DAMASK_EICMD/code/homogenization_isostrain.f90

309 lines
14 KiB
Fortran

! Copyright 2011-13 Max-Planck-Institut für Eisenforschung GmbH
!
! This file is part of DAMASK,
! the Düsseldorf Advanced MAterial Simulation Kit.
!
! DAMASK is free software: you can redistribute it and/or modify
! it under the terms of the GNU General Public License as published by
! the Free Software Foundation, either version 3 of the License, or
! (at your option) any later version.
!
! DAMASK is distributed in the hope that it will be useful,
! but WITHOUT ANY WARRANTY; without even the implied warranty of
! MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
! GNU General Public License for more details.
!
! You should have received a copy of the GNU General Public License
! along with DAMASK. If not, see <http://www.gnu.org/licenses/>.
!
!--------------------------------------------------------------------------------------------------
! $Id$
!--------------------------------------------------------------------------------------------------
!> @author Franz Roters, Max-Planck-Institut für Eisenforschung GmbH
!> @author Philip Eisenlohr, Max-Planck-Institut für Eisenforschung GmbH
!> @brief Isostrain (full constraint Taylor assuption) homogenization scheme
!--------------------------------------------------------------------------------------------------
module homogenization_isostrain
use prec, only: &
pInt
implicit none
private
integer(pInt), dimension(:), allocatable, public, protected :: &
homogenization_isostrain_sizeState, &
homogenization_isostrain_sizePostResults
integer(pInt), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_sizePostResult
character(len=64), dimension(:,:), allocatable, target, public :: &
homogenization_isostrain_output !< name of each post result output
integer(pInt), dimension(:), allocatable, private :: &
homogenization_isostrain_Ngrains
enum, bind(c)
enumerator :: nconstituents, &
temperature, &
ipcoords, &
avgdefgrad, &
avgfirstpiola
enumerator :: parallel, &
average
end enum
integer(kind(nconstituents)), dimension(:,:), allocatable, private :: &
homogenization_isostrain_outputID !< ID of each post result output
integer(kind(average)), dimension(:), allocatable, private :: &
homogenization_isostrain_mapping !< ID of each post result output
public :: &
homogenization_isostrain_init, &
homogenization_isostrain_partitionDeformation, &
homogenization_isostrain_averageStressAndItsTangent, &
homogenization_isostrain_postResults
contains
!--------------------------------------------------------------------------------------------------
!> @brief allocates all neccessary fields, reads information from material configuration file
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_init(myUnit)
use, intrinsic :: iso_fortran_env ! to get compiler_version and compiler_options (at least for gfortran 4.6 at the moment)
use math, only: &
math_Mandel3333to66, &
math_Voigt66to3333
use IO
use material
implicit none
integer(pInt), intent(in) :: myUnit
integer(pInt), parameter :: MAXNCHUNKS = 2_pInt
integer(pInt), dimension(1_pInt+2_pInt*MAXNCHUNKS) :: positions
integer(pInt) :: &
section, i, j, output, mySize
integer :: &
maxNinstance, k ! no pInt (stores a system dependen value from 'count'
character(len=65536) :: &
tag = '', &
line = '' ! to start initialized
write(6,'(/,a)') ' <<<+- homogenization_'//HOMOGENIZATION_ISOSTRAIN_label//' init -+>>>'
write(6,'(a)') ' $Id$'
write(6,'(a15,a)') ' Current time: ',IO_timeStamp()
#include "compilation_info.f90"
maxNinstance = count(homogenization_type == HOMOGENIZATION_ISOSTRAIN_ID)
if (maxNinstance == 0) return
allocate(homogenization_isostrain_sizeState(maxNinstance))
homogenization_isostrain_sizeState = 0_pInt
allocate(homogenization_isostrain_sizePostResults(maxNinstance))
homogenization_isostrain_sizePostResults = 0_pInt
allocate(homogenization_isostrain_sizePostResult(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_sizePostResult = 0_pInt
allocate(homogenization_isostrain_Ngrains(maxNinstance))
homogenization_isostrain_Ngrains = 0_pInt
allocate(homogenization_isostrain_mapping(maxNinstance))
homogenization_isostrain_mapping = average
allocate(homogenization_isostrain_output(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_output = ''
allocate(homogenization_isostrain_outputID(maxval(homogenization_Noutput),maxNinstance))
homogenization_isostrain_outputID = -1
rewind(myUnit)
section = 0_pInt
do while (trim(line) /= '#EOF#' .and. IO_lc(IO_getTag(line,'<','>')) /= material_partHomogenization) ! wind forward to <homogenization>
line = IO_read(myUnit)
enddo
do while (trim(line) /= '#EOF#')
line = IO_read(myUnit)
if (IO_isBlank(line)) cycle ! skip empty lines
if (IO_getTag(line,'<','>') /= '') exit ! stop at next part
if (IO_getTag(line,'[',']') /= '') then ! next section
section = section + 1_pInt
output = 0_pInt ! reset output counter
endif
if (section > 0_pInt ) then ! do not short-circuit here (.and. with next if-statement). It's not safe in Fortran
if (homogenization_type(section) == HOMOGENIZATION_ISOSTRAIN_ID) then ! one of my sections
i = homogenization_typeInstance(section) ! which instance of my type is present homogenization
positions = IO_stringPos(line,MAXNCHUNKS)
tag = IO_lc(IO_stringValue(line,positions,1_pInt)) ! extract key
select case(tag)
case ('(output)')
output = output + 1_pInt
homogenization_isostrain_output(output,i) = IO_lc(IO_stringValue(line,positions,2_pInt))
select case(homogenization_isostrain_output(output,i))
