
if (len(ydata) > len(p0)) and pcov is not None:
s_sq = (func(popt, *args)**2).sum()/(len(ydata)-len(p0))
pcov = pcov * s_sq
else:
pcov = np.inf
return (popt, pcov, infodict, errmsg, ier) if return_full else (popt, pcov)
class Worker(Thread):
"""Thread executing tasks from a given tasks queue"""
def __init__(self, tasks):
Thread.__init__(self)
self.tasks = tasks
self.daemon = True
self.start()
def run(self):
while True:
func, args, kargs = self.tasks.get()
try:
func(*args, **kargs)
except Exception as e:
# An exception happened in this thread
print(e)
finally:
# Mark this task as done, whether an exception happened or not
self.tasks.task_done()
class ThreadPool:
"""Pool of threads consuming tasks from a queue"""
def __init__(self, num_threads):
self.tasks = Queue(num_threads)
for _ in range(num_threads):
Worker(self.tasks)
def add_task(self, func, *args, **kargs):
"""Add a task to the queue"""
self.tasks.put((func, args, kargs))
def map(self, func, args_list):
"""Add a list of tasks to the queue"""
for args in args_list:
self.add_task(func, args)
def wait_completion(self):
"""Wait for completion of all the tasks in the queue"""
self.tasks.join()