case('nconstituents','ngrains')
homogenization_isostrain_outputID(output,i) = ncomponents
case('temperature')
homogenization_isostrain_outputID(output,i) = temperature
case('ipcoords')
homogenization_isostrain_outputID(output,i) = ipcoords
case('avgdefgrad','avgf')
homogenization_isostrain_outputID(output,i) = avgdefgrad
case('avgp','avgfirstpiola','avg1stpiola')
homogenization_isostrain_outputID(output,i) = avgfirstpiola
case default
mySize = 0_pInt
end select
case ('nconstituents','ngrains')
homogenization_isostrain_Ngrains(i) = IO_intValue(line,positions,2_pInt)
case ('mapping')
select case(IO_lc(IO_stringValue(line,positions,2_pInt)))
case ('parallel','sum')
homogenization_isostrain_mapping(i) = parallel
case ('average','mean','avg')
homogenization_isostrain_mapping(i) = average
case default
print*, 'There should be an error here'
end select
end select
endif
endif
enddo
do k = 1,maxNinstance
homogenization_isostrain_sizeState(i) = 0_pInt
do j = 1_pInt,maxval(homogenization_Noutput)
select case(homogenization_isostrain_outputID(j,i))
case(ncomponents, temperature)
mySize = 1_pInt
case(ipcoords)
mySize = 3_pInt
case(avgdefgrad, avgfirstpiola)
mySize = 9_pInt
case default
mySize = 0_pInt
end select
outputFound: if (mySize > 0_pInt) then
homogenization_isostrain_sizePostResult(j,i) = mySize
homogenization_isostrain_sizePostResults(i) = &
homogenization_isostrain_sizePostResults(i) + mySize
endif outputFound
enddo
enddo
end subroutine homogenization_isostrain_init
!--------------------------------------------------------------------------------------------------
!> @brief partitions the deformation gradient onto the constituents
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_partitionDeformation(F,avgF,el)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains
implicit none
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(out) :: F !< partioned def grad per grain
real(pReal), dimension (3,3), intent(in) :: avgF !< my average def grad
integer(pInt), intent(in) :: &
el !< element number
F = spread(avgF,3,homogenization_Ngrains(mesh_element(3,el)))
end subroutine homogenization_isostrain_partitionDeformation
!--------------------------------------------------------------------------------------------------
!> @brief derive average stress and stiffness from constituent quantities
!--------------------------------------------------------------------------------------------------
subroutine homogenization_isostrain_averageStressAndItsTangent(avgP,dAvgPdAvgF,P,dPdF,el)
use prec, only: &
pReal
use mesh, only: &
mesh_element
use material, only: &
homogenization_maxNgrains, &
homogenization_Ngrains, &
homogenization_typeInstance
implicit none
real(pReal), dimension (3,3), intent(out) :: avgP !< average stress at material point
real(pReal), dimension (3,3,3,3), intent(out) :: dAvgPdAvgF !< average stiffness at material point
real(pReal), dimension (3,3,homogenization_maxNgrains), intent(in) :: P !< array of current grain stresses
real(pReal), dimension (3,3,3,3,homogenization_maxNgrains), intent(in) :: dPdF !< array of current grain stiffnesses
integer(pInt), intent(in) :: el !< element number
integer(pInt) :: &
homID, &
Ngrains
homID = homogenization_typeInstance(mesh_element(3,el))
Ngrains = homogenization_Ngrains(mesh_element(3,el))
select case (homogenization_isostrain_mapping(homID))
case (parallel)
avgP = sum(P,3)
dAvgPdAvgF = sum(dPdF,5)
case (average)
avgP = sum(P,3) /real(Ngrains,pReal)
dAvgPdAvgF = sum(dPdF,5)/real(Ngrains,pReal)
end select
end subroutine homogenization_isostrain_averageStressAndItsTangent
!--------------------------------------------------------------------------------------------------
!> @brief return array of homogenization results for post file inclusion
!--------------------------------------------------------------------------------------------------
pure function homogenization_isostrain_postResults(ip,el,avgP,avgF)
use prec, only: &
pReal
use mesh, only: &
mesh_element, &
mesh_ipCoordinates
use material, only: &
homogenization_typeInstance, &
homogenization_Noutput
use crystallite, only: &
crystallite_temperature
implicit none
integer(pInt), intent(in) :: &
ip, & !< integration point number
el !< element number
real(pReal), dimension(3,3), intent(in) :: &
avgP, & !< average stress at material point
avgF !< average deformation gradient at material point
real(pReal), dimension(homogenization_isostrain_sizePostResults &
(homogenization_typeInstance(mesh_element(3,el)))) :: &
homogenization_isostrain_postResults
integer(pInt) :: &
homID, &
o, c
c = 0_pInt
homID = homogenization_typeInstance(mesh_element(3,el))
homogenization_isostrain_postResults = 0.0_pReal
do o = 1_pInt,homogenization_Noutput(mesh_element(3,el))
select case(homogenization_isostrain_outputID(o,homID))
case (ncomponents)
homogenization_isostrain_postResults(c+1_pInt) = real(homogenization_isostrain_Ngrains(homID),pReal)
c = c + 1_pInt
case (temperature)
homogenization_isostrain_postResults(c+1_pInt) = crystallite_temperature(ip,el)
c = c + 1_pInt
case (avgdefgrad)
homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgF,[9])
c = c + 9_pInt
case (avgfirstpiola)
homogenization_isostrain_postResults(c+1_pInt:c+9_pInt) = reshape(avgP,[9])
c = c + 9_pInt
case (ipcoords)
homogenization_isostrain_postResults(c+1_pInt:c+3_pInt) = mesh_ipCoordinates(1:3,ip,el) ! current ip coordinates
c = c + 3_pInt
end select
enddo
end function homogenization_isostrain_postResults
end module homogenization_isostrain